Google

Translate blog

torsdag 7 september 2023

QiTai-radioteleskopet (QTT) ska bli bättre än sina föregångare

 




Xinjiang Qitai 110m Radio Telescope (QTT) är ett planerat radioteleskop som byggs i Qitai-häradet i Xinjiang, Kina. När det är färdigställt vilket är planerat under innevarande år 2023, kommer det att vara världens största fullt styrbara radioteleskop. Det kraftfullaste styrbara 110-meters radioteleskopet, även känt som QiTai-radioteleskopet (QTT), började byggas av Xinjiang Astronomical Observatory (XAO), Chinese Academy of Sciences (CAS) 2017  på Qitai-platsen i XAO.

QTT kommer att vara utrustad med Ultra-Wide Band (UWB) signalmottagnings- och bearbetningssystem. För att uppgradera teleskopets prestanda ytterligare konstruerade ingenjörerna från QTT-signalmottagnings- och bearbetningsteamet i XAO ett nytt UWB-signalförvärv och bearbetningsexperimentellt system. 

UWB-systemet kan förbättra teleskopets observationskänslighet genom att öka bandbredden men det innebär stora utmaningar för signalinsamling, överföring och bearbetning. Dessutom kommer den bredare bandbredden även att innehålla fler elektromagnetiska störningssignaler vilket kommer att påverka kvaliteten på astronomiska observationer och orsaka en mättnadseffekt på systemet.

För att undvika UWB-signalfas- och amplitudfluktuationer orsakade av miljö- och temperaturförändringar i den analoga överföringslänken använder det nya systemet en högpresterande RFSoC-krets med låg effekt för att direkt sampla RF-signalen vid mottagaränden. Dessutom använder den nya signalförvärvskretsen högre kvantiseringsnoggrannhet för att öka det dynamiska området för den mottagna signalen vilket undviker mättnad orsakad av stark störning.

Forskarna syftar till att realisera realtidsbehandling av UWB-signaler av de delade UWB-signalerna i flera digitala delband för att implementera, till fjärrklustret High-Performance Computer (HPC) genom 100 Gb höghastighets digitala fiberlänkar för bearbetning.

Systemet är mer flexibelt och utbyggbart och dess kontrollprogram kan konfigurera de involverade datorresurserna enligt observationsbandbredd och beräkningskomplexitet. Dessutom är varje HPC-nod konfigurerad med NVMe SSD-kort för höghastighetsinspelning av basbandsdata för att realisera rå astronomisk informationsfångst och adaptiv RFI-eliminering.

För att verifiera systemets faktiska observationseffekt använde forskarna det på Nanshan 26-meters radioteleskop och genomförde pulsarobservationsexperiment. De fann att signal-brusförhållandet för den sammanslagna pulsaren uppenbarligen är starkare än för de som är osammanslagna enskilda delbandsdata vilket indikerar att systemet fungerar som förväntat.

Bild https://www.seeker.com/  på teleskopet.