Google

Translate blog

lördag 23 juli 2022

Ny teori om hur Jorden kom till

 


Den accepterade teorin inom astrofysik och kosmokemi är att jorden bildats av kondriter (asteroider av damm och sten från solsystemets bildande). De är relativt små, enkla block av sten med många gånger en metallhalt som bildats tidigt i solsystemets historia, förklarar den nya studiens huvudförfattare, Paolo Sossi, professor i experimentell planetologi vid ETH Zürich. Problemet med teorin som står i läroböcker och som man oftast utgår från är att ingen blandning av dessa kondriter kan förklara jordens exakta sammansättning vilken borde varit  mycket lägre i form av väte och helium än den är.

Olika hypoteser har lagts fram genom åren för att förklara skillnaden. Till exempel postulerades att det var kollisionerna av kondriter vilka  över tid bildade jorden genererade enorma mängder värme. Som förångade gas och lämnade planeten i sin nuvarande sammansättning.

Sossi är dock övertygad om att dessa teorier inte är sannolika då denna teori inte stämmer med mätresultat av isotopsammansättningen av jordens olika grundämnen: "Isotoper består av ett kemiskt grundämne  alla med samma antal av protoner men med olika antal neutroner. Isotoper med färre neutroner är lättare och bör därför kunna avdunsta lättare. Om teorin om förångning genom uppvärmning är korrekt skulle vi hitta färre av dessa isotoper av gas på jorden idag än i de ursprungliga kondriterna. Men det är just det som isotopmätningar inte visar.

Sossis team letade därför efter en annan lösning. – Dynamiska modeller med vilka vi simulerar bildandet av planeter visar att planeterna i vårt solsystem bildades successivt. Små korn växte med tiden till kilometerstora block och så fortsatte det. Mer och mer material ackumulerades genom gravitationskraften, förklarar Sossi.

I likhet med kondriter är planetsimalor  också små kroppar av sten och metall. Men till skillnad från kondriter har de värmts upp tillräckligt för att differentieras till en metallkärna med en stenig mantel. "Dessutom kan planetesimalor som bildas i olika områden runt en ung sol eller vid olika tidpunkter ha  olika kemiska sammansättningar", tillägger Sossi. Frågan är  om den slumpmässiga kombinationen av olika slag av planetesimalor i datasimuleringar resulterar i en sammansättning som matchar jordens.

Min uppfattning är att de alla bör ha ungefär samma sammansättning i ett specifikt solsystem. Men med vissa skillnader (min anm.).

För att ta reda på det körde teamet simuleringar där tusentals planetesimaler kolliderade med varandra i det tidiga solsystemet. Modellerna utformades på ett sådant sätt att de med tiden reproducerades till de fyra steniga planeterna Merkurius, Venus, Jorden och Mars. Simuleringarna visade då  att en blandning av många olika planetesimaler kan leda till jordens sammansättning. Dessutom är jordens sammansättning till och med det mest statistiskt sannolika resultatet utifrån  dessa simuleringar.

"Även om vi hade misstänkt det tyckte vi fortfarande att detta resultat var mycket anmärkningsvärt", minns Sossi. "Vi har nu inte bara en mekanism som bättre förklarar jordens bildande, vi har även en referens för att förklara bildandet av de andra steniga planeterna", säger Sossi. Mekanismen kan till exempel användas för att förutsäga hur Merkurius sammansättning skiljer sig från de andra steniga planeternas. Eller hur steniga exoplaneter vid andra solsystem kan vara sammansatta.

"Vår studie visar hur viktigt det är att överväga både dynamiken och kemin när man försöker förstå planetbildning", konstaterar Sossi.

Bild pixabay,com