Google

Translate blog

Visar inlägg med etikett pulsar. Visa alla inlägg
Visar inlägg med etikett pulsar. Visa alla inlägg

söndag 15 oktober 2023

Starkast oförklarat gammastrålutsläpp hittills från en pulsar.

 


Forskare som använder H.E.S.S.-observatoriet i Namibia har upptäckt den högsta gammastrålningskällan någonsin  från en slocknad stjärna och då av de en som kallas pulsar. Energin hos gammastrålarna klockade in vid 20 tera-elektronvolt, eller cirka tio biljoner gånger högre  energi än hos synligt ljus. Upptäckten är svår att förena med teorin om pulserande gammastrålar beskriver det internationella laget i tidskriften Nature Astronomy.

Pulsarer är den kvarvarande rester av stjärnor som exploderat som en supernova. Explosionerna lämnar efter sig en liten stjärna med en diameter på  cirka 20 kilometer, som roterar extremt snabbt och har ett enormt magnetfält. Dessa avsomnande stjärnor består nästan helt av neutroner beskriver H.E.S.S.-forskaren Emma de Oña Wilhelmi medförfattare till publikationen och som arbetar vid DESY Deutsches Elektronen-Synchrotron DESY i Tyskland).  

Pulsarer avger roterande strålar av elektromagnetisk strålning och kan ses som kosmiska fyrar. Om deras strålar sveper över vårt solsystem ser vi blixtar av gammastrålning i jämna tidsintervaller. Vela-pulsaren, som ligger på södra himlen i konstellationen Vela (i fartygets segel) är den ljusstarkaste pulsaren i radiobandet i det elektromagnetiska spektrumet och den ljusast ihållande källan av kosmiska gammastrålning i giga-elektronvolt (GeV) -området. Den roterar ungefär elva gånger per sekund.

Men detta är inte slutet på historien: med hjälp av djupobservationer med H.E.S.S. har en ny strålningskomponent med ännu högre energi nu upptäckts, med energi på upp till tiotals tera-elektronvolt (TeV). Det är ungefär 10 000 gånger mer energirikt än all strålning som någonsin upptäckts tidigare från detta slag av objekt, beskriver medförfattaren till studien Christo Venter vid North-West University i Sydafrika.

Denna mycket höga energi uppträder vid samma fasintervall som den som observerats i GeV-området. Men för att uppnå dessa energier bör elektronerna behöva fara ännu längre inifrån pulsaren än från magnetosfären (viket är det som vi vet hittills är källan i en pulsar för gammastrålar) men rotationsemissionsmönstret måste förbli intakt.

Resultatet utmanar vår tidigare kunskap om pulsarer och kräver en omprövning av hur dessa naturliga acceleratorer fungerar, beskriver Arache Djannati-Atai från Astroparticle &; Cosmology (APC) laboratorium i Frankrike, som ledde forskningen.

Bild vikipedia på High Energy Stereoscopic System (H.E.S.S,) observatoriet i Namibia varifrån upptäckten gjordes.

onsdag 2 februari 2022

Mystiskt tidsbundet energiutkast är inte aliens teknik.

 


Det var ett team av forskare som kartlägger radiovågor i universum som upptäckte fenomenet en enorm energivåg som utlöstes tre gånger i timmen. Ett ovanligt fenomen astronomer aldrig tidigare sett. Misstanken blev att det kan vara en neutronstjärna eller en vit dvärg  vilket är kollapsade kärnor av stjärnor - med ett ultrakraftfullt magnetfält snurrande runt därute.

Astrofysikern Dr. Natasha Hurley-Walker vid Curtin University noden vid International Centre for Radio Astronomy Research, ledde teamet som gjorde upptäckten. "Det här objektet dök upp och försvann under några timmar under våra observationer", säger hon. – Det var helt oväntat. Det var överraskande då inget känt fenomen tidigare gjort  som detta. Platsen där det skedde är cirka 4000 ljusår bort. Det är då det handlar om avstånd i rymden ganska nära oss."


Objektet upptäcktes vid  Curtin University av Honors student Tyrone O'Doherty med hjälp av Murchison Widefield Array (MWA) teleskop  Western Australia med en ny teknik O'Doherty utvecklat. "Det är spännande att den källa jag identifierade under 2021 har visat sig vara ett så märkligt objekt", säger O'Doherty, som nu studerar vidare för en doktorsexamen vid Curtin.

"MWA:s breda synfält och extrema känslighet är perfekta för att kartlägga skyn och upptäcka det oväntade." Objekt som slås på och av i universum är inte nya för astronomer – de kallar dem transienter (En transient innebär ett svängningsförlopp av kort varaktighet). ICRAR-Curtin astrofysiker och medförfattare till studien Dr. Gemma Anderson säger i ett uttalande "När du studerar transienter ser du på en massiv stjärnas död eller aktiviteten av resterna den lämnat efter sig."

Långsamma transienter som supernovor ses som skarpa strålkällor under några dagar och försvinner helt efter några månaders dämpning av skenet. Snabba transienter är en typ av neutronstjärna som kallas pulsar De blinkar på och av millisekunders eller sekundförlopp under en längre tid. Dr Anderson säger att det var konstigt att hitta något som var påslaget en minut och som återupprepades var artonde minut. Hon sa att det mystiska objektet var otroligt ljust men mindre än vår sol och att det avgav högpolariserade radiovågor - vilket tyder på att objektet hade ett extremt starkt magnetfält.

Dr Hurley-Walker säger även att observationerna matchar ett förutsagt astrofysikaliskt objekt som kallas en ultralång periodmagnetar. "Det är en typ av långsamt snurrande neutronstjärna som har förutspåtts existera teoretiskt", säger hon och tillägger. "Men ingen förväntade sig att direkt upptäcka en sådan här då de inte förväntades vara så ljusstarka. På något sätt omvandlar detta objekt magnetisk energi till radiovågor mycket mer effektivt än något vi har sett tidigare."

Dr Hurley-Walker planerar nu för att söka efter fler av dessa ovanliga föremål i MWA: s stora dataarkiv. "Fler upptäckter eller inte kommer att berätta för astronomer om detta var en sällsynt engångshändelse eller en enorm ny population som vi aldrig  märkt av tidigare", säger hon.

MWA-chefen, professor Steven Tingay, säger på tal om MWA-teleskopet att detta  är ett föregångareteleskop till Square Kilometre Array - ett globalt initiativ för att bygga världens största sammankopplade radioteleskop i västra Australien och Sydafrika.

 "Nyckeln till att hitta detta objekt, och studera dess detaljerade egenskaper, är det faktum att vi har kunnat samla in och lagra all data som MWA producerat under det senaste decenniet vid Pawsey Research Supercomputing Centre. Att kunna se tillbaka i tiden på   en så massiv datauppsättning när man hittat ett objekt är ganska unikt inom astronomin, säger han. "Det finns utan tvekan många fler intressanta objekt att upptäcka av MWA och SKA under de kommande åren."

 

MWA (Murchison Widefield Array

 finns vid  Murchison Radio-astronomy Observatory i västra Australien. Observatoriet förvaltas av CSIRO, Australiens nationella vetenskapsbyrå, och grundades med stöd av australiensiska och västra australiensiska regeringar.

Square Kilometre Array (SKA) som nämns ovan är ett planerat radioteleskopkompex som väntas bli mycket känsligare än dagens anläggningar.

I media har vissa tidningar i artiklar beskrivit fenomenet ovan som eventuell aliens kontaktförsök, en fyr, eller energiuttag av aliens. Det är sensationsskriverier och har inget med verkligheten att göra. Troligast är det en pulsar man upptäckt och ingen seriös astronom har låtit fantasin flöda det är bara media i vissa fall som gjort detta (min anm.).

Bild från https://phys.org/ som visar en konstnärs bild av hur det kan se ut om det är en magnetar.

måndag 27 september 2021

Black widow i det klotformiga klustret NGC 6712.

 


NGC 6712 är ett klotformigt stjärnkluster.

Med hjälp av det 500 meter långa sfäriska radioteleskopet Aperture (FAST) har astronomer här upptäckt en ny pulsar. NGC 6712 ett metallrikt klotformigt kluster som ligger cirka 22 500 ljusår från jorden. Pulsaren är en så kallad "Black widow ", som fått beteckningen J1853−0842A  och är den första radiopulsaren som hittills identifierats i detta kluster. Fyndet beskrivs i en artikel publicerad 14 september den 14 arXiv.org.

De snabbast roterande pulsarerna, de med rotationsperioder under 30 millisekunder, kallas millisekunders pulsarer (MSP). Det antas att de bildas i binära system (dubbelstjärnsystem) när den ursprungligen mer massiva komponenten förvandlats till en neutronstjärna som sedan snurrar upp på grund av ackreditering av materia från den sekundära stjärnan.

Upptäckten skedde av ett team av astronomer ledda av Zhen Yan från Shanghai Astronomical Observatory.

Bild klustret NGC 6712 bild från vikipedia.

måndag 8 februari 2021

En magnetars bisarra uppträdande

 


Astronomer från ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) och CSIRO i Australien har just observerat ett udda aldrig tidigare sett beteende från en "radiovågssändande" magnetar. Magnetarer är en sällsynt typ av neutronstjärna och en av de starkaste magnetkällorna i universum. Astronomer har hitills upptäckt trettio av dessa objekt i Vintergatan. De flesta av dem har upptäckts av röntgenteleskop efter ett utbrott med hög energi från magnetaren.


De nya rön, som publicerats i Monthly Notices of the Royal Astronomical Society (MNRAS) visar att magnetarer har mer komplexa magnetfält än man tidigare trott. Något som kan utmana teorier om hur magnetarer kommer till och utvecklas över tid.

Några av dessa magnetarer har också setts avge radiosignalpulser som liknar pulsarers. En pulsar är mindre magnetiska magnetarer som producerar strålar av radiovågor från sina magnetiska poler.

Genom att undersöka hur pulser från dessa "radiovågstrålande" magnetarer förändras över tid kan man bättre  förstå deras utveckling och geometri.

I mars 2020 upptäcktes en ny magnetar som getts beteckningen Swift J1818.0-1607 (J1818 ) efter att den avgett  radiovågstrålning.

Märkligt nog var utseendet på radiovågspulserna från J1818 helt annorlunda än de som sågs från andra magnetarer som sände ut dessa likartade radiovågorspulser.

De flesta radiopulser från magnetarer upprätthåller en jämn styrka över ett brett spektrum av  frekvenser.

Pulserna från J1818 var dock  vid mer låga frekvenser än höga frekvenser – liknande det som ses i pulsarer, en annan vanligare typ av radiovågavgivande neutronstjärna."Detta bisarra beteende har aldrig sett förut i någon annan magnetar”, förklarar studien huvudförfattare doktorand Marcus Lower vid Swinburne University / CSIRO. "Det verkar inte ha varit ett kortlivat fenomen då vår nästa observation visade att fenomenet fortsatt var igång i denna magnetar."

Studien tyder på att detta är bevis för att radiovågpulser från J1818 kommer från slingor av magnetfält. Linjer av magnetfält som förbinder syd och nordpolerna i form av en  hästskomagnet eller solfläckar som på vår sol.

Detta till skillnad från de flesta neutronstjärnor som ha nord- och sydpoler på motsatta sidor av stjärnan som är anslutna i ett munkkaksformat magnetfält.

Denna säregna magnetiska fältkonfiguration som nu upptäckts stöds också av en oberoende studie av röntgenpulserna av J1818 som detekterades av NICER-teleskopet ombord på den internationella rymdstationen ISS.

Röntgenstrålarna verkar komma från antingen en enda förvrängd region av magnetfältslinjer som kommer ut från den magnetiska ytan eller två mindre men nära fördelade regioner.

Nog är pulsarer och magnetarer svåra att förstå (min anm). Varför finns de och hur har de uppstått. Något säkert svar på detta finns inte. Men kraftiga magnetfält och strålningsfält finns där.

Bild på ovanstående magnetar Swift J1818.0-1607  från https://hyperaxion.com/

fredag 25 december 2020

Pulsar PSR J1047−6709 pulserar stort.

 


Pulsarer är  magnetiska roterande neutronstjärnor som avger strålar av elektromagnetisk strålning. Pulsarer upptäcks vanligtvis av radioteleskop då de sänder dessa pulser. Men några av dem observeras också med hjälp av optiska, röntgen och gammateleskop.

Hittills har de flesta pulsarer upptäckts med hjälp av Parkes Observatory i Australien. Med  radioteleskopet Parkes har kinesiska astronomer undersökt en isolerad pulsar som kallas PSR J1047−6709 och upptäckt dussintals jättepulser från denna källa.

Fyndet redovisas i en artikel publicerad 10 december på arXiv pre-print repository. Först fann astronomerna att PSR J1047−6709 växlar mellan svaga och mindre starka utsläpp. De antar att denna tillståndsväxling troligen är relaterad till i magnetfältet i pulsaren.

Pulsarer är spännande och ännu inte helt förklarade objekt däruppe.

Bild från vikipedia som visar en animation över bildandet av en pulsar. En stjärna i ett binärt stjärnsystem har kollapsat till en neutronstjärna och börjar ta material från den kvarvarande stjärnan, även känt som ackretion (tillskott/tillväxt) inom astrofysiken. Materian som överförs får stjärnan att börja rotera snabbare och avge högenergistrålning och så småningom bildas en pulsar med en rotationshastighet på upp till 1000 gånger per sekund. Någon bild på ovanstående pulsar finns inte ej heller dess avstånd från oss har jag lyckats hitta eller riktning.

lördag 9 juni 2018

En Pulsar 6500 ljusår bort kan ses i en upplösning vilken genom slumpen gjorts helt otrolig.


Ett team av astronomer har nyligen sett en av de högsta upplösningarna i bildskärpa av observationer i astronomins historia på det avstånd där så inte skulle kunna ske. Detta genom en observation av  två intensiva regioner av strålning vilka finns 20 kilometer från varandra på en pulsar 6500 ljusår bort. Pulsaren PSR B1957 + 20 vars moln av gas omsluter en brun dvärgstjärna, följeslagaren vilken följer den. 



Gasen från denna pulsar agerar som ett förstoringsglas alldeles framför pulsaren säger Robert Main doktorand vid Institutionen för astronomi och astrofysik vid University of Toronto.  Ovanstående pulsar är en neutronstjärna som roterar med en hastighet av 600 gånger per sekund Vid detta snurrande avger pulsaren strålning från två hotspots vilka ligger ca 20 km från varandra på dess yta. 

Den bruna dvärgstjärnan är ungefär en tredjedel av diametern av vår sol (en brun stjärna är en misslyckad stjärnbildning där temperaturen inte blev hög nog för att det skulle bli en stjärna utan processen stannade av). 
Den ligger ungefär två miljoner kilometer från pulsaren eller för att jämföra från vårt solsystem fem gånger avståndet mellan jorden och månen. Den bruna dvärgen  är låst till pulsaren så att ena sidan alltid står mot dess pulserande följeslagare, likt månen tidvattensmässigt är låst till jorden. Temperaturen på den bruna dvärgen ligger  på strålningssidan på 6000C vilket blästrar ytan från materia. 



Pulsarer av dessa typer i  binära system kallas svarta änkan pulsarer. Precis som  svarta änkan spindeln äter sin kompis är det tänkt att pulsaren gradvis eroderar gas och stoff  från dvärgstjärnan (den bruna dvärgen) tills den  förbrukats i en avlägsen framtid.

Bilden ovan är på ovanstående objekt därute.

tisdag 30 januari 2018

Hur tunga kan neutronstjärnor bli?


En neutronstjärna är endast ca 20 km i diameter. Men dess massa motsvarar 1,4 – 2,16 solmassor. En neutronstjärna är slutet av en stjärnas liv av storlek av ungefär vår sol eller mindre. Större stjärnor  exploderar i en supernova.

Men hur tunga kan neutronstjärnor bli?
Forskare har nu slagit fast att de inte kan bli tyngre än 2,16 solmassor.  Ett exempel på en sådan är pulsaren  PSR J0348 + 0432.
En pulsar är en roterande neutronstjärna vilken pulserar ut regelbunden strålning på alla slags våglängder.
Tätheten i en neutronstjärna kan jämföras med att ett ölglas skulle rymma vikten motsvarande Himalayas berg.

Nog är det tänkvärt och svårt att förstå. Men likväl sant.

Bilden ett panorama över Himalaya

lördag 30 december 2017

B1257 Pulsaren vilken sänder ut dödsbringande strålar men otroligt nog kan här finnas livsdugliga planeter.


B1257 är en pulsar i Jungfruns stjärnbild 2300 ljusår från Jorden. En pulsar är en stjärna vilken exploderat i en nova och nu är en vit dvärgstjärna med en densitet av slaget att en storlek som en sockerbit i form av en kub av denna väger som ett berg på Jorden (ca 100 miljoner ton) .

Observera att en supernova inte har detta förlopp utan då är det gas och strålning som blir kvar.

En vit dvärgstjärna resterna efter en nova kan ibland bli en pulsar. En strålningskälla av gamma och röntgenstrålning vilken i jämna pulser slungas ut från stjärnan vilken snurrar i stor hastighet runt sin egen axel. Detta sker i  ca 20% av de fall en nova blir till.

Fastän dessa dramatiska händelser kan en vit dvärgplanet vilken utvecklats till en pulsar ha planeter i banor omkring sig. Detta har pulsar B1257 vilken är en plats där exoplaneter finns.

Fyra planeter har upptäckts här en ca 50 gånger mindre än Jorden medan två är fyra gånger större än Jorden. Plus en gasplanet men denna är inte helt bekräftad utöver det finns troligen ett asteroidbälte.  1992 upptäcktes de första vilket var de första planeter som hittades utanför vårt solsystem.

De två stora planeterna skulle om omständigheterna är bra kunna hysa livsformer. Vad som behövs då är en atmosfär av en million gånger tätare slag än Jordens. Detta för att skydda mot pulsarens strålar. Det innebär ett atmosfärtryck av samma slag som finns i djupet på Marianergraven på Jorden. Men i denna finns liv så därför kan liv finnas under detta atmosfärtryck.

Det låter lite fantasieggande och teoretiskt tillrättaläggande tycker jag för att ge sken av att vid vissa förhållanden där allt måste stämma kan livsdugliga planeter finnas nära dödliga strålningskällor som pulsarer.

Men vi ska inte säga aldrig. Jordens alla skyddssystem för liv här har konstruerats en gång och kunde något så avancerat ske här kan det teoretiskt ske på andra platser också.

Bilden visar en illustration från en planet och pulsaren som jag beskrivit ovan.

torsdag 9 mars 2017

50 ljusår bort finns en pulsar med ca 1000 gånger starkare styrka från pulsen än vad man tidigare vetat vara möjligt.

En pulsar är en magnetiserad neutronstjärna vilken regelbundet skickar röntgenstålar ut i rymden med jämna intervall.

XXM Newton är ett rymdteleskop vilket undersöker röntgenstrålningsområdet i universum. Det är detta instrument som nu har upptäckt den kraftfulla pulsaren långt därute.

Denna källa NGC 5907 X-1 vilken ligger i en spiralgalax i stjärnbilden  är den kraftfullaste pulsar vi ännu vet om. Den sänder på en sekund ut samma mängd strålning som vår sol gör på 3,5 år i en enda puls.

Krafter av detta slag ansågs tidigare enbart kunna ske från svarta hål.

Tankar finns att det i detta fall finns någon kraftkälla i närområdet vi inte kan se varifrån neutronstjärnan får energi utöver den som redan finns i denna för att kunna sända ut denna mängd av kraftfull röntgenpulser

onsdag 1 mars 2017

Det finns endast sju stycken av dessa bland de miljarder stjärnorna i Vintergatan.

De är ovanliga bland Vintergatans  2-400 miljarder stjärnor endast sju av dessa har hittats. Den närmsta 7000 ljusår från oss. Det handlar om pulserande stjärnor så kallade pulsarer men av en unik art. Dessa sju är inte en vanliga pulsarer utan den som här redovisas är en av endast sju funna i vår Vintergatan.

En pulsar varierar i ljusstyrka över tid. Den unika här finns i Pegasus stjärnbild och är något större än vår sol. Unikt för denna pulsar är att den expanderar i tre olika riktningar i ett unikt mönster. Det gör att det är en variabel stjärna och just variabel pulsar är unikt.


Hur dessa kan fungera och dess historia och den kunskap man har idag om dem kan man läsa lite mer utförligt om här.

fredag 3 februari 2017

B0355 + 54 två pulsarer med lite annorlunda framtoning i Tvillingarnas stjärnbild.


En pulsar är en neutronstjärna vilken regelbundet utsänder strålning pulsvis av all slags strålning.

Det är endast ca 50 år sedan den första pulsaren upptäcktes.

Chandrateleskopet har studerat ovanstående pulsarer och det var i röntgenstrålningsområdet bilderna som kan ses med medföljande länken ses.

En  svansliknande dubbelstrålning utsänds och kan  ses på bilderna.

Varför det ser ut som det gör vet man inte men en naturlig förklaring kommer säkert efterhand.


Min personliga uppfattning är att det har med magnetism  av samma slag som järnfilspån när dessa delas upp vid en magnet på ett bord.

fredag 22 januari 2016

I tvillingarnas stjärnbild finns nebulosan där en mystisk neutronstjärna pulserar. Tror vi.

En nebulosa är ett stort dammoln där byggmaterial för nya stjärnor finns. Det  har funnits sedan Big Bang. Äldre stjärnor kollapsar när de inte längre kan existera och blir en nova ibland en supernova. I denna nova finns även stjärnstoff för bildande till nya stjärnor och planeter,
I Tvillingarnas stjärnbild finns en nebulosa kallad CXOU J061705.3+222127 .

Avståndet dit är ca 5000 ljusår.

Här uppkom av någon anledning en explosion för flera tusen  ljusår sedan vilket resulterade i att en neutronstjärna troligen bildades i molnet. Neutronstjärnor bildas när en gammal stjärna dör. I detta fall är blev det  en pulsar. En neutronstjärna vilken blir en pulsar  innebär inte en ny slags stjärna. Det är fortfarande en neutronstjärna men i riktningen mot denna från Jorden räknat finns hinder (troligast i molnet av damm) för ljuset hit vilket gör att stjärnans snabba roterande och utsläpp av röntgenstrålning får avbrott och därför ses ljuset som pulserande när det når oss.

Frågan är om den explosion vilken skedde här bildade  neutronstjärna i molnet?  Alternativt att det i molnet redan  fanns denna stjärna vilken exploderade och blev en pulsar. Molnet i sig är en nebulosa inte en nova. En nova är vad som bildas vid en stjärnkollaps. Kan det eventuellt vara en mindre stjärna i molnet eller dess närhet som blev denna neutronstjärna och vilken blev en nova i nebulosan.


Vi vet inte. Vi vet inte heller om denna neutronstjärna existerar vi antar det bara utefter de mätningar som gjorts här. Dessa visar på att något sker i denna lilla del av nebulosan som kan förklaras av att det finns en neutronstjärna i nebulosan som pulserar ut röntgenstrålar här.