Google

Translate blog

Visar inlägg med etikett gravitationsvåg. Visa alla inlägg
Visar inlägg med etikett gravitationsvåg. Visa alla inlägg

måndag 10 juli 2023

NU är det bevisat att nanohertz-gravitationsvågor finns därute

 


En grupp kinesiska forskare har nyligen hittat viktiga bevis på förekomsten av nanohertz gravitationsvågor vilket markerar en ny era inom nanohertz gravitationsvågforskning. Fyndet baseras på observationer av pulsartiming som utförts med Five-hundred-meter Aperture Spherical radioTelescope (FAST). 

Acceleration av massiva föremål stör den omgivande rumtiden och producerar "krusningar i denna", dvs gravitationsvågor. Även om sådana vågor är extremt svaga erbjuder de en direkt metod för att undersöka massor som inte avger ljus. Av denna anledning har astronomer länge velat använda gravitationsvågor för att hjälpa till att förstå bildandet av universums strukturer och undersöka dess tillväxt, utveckling och sammanslagningen av massiva svarta hål.

Forskning av detta slag hjälper fysiker att få insikt om rumtidens grundläggande fysiska lagar. Teamet använde oberoende utvecklad dataanalysprogramvara och databehandlingsalgoritmer för att uppnå sitt genombrott i samarbete med flera andra internationella forskargrupper. Oberoende pipelines för databearbetning gav kompatibla resultat. Att använda nanohertz gravitationsvågor till observation av kosmos är därför enormt viktigt för att studera nyckelproblemen i samtida astrofysik som ex supermassiva svarta hål, galaxfusionernas historia och bildandet av storskaliga strukturer i universum.

Detektion av nanohertz gravitationsvågor är dock mycket utmanande på grund av dess extremt låga frekvens, där motsvarande period kan vara så lång som flera år och med våglängder upp till flera ljusår. Ännu är långsiktig tidsobservation av millisekundpulsarer med extrem rotationsstabilitet den enda kända metoden för att effektivt detektera nanohertz-gravitationsvågor.

Ovan forskning genomfördes i det kinesiska Pulsar Timing Array (CPTA) -samarbetet, som består av forskare från National Astronomical Observatories of the Chinese Academy of Sciences (NAOC) med flera institut. Resultatet publicerades online 28 juni i tidskriften Research in Astronomy and Astrophysics (RAA). För mer om hur forskningen gick till och filmer i ämnet följ denna länk från https://phys.org/

Bild https://phys.org/ FAST (Five-hundred-meter Aperture Spherical radio Telescope) med dettas stora känslighet används det för att hitta bevis för förekomsten av nanohertz-gravitationsvågor. Upphovsman: NAOC för CAS

lördag 8 juli 2023

Ljudet av gravitationsvågorna då två svarta hål sammanslås.

 


Efter 15 år av datainsamling i ett stort experiment har forskare för första gången "hört" det eviga ljudet av gravitationsvågor som krusar genom vårt universum och det är högre än man väntat. Upptäckten gjordes av forskare med hjälp av North American Nanohertz Observatory for Gravitational Waves (NANOGrav) då man observerade stjärnor som kallas pulsarer vilka fungerar som himmelska metronomer. 

De nyligen upptäckta gravitationsvågorna - krusningar i rumtidens tyg - är överlägset de mest kraftfulla som någonsin uppmätts: De innehåller ungefär en miljon gånger mer energi än engångsutbrott av gravitationsvågor från svarta håls och neutronstjärnfusioner som upptäckts av  LIGO och Virgo

De flesta av de gigantiska gravitationsvågorna produceras troligen av par av supermassiva svarta hål som i spiraler dras samman för katastrofala kollisioner vilket sker överallt i kosmos, rapporterar NANOGrav-forskarna i en serie nya artiklar som publicerats i The Astrophysical Journal Letters.

Det är som en kör, med alla dessa supermassiva svarta hålpars rörelser  som hörs på olika frekvenser", säger NANOGrav-forskaren Chiara Mingarelli, som arbetade med de nya resultaten tillsammans med forskare vid Flatiron Institute's Center for Computational Astrophysics (CCA) i New York City.

Det är det första beviset någonsin av gravitationsvågbakgrundens ljud. Vi har öppnat ett nytt observationsfönster i universum. Gravitationsvågbakgrundens existens och sammansättning  var länge bara en teori och aldrig hörd. Resultatet är en skattkista till nya insikter i sedan länge långvariga frågor, från ödet för supermassiva svarta hålpar till frekvensen av ljud vid galaxsammanslagningar, beskriver Mingarelli.

För närvarande kan NANOGrav bara mäta den totala gravitationsvågbakgrunden och inte strålning från  enskilda "objekt" (menat dsom från ett enstaka svarta hål-pars sammanförande). Men även detta brus  medförde överraskningar.

Gravitationsvågbakgrundens ljud är ungefär dubbelt så högt som vad jag förväntade mig, skriver Mingarelli biträdande professor vid Yale University. Det är verkligen i den övre änden av vad våra modeller kan detektera från supermassiva svarta hål. Den öronbedövande volymen kan bero på experimentella begränsningar eller tyngre och större supermassiva svarta hål. Men det finns också möjligheten att något annat genererar kraftfulla gravitationsvågor, skriver Mingarelli, till exempel mekanismer som förutsägs av strängteorin eller alternativa förklaringar till universums födelse. Vad som upptäckts  härnäst vet ingen, beskriver hon. Det här är bara början på något nytt.

För mer utförlig och faktatyngd information om detta ämne och möjlighet att lyssna på det insamlade ljudet följ följande länk från https://phys.org 

Bild från  https://phys.org/  En konstnärs tolkning då ett par supermassiva svarta hål (överst till vänster) ger upphov till gravitationsvågor som krusningar genom rumtidens tyg. Dessa gravitationsvågor komprimerar och ger radiovågor som emitteras av pulsarer (vita). Genom att noggrant mäta radiovågorna gjorde ett team av forskare nyligen den första upptäckten av universums gravitationsvågbakgrund. Upphovsman: Aurore Simonnet för NANOGrav Collaboration. 

söndag 9 januari 2022

Då gravitationsvågor uppstår när svarta hål smälter samman med en neutronstjärna

 


Den första direkta observationen av en gravitationsvåg gjordes den 14 september 2015 och tillkännagavs av LIGO- och Virgo - samarbeten den 11 februari 2016.

För första gången har forskare nu bekräftat upptäckten av en kollision mellan ett svart hål och en neutronstjärna. Inte bara en gång utan två sådana händelser inträffade med 10 dagars mellanrum i januari 2020. De extrema händelserna gjorde avtryck i rymden som gravitationsvågor som porlade fram minst 900 miljoner ljusår från oss och nådde jorden. Vågorna utlöstes troligast  av att en neutronstjärna svaldes hel av ett närliggande svart hål.

 

Gravitationsvågor är störningar i rumtidens (rymdens) krökning och skapas av massiva föremåls i rörelser. Under de nu mer än fem år som gått sedan den första gravitationsvågen upptäcktes och bekräftades, ett fynd som ledde till Nobelpriset i fysik 2017, har forskare identifierat mer än 50 gravitationsvågor som troligen kommer från sammanslagningar av svarta hål och neutronstjärnor. Både svarta hål och neutronstjärnor är rester av massiva stjärnor. Skillnaden är att svarta hål är massivare än neutronstjärnor.

I en relativt ny studie har forskare beskrivit upptäckten av gravitationsvågor från två sällsynta händelser var och en uppkommen av en kollision av ett svart hål och en neutronstjärna. Gravitationsvågorna upptäcktes av National Science Foundations (NSF) Laser Interferometer Gravitational-Wave Observatory (LIGO) i USA och Virgo-detektorn i Italien. KAGRA-detektorn i Japan som även denna är ansluten till LIGO-Virgo-nätverket sedan 2020  var inte online just då.


Den första sammanslagningen kallad GW200105 upptäcktes den 5 januari 2020 och involverade ett svart hål ungefär 9 gånger solens massa (eller 9 solmassor) och en neutronstjärna med en massa av1,9 solmassor.

Den andra sammanslagningen upptäcktes den 15 januari och involverade ett svart hål med en massa av 6-sol-massor och en 1,5-sol-massa stor neutronstjärna.

 Resultaten av upptäckten publicerades  den 29 juni 2021 i The Astrophysical Journal Letters. Sedan tidigare hade astronomer ägnat årtionden åt att leta efter neutronstjärnor som kretsar kring svarta hål i Vintergatan men hade inte hittat några. "Med denna nya upptäckt av neutronstjärna- svarta hålkollision utanför vår galax har vi hittat den saknade typen av binära objekt av detta slag. Vi kan nu börja förstå hur många av dessa system som finns, hur ofta sammanslagningar sker och varför vi ännu inte har sett exempel på några i Vintergatan, säger Astrid Lamberts, forskare vid Observatoire de la Côte d'Azur, i Nice, Frankrike. Man har misstänkt händelseförloppen från gravitationshändelser av detta slag men först nu kunnat bekräftat att man anat rätt (min anm.)

 

 Den andra händelsen, GW200115 upptäcktes av både LIGO och Virgo. GW200115 uppstod vid sammanslagningen av ett svart hål med en neutronstjärna som ägde rum ungefär 1 miljard ljusår från jorden. Med hjälp av information från instrumenten kunde forskare bättre begränsa den del av skyn där denna händelse inträffade. Det lokaliserade området är nästan 3000 gånger större än fullmånen sedd från jorden.

Bild Simulering av sammanslagning av svarta hål som utstrålar gravitationsvågor. Bild Vikipedia.

söndag 2 februari 2020

Något har hänt därute som gav en stark gravitationsvåg som nyligen träffade jorden.


En mystisk kosmisk händelse kan den 14 januari 2020 ha något sträckt och pressat vår planet med anledning av en snabbt passerande stark gravitationsvåg från okänd källa. Passagen skedde under 14 millisekunder och orsakade under denna korta stund snedvridning i rumtiden. 


Gravitationsvågen upptäcktes  av Laser Interferometer Gravitational-Wave Observatory (LIGO) och Virgo interferometer. Astronomer har ännu inte kunnat lokalisera vågens orsak eller kunnat avgöra om det bara var en blip (störning) i detektorerna.  


Gravitationsvågor i sig  kan orsakas av kollisionen mellan massiva föremål, såsom två svarta hål eller två neutronstjärnor. Astronomer upptäckte sådana gravitationsvågor från en neutronstjärnkollision 2017 och en i april 2019. Men gravitationsvågor från kollisioner av sådana massiva objekt manifesteras i data som en serie vågor som förändras i frekvens över tiden som då två objekts omloppsbanor kommer allt närmre varandra, säger Andy Howell, forskare i Los Cumbres Observatory Global Telescope Network och en adjungerad fakultetsmedlem i fysik vid University of California, Santa Barbara. 


Howell var inte en del av LIGO där upptäckten gjordes men anser att signalen inte var en serie vågor utan en bristning i tid och rum. En mer trolig orsak än en kollision enligt ovan är att denna kortlivade  gravitationsvåg kom från en övergående händelse såsom en supernovaexplosion. Slutfasen av en stjärnas liv. Var denna då skulle finnas eller var detta skett är dock okänt i dag (min anm.)  

Men det skulle kunna bero på att en supernova har kollapsat direkt in i ett svart hål utan att producera neutriner, även om en sådan händelse är mycket spekulativ, sade Howell. I så fall finner vi knappast källan till denna händelse (min anm.) Men astronomer har ännu inte gett upp med att hitta källan av denna händelse utan pekar nu sina teleskop mot den regionen varifrån den verkar ha kommit för att försöka lokalisera källan. OM nu inte hela händelsen var en så kallad blip (störning) i något instrument vid LIGO som även visades vid Virgo alternativt tvärtom. Men att en blip samtidigt visades vid båda instrumenten samtidigt är knappast troligt.


Bild från  som kan ge en tanke på universums hemligheter och funderingarna över detta.

söndag 17 juni 2018

GW170817 är en spännande och viktig händelses namn på en länge sökt händelse därute i universum.


GW170817 var en gravitationsvåg som observerades av LIGO/Virgo i Italien en interferometri- antenn som söker efter gravitationsvågor och varifrån den 17 augusti 2017 man upptäckte en gravitationsvåg vid en kollision mellan två neutronstjärnor.  En våghändelse vilken numera kallas GW170817.


 Det var första tillfället en gravitationsvåg observerades samtidigt med en elektromagnetisk signal vilket innebar ett genombrott. Händelsen skedde i galaxen NGC 4993 vilken finns cirka 130 miljoner ljusår från oss.

Gravitationsvågen varade i ungefär 100 sekunder och omfattade 3000 cykler. Gravitationsvågens frekvens ökade under observationen till några hundra hertz. Händelsen observerades även av både av Fermi Gamma-ray Space Telescope  och INTEGRAL-observatoriet. 

Signalen var relativt svag vilket förklaras av att den inte hade riktningen direkt mot jorden utan observeras i en vinkel av ungefär 30 grader.

Händelsen kopplas som sagt till en kollision mellan två neutronstjärnor vars massor var mellan 0,86 och 2,26 gånger solens massa.

 Det är inte känt vilket sorts objekt som blev resultatet av sammanslagningen.

De tänkbara resultaten enligt nuvarande kunskaper  är antingen: en neutronstjärna tyngre än någon tidigare känd neutronstjärna eller ett svart hål lättare än något tidigare känt svart hål. 


Men teorin just nu är att det troligast bildades ett svart hål.

Bild galaxen NGC 4993 tagit av Hubbleteleskopet 6 dagar efter det att observation av GRB170817 inträffade. Bildkällor: NASA och ESA