Google

Translate blog

torsdag 12 januari 2023

En teori om hur gravitationsvågor kan se ut i ett svart hål.

 


Svarta hål är ännu inte förstådda inom vetenskapen. Delvis beroende på att ekvationerna för allmän relativitet som används för att förstå dem inte stämmer när man studerar svarta håls ultratäta centrum. Astronomer har nu beskrivit hur detta kanske kan förklaras om man använder gravitationsvågors rörelse för att "se" in i sammanslagna svarta hål och lära sig vad som sker där.

I Einsteins allmänna relativitetsteori är svarta hål objekt så starkt sammanpressade att inte ens ljus kan reflekteras eller ses utifrån då det kommit in i dessa beroende på den starka gravitation som råder där. Ett svart hål har i sin omkrets den så kallade händelsehorisonten - om du passerar över den tröskeln kommer du aldrig att komma därifrån. Relativitetsteorin förutspår också att centrum i svarta hål har oändligt hög densitet, så kallade singulariteter.

Närvaron av singulariteter innebär att ekvationerna som används i den allmänna relativitetsteorin  bryts ner till  oändligheter (kan jämföras med talet pi som inte heller har någon lösning. Något som visar att den allmänna relativitetsteorin är ofullständig. Det bör finnas en mer grundläggande teori troligen kopplad till kvantfysiken i subatomära skalor som korrekt (enligt teorin) kan beskriva vad som händer i centrum av ett svart hål. Vi har ännu ingen fullständig kvantteori om gravitation, men flera förslag på  teorier.

Till exempel finns strängteorin som förutsäger att alla partiklar i universum består av extremt små vibrerande strängar. Det finns också loopkvantgravitation, som säger att rymdtiden i sig är gjord av små, odelbara bitar som kan liknas vid pixlar på en datorskärm.

Båda dessa tillvägagångssätt kan ersätta den traditionella singulariteten i centrum av ett svart hål med något annat. Men när du ersätter singulariteten eliminerar du vanligtvis också händelsehorisonten. Det beror på att händelsehorisonten orsakas av singularitetens oändliga gravitationskraft. Utan singulariteten är gravitationskraften enbart otroligt stark men inte oändlig och då kan du alltid fly från närområdet av ett svart hål så länge du flyr med tillräcklig hastighet. Kanske inte så dum teori.

I vissa varianter av strängteori ersätts singularitets- och händelsehorisonterna av sammanflätade nätverk av trassliga knutar av rummet och tiden. I loopkvantgravitation blir singulariteten en extremt liten, extremt tät klump av exotisk materia. I andra modeller ses det svarta hålet istället som ett tunt skal av materia, eller av klumpar av  typer av spekulativa partiklar.

De närmaste kända svarta hålen från oss finns tusentals ljusår bort vilket gör det svårt att testa skilda teorier. Men ibland skickar svarta hål oss viktig information att arbeta vidare med för förståelse speciellt när två svarta hål sammanslås. När så sker släpps det ut mängder av gravitationsvågor som krusningar i rumtiden som kan detekteras med känsliga instrument på jorden exempelvis av Laser Interferometer Gravitational-Wave Observatory (LIGO)  och VIRGO.

Nyckeln till förståelse är  däremot inte gravitationsvågorna som avges under själva sammanslagningen utan de som släpps ut direkt efter denna enligt en artikel i www.livescience.com. När sammanslagningen är klar och två svarta hål blivit ett enda vibrerar den nya sammanslagna massan av en intensiv mängd energi. Denna fas har en distinkt gravitationsvågsignatur.

Genom att studera dessa signaturer kanske forskare en dag kan förstå vilken teori om svarta hål som håller och vilka som inte gör det. Varje modell för svarta hål förutsäger skillnader i gravitationsvågor som avges under denna fas som härrör från skillnader i det svarta hålets inre struktur. Med olika svarta hålstrukturer kommer olika typer av gravitationsvågor att släppas ut och då förfalska eller eller bevisa en teori.

Astronomer hoppas att nästa generation av gravitationsvågsdetektorer blir tillräckligt känsliga för att upptäcka dessa förutspådda små förändringar av signatur vid sammanslagningar av svarta hål. Om de blir så kommer det att radikalt förändra vår uppfattning om svarta hål och ta oss framåt när det gäller att reda ut det vi idag inte förstår om svarta hål.

Inlägget ovan utgår från Paul M. Sutters som är forskningsprofessor i astrofysik vid SUNY Stony Brook vars artikel publicerad i https://www.livescience.com/  och i https://www.space.com 

Bild från space.com på en illustration av två sammanslagna svarta hål. (Bildkredit: Mark Myers, ARC Center of Excellence för gravitationsvågupptäckt (OzGrav))