Google

Translate blog

torsdag 3 april 2025

I denna galax försvinner vätedimman på ett okänt vis

 


Bild https://webbtelescope.org  Den avlägsna galaxen JADES-GS-z13-1, som observeras bara 330 miljoner år efter big bang, upptäcktes för första gången med hjälp av bilder från NASA:s James Webb Space Telescopes NIRCam (Near-Infrared Camera). Nu har ett internationellt team av astronomer identifierat en kraftfull vätestrålning från denna galax vid en oväntat tidig period i universums historia. JADES-GS-z-13 har en rödförskjutning (z) på 13, vilket är en indikation på dess ålder och avstånd. Källa; NASA, ESA, CSA, Brant Robertson (UC Santa Cruz), Ben Johnson (cfA), Sandro Tacchella (Cambridge), Phill Kargile (cfA), Joris Witstok (Cambridge, Köpenhamns universitet), sid. Jakobsen Jakobsen (Köpenhamns universitet), Alyssa Hedning (STScI), Mahdi Zamani Zamani (ESA/Webb), JADES-samarbete.

"Det tidiga universum var höljt i en tjock dimma av neutralt väte", förklarar Roberto Maiolino  teammedlem i studien vid University of Cambridge och University College London. – Det mesta av vätedimman försvann i en process som kallas återjoniseringen och som avslutades ungefär en miljard år efter big bang. 

 GS-z13-1 ses då universum bara var 330 miljoner år gammalt. Här ses förvånansvärt tydligt en avslöjande signatur av Lyman-alfa-strålning som bara kan ses när den omgivande vätedimman har lättat helt. Detta resultat var helt oväntat enligt teorin om hur tidigt galaxer bildades och återjonisering ska ha skett.

Före och under återjoniseringens era blockerade de enorma mängderna av neutral vätedimma som omgav galaxerna allt ultraviolett ljus  de sände ut. Innan tillräckligt många stjärnor hade bildats och kunde jonisera vätgasen kunde inget sådant ljus inklusive Lyman-alfa-strålning ske.

Bekräftelsen av Lyman-alfa-strålning från denna galax har därför stor betydelse för vår förståelse av det tidiga universum utveckling.

"Vi borde inte ha hittat en galax som denna med tanke på vår förförståelse av hur universum har utvecklats", beskriver Kevin Hainline  teammedlem i studien från University of Arizona. "Vi skulle kunna tänka oss att det tidiga universum var höljt i en tjock vätedimma som skulle göra det oerhört svårt att hitta ens kraftfulla stjärnor som tittade fram i denna under denna tid. Men här ser vi ljusstrålen från den här galaxen som tränger igenom slöjan. Denna fascinerande emissionslinje har enorma konsekvenser för kunskapen om hur och när universum återjoniserades.

Källan till Lyman-alfa-strålningen  från denna galax är inte känd, men kan innehålla det första ljuset från den tidigaste generationen av stjärnor som bildades i universum. "Den stora bubblan av joniserat väte som omger den här galaxen kan ha skapats av en märklig population av stjärnor – mycket mer massiva, hetare och ljusstarkare än stjärnor som bildats under senare epoker och möjligen är representativa för den första generationen stjärnor", beskriver Witstok. En kraftfull aktiv galaxkärna, som drivs av ett av de första supermassiva svarta hålen, är en annan möjlighet som teamet kan förklara fenomenet med.

Galaxen är högintressant och unik för undersökning av de första stjärnorna och de första svarta hålen. Gåtan är även varför denna galax finns redan då.

Forskningen publicerades på onsdagen i tidskriften Natur. 

Webbteleskopet har upptäckt att Neptunus har norrsken

 



Neptunus finns i det kalla, mörka, yttre av vårt solsystem (om man räknar bort Kupierbältet med sina småplaneter, asteroider  och kometer i det så kallade Oorts moln) cirka 3 miljarder mil från solen.

Neptunus har bara besökts en gång  av en rymdfarkost. Det var av Voyager 2 den 25 augusti 1989, 03:56:36 UTC 1989 sedan dess har Neptunus endast obserberats av teleskop ex  NASA:s Hubbleteleskop ett av de teleskop tagit bilder på  väder på planeten. Hubble har även upptäckt en tidigare okänd måne i omloppsbana runt planeten 2013. För första gången har NASA:s James Webb Space Telescope nu även fångat ljusstark norrskensaktivitet på Neptunus.

 Norrsken uppstår när energirika partiklar som ofta kommer från solen, fastnar i en planets magnetfält och så småningom träffar den övre atmosfären. Energin som frigörs under dessa kollisioner skapar den karakteristiska glöden i ett norrsken.

Det visade sig att det bara var möjligt att avbilda norrskensaktiviteten på Neptunus med Webbs känslighet i nära infrarött ljus", beskriver huvudförfattaren Henrik Melin verksam vid Northumbria University, som genomförde forskningen vid University of Leicester. "Det var så fantastiskt att inte bara se norrskenet, utan även detaljerna och tydligheten i detta."

Datan erhölls i juni 2023 med hjälp av Webbs Near-Infrared Spectrograph. Förutom bilden av planeten fick astronomer ett spektrum i vilket man kunde karakterisera sammansättningen och mäta temperaturen i planetens övre atmosfär (jonosfären). För första gången fann de en extremt framträdande emissionslinje som betecknar närvaron av trivätekatjonen (H3+), som kan skapas i norrsken. I Webb-bilderna av Neptunus visas det glödande norrskenet som fläckar representerade i cyan.

Observationerna med Webb gjorde också att teamet kunde mäta temperaturen i översta skiktet av Neptunus atmosfär för första gången sedan Voyager 2:s förbiflygning. Resultaten ger en antydan om varför Neptunus norrsken förblev dolda för astronomer så länge.

"Jag blev förvånad – Neptunus övre atmosfär har svalnat med flera hundra grader", säger Melin. "Faktum är att temperaturen 2023 var drygt hälften av den 1989."

Då solens 11 åriga cykel kan vara en anledning till temperaturfallet nu och då men även Neptunus banläge mellan mätningarna 1989 och 2023 kan vara lika stor förklaring varje varv runt solen tar 165 år. Vi ska komma ihåg att Neptunus bana runt solen inte bara är lång i tid utan även är oregelbunden långt  och inte rund.

Genom åren har astronomer förutspått intensiteten hos Neptunus norrsken baserat på temperaturen som uppmätts av Voyager 2. En betydligt kallare temperatur skulle resultera i mycket svagare norrsken. Denna kalla temperatur är troligen anledningen till att Neptunus norrsken har förblivit oupptäckta så länge. Den dramatiska nedkylningen tyder också på att detta område av atmosfären kan förändras kraftigt trots att planeten ligger mer än 30 gånger längre bort från solen jämfört med jorden.

Med dessa nya upptäckter hoppas astronomer nu kunna studera Neptunus med Webb under en hel solcykel, en 11-årig period av aktivitet som drivs av solens magnetfält. Resultaten kan ge insikter om ursprunget till Neptunus bisarra magnetfält och till och med att förklara varför det lutar så mycket. Teamets resultat har publicerats i Nature Astronomy.