Google

Translate blog

söndag 21 augusti 2022

Att framställa syre för framtidens astronauter

 


Ett potentiellt bättre sätt att framställa syre till astronauter i rymden med hjälp av magnetism har nu föreslagits av ett internationellt team av forskare och en kemist vid University of Warwick.

Slutsatsen från denna forskning som behandlar magnetisk fasseparation i mikrogravitation publicerades nyligen till Natures anknutna tidskrift NPJ Microgravity av forskare från University of Warwick i Storbritannien, University of Colorado Boulder och Freie Universität Berlin i Tyskland.

Att ansvara för att astronauter har syre att andas ombord på den internationella rymdstationen ISS och andra rymdfarkoster är en komplicerad och kostsam process. När människor planerar framtida uppdrag till månen eller Mars kommer bättre teknik att behövas än dagens.

Huvudförfattaren till studien Álvaro Romero-Calvo vilken nyligen avlagt en doktorsexamen vid University of Colorado Boulder, säger följande: "På den internationella rymdstationen genereras syre med hjälp av en elektrolytisk cell som delar upp vatten i väte och syre och skiljer ut dessa gaser ur vattnet för att använda syret att andas med. I en relativt ny analys av en forskare vid NASA drogs slutsatsen att samma arkitektur under en resa till Mars skulle innebära en betydande fraktmassa och tillförlitlighet av systemet för att det skulle vara meningsfullt att tänka sig som användning.

Dr Katharina Brinkert vid University of Warwick Institutionen för kemi och Center for Applied Space Technology and Microgravity (ZARM) i Tyskland säger följande: "Effektiv fasseparation i reducerade gravitationsmiljöer är ett hinder för framtida mänsklig rymdutforskning och ett problem känt sedan de första rymdfärderna på 1960-talet. Detta fenomen är en särskild utmaning för det livsuppehållande systemet ombord på rymdfarkoster och den internationella rymdstationen (ISS) eftersom syre för besättningen produceras i vattenelektrolys system och kräver separation med elektrod och flytande elektrolyt. Flytkraft är ett problem i tyngdlöshet.

Om man tänker sig ett glas kolsyrad läsk. På jorden innebär det att bubblorna av CO2 snabbt stiger upp i vätskan och avdunstar. Men i ett tyngdlöst tillstånd är dessa bubblor istället upphängda i vätskan.

NASA använder för närvarande centrifuger för att tvinga ut gaserna på ISS men centrifugerna är stora och kräver betydande massa, kraft och underhåll (vilket innebär att systemet är svårt att använda under en resa till Mars där service och vikt på farkost har betydelse). Teamet som forskar om andra metoder har genomfört experiment som visar att magneter i vissa fall kan uppnå samma resultat.

Även om diamagnetiska krafter är välkända och förstådda, har deras användning av ingenjörer i rymdapplikationer inte utforskats fullt ut eftersom tyngdkraften gör tekniken svår att demonstrera på jorden. 

 Center for Applied Space Technology and Microgravity (ZARM) i Tyskland leder Brinkert  en pågående forskning finansierad av German Aerospace Center (DLR) ett team som gör framgångsrika experimentella tester vid en speciell dropptornsanläggning där man simulerar mikrogravitationsförhållanden.

Här har grupperna utvecklat ett förfarande för att få loss gasbubblor från elektrodytor i mikrogravitationsmiljöer som genereras under 9,2 sekunder vid Bremen Drop Tower. Studien om detta visar för första gången att gasbubblor kan "lockas till" och "avvisas från" en enkel neodymmagnet i mikrogravitation genom att nedsänka magneten i olika typer av vattenlösning.

Forskningen kan därför öppna nya vägar för forskare och ingenjörer som utvecklar nya syresystem såväl som annan rymdforskning och som involverar förändringar av vätska till gas.

Dr Brinkert sade: "Dessa effekter har enorma möjligheter i den fortsatta utvecklingen av fasseparationssystem såsom för långsiktiga rymduppdrag vilket tyder på att effektiv syre- och till exempel väteproduktion i vatten (foto-) elektrolyssystem kan uppnås även i en ”nästan” frånvaro av flytkraft."

Professor Hanspeter Schaub vid University of Colorado Boulder tillade: "Efter år av analytisk och beräkningsforskning gavs möjligheten att använda detta fantastiska dropptorn i Tyskland ett konkret bevis på att detta koncept kommer att fungera i tyngdlöshet."

Självfallet måste syretillförseln lösas så det inte sker syrebrist på framtida marsresor. Innan dess kan ingen människa resa till Mars (min anm.). En syreproduktion som inte innebär stora tunga instrument och även tillförlitligheten måste finnas.

Bild vikipedia på rymdstationen ISS i september 2009 fotograferad av STS-128. STS-128 var namnet på en rymdfärd i USA:s rymdfärjeprogram med rymdfärjan Discovery.