Google

Translate blog

Visar inlägg med etikett mätning. Visa alla inlägg
Visar inlägg med etikett mätning. Visa alla inlägg

fredag 14 april 2023

Skilda resultat visas på universums expansionshastighet beroende på mätinstrument

 


Universum expanderar – men exakt hur snabbt kan diskuteras då skilda mätresultat från skilda men absoluta metoder ger skilda resultat. Svaret ger därför flera svar och beror på om det tas hänsyn till den kosmiska expansionshastighet - kallad Hubbles konstant, (Hubbles lag) eller H0 - baserat på ekot från Big Bang (den kosmiska mikrovågsbakgrunden kallad CMB) eller om man mäter H0 direkt baserat på dagens stjärnor och galaxer. Problemet är känt som Hubble-spänningen och förbryllar astrofysiker och kosmologer runt om i världen.

I en ny studie utförd av forskargruppen Stellar Standard Candles and Distances, ledd av Richard Anderson vid EPFL: s Instituteof Physics läggs en ny bit till lösningen. Forskningsresultatet är publicerat i Astronomy &; Astrophysics och uppnådde den mest exakta kalibreringen av cepheidstjärnor. 

Cepheidstjärnor är en typ av variabel stjärna vars ljusstyrka fluktuerar över en definierad period och därför används vid  avståndsmätningar. Forskningen var baserad på data som samlats in genom  Europeiska rymdorganisationens (ESA: s) Gaia-uppdrag. Den nya kalibreringen förstärker Hubble-spänningen ytterligare. 

Hubblekonstanten (H0) är uppkallad efter astrofysikern som tillsammans med Georges Lemaître upptäckte fenomenet i slutet av 1920-talet. Det mäts i kilometer per sekund per megaparsec (km / s / Mpc), där 1 Mpc är cirka 3,26 miljoner ljusår.

Vid den bäst direkta mätningen av H0 används en "kosmisk avståndsstege", vars första steg ställs in  ur den absoluta kalibreringen av Cepheidstjärnors ljusstyrka, nu omkalibrerad i den nya studien. Cepheiderna kalibrerar i sin tur nästa steg på stegen, där supernovors  expansion analyseras. Denna avståndsstege, mätt av supernovorna, H0, för Equation of State of dark energy (SH0ES) gjorde teamet under ledning av Adam Riess, vinnare av Nobelpriset i fysik 2011 av H0 på 73,0 ± 1,0 km / s / Mpc.

H0 kan också bestämmas genom att tolka CMB - vilket är den allestädes närvarande mikrovågsstrålning som finns kvar från Big Bang. Detta "tidiga universum"  som mätmetod måste dock antas som den mest detaljerade fysiska förståelsen av hur universum utvecklas vilket gör det till modellberoende. ESA:s Plancksatellit har tillhandahållit de mest kompletta uppgifterna om CMB, och dess arbetsmetod var H0 67,4 ± 0,5 km/s/Mpc.

Den nya studien är viktig eftersom den förstärker avståndsstegen genom att förbättra kalibreringen av cepheider som avståndsspårare. Faktum är att den nya kalibreringen gör det möjligt att mäta astronomiska avstånd inom ± 0,9%, och det ger starkt stöd till  mätningen. Dessutom bidrog resultaten som erhölls vid EPFL, i samarbete med SH0ES-teamet, till att förfina H0-mätningen vilket resulterade i förbättrad precision och en ökad betydelse för Hubble-spänningen.

Studien bekräftar expansionshastigheten på 73 km/s/Mpc, men ännu viktigare den ger även de mest exakta, tillförlitliga kalibreringarna av cepheider som verktyg för att mäta avstånd hittills, beskriver Anderson det i studien och tillägger att de även utvecklade en metod som sökte efter cepheider  i stjärnhopar i Vintergatan. Tack vare detta  kunde vi dra nytta av det bästa i  Gaias parallaxmätningar samtidigt som vi kunde dra nytta av den ökade precision som de många stjärnhopsmedlemmarna gav. Det gjorde det möjligt för oss att pressa noggrannheten av Gaia-parallaxer till sin gräns och ge en fastaste grund för arbetsmetoden med avståndsstegen.

En skillnad på bara några km/s/Mpc  spelar stor roll i universums enorma skala beskriver Anderson och tillägger med följande liknelse: Antag att du vill bygga en tunnel genom att gräva från två motsatta sidor av ett berg. Om du har förstått typen av sten korrekt och om dina beräkningar är korrekta, kommer de två hålen du gräver att mötas i mitten. Men om de inte gör det betyder det att du gjort ett misstag - antingen är dina beräkningar felaktiga eller så har du fel om typen av sten. Det är vad som händer med Hubble-konstanten. Ju mer bekräftelse vi får på att våra beräkningar är korrekta desto mer kan vi dra slutsatsen att diskrepansen innebär att vår förståelse av universum är felaktig att universum inte är riktigt  som vi trodde.

Skillnaden har även många andra konsekvenser. Den ifrågasätter själva grunderna, som den mörka energins natur, tid-rymdkontinuum och gravitationen. Det betyder enligt Anderson att vi måste ompröva de grundläggande begreppen som ligger till grund för vår övergripande förståelse i fysik.

Jag (mina funderingar) anser att vi inte har hel förståelse av fysiken (verkligheten) och att ett paradigmskifte förr eller senare kommer. Kanske strängteorin ska tas mer på allvar då den kan förklara det mesta kanske allt.

Forskargruppens studie ger ett viktigt bidrag även inom andra områden. – Eftersom våra mätningar är så exakta ger de oss insikt i Vintergatans geometri, säger Mauricio Cruz Reyes, doktorand i Andersons forskargrupp och huvudförfattare till studien. Den mycket noggranna kalibrering vi utvecklat kommer att göra det möjligt för oss att bättre bestämma Vintergatans storlek och form och dess avstånd till andra galaxer. Vårt arbete bekräftade också tillförlitligheten hos Gaia-data genom att jämföra dem med dem från andra teleskop.

Bild flickr.com


tisdag 14 februari 2023

Hur man väger en vit dvärgstjärna

 


Astronomer som använde NASA:s rymdteleskop Hubble har för första gången mätt massan direkt av en vit dvärgstjärna. En vit dvärgstjärna är den rest som blir kvar efter att en solliknande stjärna gjort slut på sitt bränsle (slutet även för vår sol).

Astronomerna fann att den vita dvärgen bestod av 56 procent av vår sols massa. Detta överensstämmer med tidigare teoretiska förutsägelser om den vita dvärgens massa och bekräftar nuvarande teorier om hur vita dvärgar utvecklas till sin slutprodukt i en typisk stjärnas utveckling. Den unika observationen ger insikter i teorien om vita dvärgars struktur och sammansättning.

Hittills har tidigare vita dvärgmassemätningar kommit från observationer och mätning av vita dvärgar i binära stjärnsystem. Genom att se på rörelsen hos två stjärnor som kretsar kring varandra kan enkel newtonsk fysik användas för att mäta deras massor. Dessa mätningar kan dock bli osäkra om en vita dvärgs följeslagare befinner sig i en lång periodisk omloppsbana på hundratals eller tusentals år om denna (även om de är binärer).

Då det gäller den ensamma vita dvärgstjärnan ovan var forskare tvungna att använda ett trick av naturen, kallat gravitationell mikrolinsning. Innebärande att då ljuset från en bakgrundsstjärna avböjs något som sker  genom  gravitationsförvrängning från en stjärna i bakgrunden till den stjärna som observeras. När den vita dvärgen passerade framför bakgrundsstjärnan fär mikrolinsning  stjärnan att tillfälligt ses förskjuten från sin faktiska position på himlen och ser då större ut.

Resultatet av mätning och hur den gick till finns beskrivs i  Monthly Notices of the Royal Astronomical Society. Huvudförfattaren är Peter McGill, som arbetat vid University of Cambridge (men nu baserad vid University of California, Santa Cruz).

McGill använde Hubble för att  mäta den  vita dvärgen,  LAWD 37 som finns 15 ljusår från oss. 

Kailash Sahu från Space Telescope Science Institute i Baltimore, Maryland var den ledande Hubble-utredaren för den senaste observation och använde redan mikrolinsning 2017 för att mäta massan av en vit dvärg, Stein 2051 B. Men den dvärgen finns i ett binärt system. "Vår senaste observation ger ett nytt riktmärke eftersom LAWD 37 är en ensam vit dvärg", sa Sahu.

De kollapsade resterna av en stjärna som brann ut för 1 miljard år sedan, LAWD 37 har studerats omfattande  den finns bara 15 ljusår bort i stjärnbilden Flugan. "Eftersom den här vita dvärgen är relativt nära oss har vi mycket data om den - vi har information om dess ljusspektrum, men saknade ett mått på dess massa", säger McGill.

Teamet använde  ESA:s rymdobservatorium Gaia, som gör utomordentligt exakta mätningar av nästan 2 miljarder stjärnpositioner. Vid flera Gaia-observationer över tid kan man spåra en stjärnas rörelse. Baserat på dessa data kunde astronomer förutsäga att LAWD 37 ett kort ögonblick skulle passera framför en bakgrundsstjärna i november 2019.

När detta väl var känt användes Hubble för att exakt under flera års tid mäta  hur bakgrundsstjärnans skenbara position på himlen tillfälligt avböjdes under den vita dvärgens passage.

"Dessa händelser är sällsynta och effekterna är små", säger McGill. "Till exempel är storleken på vår uppmätta förskjutning är som att mäta längden på en bil på månen sett från jorden."

Eftersom ljuset från bakgrundsstjärnan var så svagt var den största utmaningen för astronomerna att extrahera sin bild från bländningen av den vita dvärgen, som är 400 gånger ljusstarkare än bakgrundsstjärnan. Endast Hubble kan göra den här typen av högkontrastobservationer i synligt ljus.

Forskarna säger att deras resultat öppnar dörren för framtida händelseförutsägelser med hjälp av Gaia-data.

Rymdteleskopet Hubble är ett projekt för internationellt samarbete mellan NASA och ESA. NASA:s Goddard Space Flight Center i Greenbelt, Maryland, förvaltar teleskopet. Space Telescope Science Institute (STScI) i Baltimore bedriver Hubbles vetenskapliga verksamhet. STScI drivs för NASA av Association of Universities for Research in Astronomy, i Washington, DC.

Bild https://esahubble.org/images/heic2301a/ på den vita dvärgstjärnan LAWD 37.

torsdag 23 maj 2019

Universum minns varje rörelse som skett i tid och rum.


Universum har ”minne” och  kan ”komma ihåg” gravitationsvågor lång tid efter att de har passerat. 


Det är kontentan i en artikel publicerad den 25 april i The journal Physical Review D.

Dessa ”minnen”  forskarna utgår från kallas ”ihållande gravitationella observerbara vågor” och ska vara ännu svagare än de gravitationsvågor som vi först nyligen lyckats mäta upp.


Observera att artikeln grundas på en teori inte på att dessa svaga vågor detekterats. Teoretiskt verkar det stämma men att finna spår i mätbar form är något som troligen aldrig kan göras och absolut inte med dagens mätmöjligheter.


 Dessa vågor anses komma från massiva händelser för exempel som när svarta hål och neutronstjärnor kolliderar långt där ute i rymden. När de då når jorden är vågorna knappt märkbara och deras långsiktiga effekter är än mindre uppenbara.


Men de bör finnas och ses som vågor som är minnen av särskilt stora händelser långt därute som kanske skett miljarder ljusår bort.


Skulle vi mot all förmodan kunna mäta dessa och se var de kom ifrån kunde vi lära oss än mer om universums förflutna och dess början och nuvarande stadium. Vi vet ju inte mycket om nuvarande universum då allt vi ser är vad som skett många ljusår bort ibland miljarder år bort i förfluten tid.

tisdag 7 augusti 2018

Gränsen mellan Jordens yttersta atmosfär och rymden är numera ca 2 mil kortare. Innebär i värsta fall krigsrisk.


Gränsdragningar är svårt. Vad ska man utgå från eller till.

De olika skikten av atmosfären sträcker sig enligt gängse regler 10 mil upp från havsytan. Upptill denna nivå är ett lands territorium därefter är det internationell rymd.

Men nya mätningar och forskning säger att detta inte stämmer utan rymden ska definieras redan från 8 mils höjd.  

Nu undrar säkert en del vad det har för betydelse om gränsen mellan jorden och rymden är 20 % mindre om det inte gör att vi får det sämre här på Jorden. Den har ju i så fall alltid haft denna gräns om nu inget har minskat denna av någon anledning som känns hotande. Men inget visar på detta.

 Problemet är istället att det måste accepteras av alla stater för att det i framtiden inte ska ske politiska eller territoriella  schismer. 

Luftrummet för en stat sträcker sig uppåt dit rymden tar vid utanför detta får inte militära vapensystem finnas. Om ex en satellit finns i luftrummet som en stat äger är det ok eller om den är fredlig i internationell rymd är det även ok. Men skulle den vara av militär art och finnas i den internationella rymden är det ett brott och en provokation. Militära farkoster kan ses som krigshot.

Förändringar av nuvarande regler skulle fodra förhandlingar av skilda slag och nya schismer stater emellan. Se bara hur klimatavtalen sluts och upplöses och förhandlas om. Därför anses att dessa nya rön knappast kommer att uppmärksammas mer än som en rapport och de regler som idag gäller mellan stater och i rymden förblir som de är.

Något som däremot  behöver förhandlas om är nedskräpningen av rymden i Jordens närområde.

söndag 15 april 2018

Hubbleteleskopet blev först med en nästan exakt avståndsmätning till en av de klotformiga stjärnhoparna i universum med en antik metod. EXTRA: Tess är ute och söker planeter i närområdet med början från natten mellan 16 - 17 april.


EXTRA nyhet. Natten mellan 16-17 april dundrar en Falcon9 raket upp i skyn
med rymdteleskopet TESS ombord. 

När TESS har nått en höjd på 250 000 kilometer fäller den ut sina solcellsbesatt vingar och påbörjar sitt uppdrag: att hitta exoplaneter nära jorden med möjligheter för liv.

TESS ska övervaka mer än 200 000 stjärnor med  fyra kameror, som kan upptäcka minsta variation i stjärnornas ljusstyrka. I första hand ska sökandet koncentreras till att söka exoplaneter, som kretsar runt röda dvärgstjärnor.  Dessa utgör 3/4 av alla stjärnor i universum och är  stjärntypen vilken existerar längst. 

Röda dvärgar kan leva i biljontals år och det ökar sannolikheten för att liv kan ha uppstått.  Föregångaren Kepler kunde se upp till 3 000 ljusår bort, men TESS har ett bredare synfält. Tron är att Tess ska hitta ca 2000 spännande planeter i vårt närområde i Vintergatan att sedan fortsätta undersöka på skilda vis.


Men nu till det som först avhandlades idag.
Långt därute kan vi se de första stjärnhoparna som bildades en relativt kort tid efter Big Bang.

Astronomer har med hjälp av NASAS rymdteleskop Hubble för första gången mätt avståndet till ett av de äldsta föremålen i universum, en samling av stjärnor födda strax efter Big Bang.

Fram tills nu har Astronomer uppskattat avståndet till galaxens klotformiga stjärnhopar genom att jämföra luminositet och färger av stjärnor utifrån teoretiska modeller av liknande stjärnor genom rödförskjutningen. Men noggrannheten för dessa uppskattningar varierar med en osäkerhet mellan 10 och 20 procent i avståndsmätningsresultat.

Vi har ofta sett detta i beskrivningar av avstånd till en viss galax där avståndet kanske beskrivs som ex 30-50 ljusår.

I den nya mätningen används dock enkel trigonometri, samma metod som användes av lantmäteripersonal mm innan gps. Trigonometri en metod utarbetad av de antika grekiska matematikerna för över 2000 år sedan. Nu har en metod utarbetats vilken gör det möjligt att använda trigonometri även i rymden på objekt på stora avstånd.

Genom denna metod vilken kan läsas mer om här fås osäkerhetsavståndet på 10-20 % att minskas till 3 % och målet 1 % ligger inom möjligheterna i framtiden.

Forskargruppens experiment koncentrerades till NGC6397 vars ålder är13,4 miljarder år och vilken ligger 7 800 ljusår bort i Vintergatan. Stjärnhopen kan sökas i stjärnbilden Altaret på södra stjärnhimlen.

Bilden visar riktningen till den omnämnda galaxen ovan in i Altaret

onsdag 2 augusti 2017

Skolbarn hjälper till att mäta storleken av galaxers svarta hål.

I troligen alla galaxers  centrum finns ett svart hål. Tills för inte så länge sedan var det svårt att mäta hur stort detta var i en speciell galax.

Men nu har en formel hittats för hur sambandet mellan en spiralgalax armar och storleken på en galax svarta hål upptäckts.

OBS: det gäller bara spiralgalaxer vilka kan delas upp klassmässigt utefter storleken av dess spiralarmar. Övriga former av galaxer har ännu inte upptäckts en formel eller ett samband med för att räkna ut deras svarta hål utifrån deras formbildning. Men troligen finns det.

Formeln utefter olika slag av spiralgalaxer och dess mätning är relativ lätt och kan läsas mer om här.

Även skolbarn kan i sina klassrum om de har rätt mätutrustning hjälpa till med mätningar av nyupptäckta eller tidigare ej mätade spiralgalaxers armar för att den vägen katalogisera dessa.


Ett säkert intressant område för många skolbarn på en eller flera matematiklektioner eller fysiklektioner.

OBS bilden har inget med artikeln att göra men i länken ovan kan lösas om projektet.

måndag 4 april 2016

Stjärnors ljusstyrka är av två slag. Från en utsiktsplats eller på plats. Lätt ta fel.

Många stjärnor  har en ljusstyrka som i många fall är betydligt skarpare än vår stjärna eller sol.

Men från Jorden kanske den ses som svagare eller mäts som ett svagare sken. På plats är ljusstyrkan i många fall betydligt större än vad som först mätts.

Om länken här följs kan mer om hur det matematiskt kan räknas ut hur starkt ljussken en stjärna har räknas ut och förstås.

Kontentan i dag är att förstå att ljusstyrka är av två olika slag sett från Jorden. Det är inte alltid första intrycket är det rätta.


onsdag 27 januari 2016

En ny metod funnen för att mäta gravitationen på en avlägsen stjärna. Därmed luras man inte att tro att en viss exoplanet kan hysa livsmöjligheter

Uppfinningen är gjord på Wiens universitet och innebär att med en noggrannhet av 4% mäta hur stark gravitation är på en stjärnas  yta om vi kunde stå på denna.

Detta är viktigt för att inte få fel uppfattning av en  exoplanet i dess närhet.  Genom att mäta gravitationen på en stjärna kan man förstå dess storlek och inte missuppfatta denna. Därefter förstår man om en planet vilken ses ligga i rätt bana runt stjärnan enligt vår förståelse  av idag för livszon kan hysa liv som vi känner det från Jorden.

Misstaget är att tro detta utifrån en sols missuppfattade storlek. Vid en lite för stor storlek blir miljön runt stjärnan omöjlig för liv. Strålningen blir för stark.

Samma sak skulle skett här om solen varit större skulle Jorden varit en stenplanet med en temperatur där inget liv kunde finnas alternativt likt Venus en het planet med en atmosfär av giftigt slag som höll värmen kvar som ett otroligt växthus.

Därför är den metod som nu funnits en metod för att hitta exoplanter där liv kan finnas men även där vi  kan ha misstaget oss på grund av att vi ansett livszon där denna är omöjlig.


Om vi nu inte ska se livsmöjligheter med andra mått än med jordiska ögon. Men jag tvivlar på att vi ska detta. Allt verkar uppbyggt efter samma mall i vårt universum. Fantasins livsformer  får vi se oss om efter i eventuella andra universum i andra dimensioner av tid och rum.