Google

Translate blog

söndag 23 juli 2023

Kanske universum är dubbelt så gammalt som vi beräknat

 


Universum kan vara dubbelt så gammalt som nuvarande uppskattningar visar enligt en ny studie som utmanar den dominerande kosmologiska modellen och kastar nytt ljus över det så kallade tidiga galaxproblemet. I den nya studien visas en modell som ökar den möjliga galaxbildningstiden med flera miljarder år. Svaret här blir att universum är 26,7 miljarder år gammalt och inte 13,7 som tidigare uppskattats, enligt författaren till studien Rajendra Gupta, adjungerad professor i fysik vid naturvetenskapliga fakulteten vid University of Ottawa. Något som gör att de tidiga galaxer som Webbteleskopet upptäckt  inte var så tidiga.

Länge har astronomer och fysiker beräknat åldern på vårt universum genom att mäta tiden som gått sedan Big Bang genom att studera de äldsta stjärnorna baserat på rödförskjutningen av ljus i avlägsna galaxer. 2021, tack vare ny teknik och tekniska framsteg, uppskattades vårt universums ålder således till 13.797 miljarder år med hjälp av Lambda-CDM-konkordansmodellen. 

Men många forskare har sedan dess blivit förbryllade över förekomsten av stjärnor som Methuselah som verkar vara äldre än den uppskattade åldern i vårt universum och av upptäckten av tidiga galaxer i ett avancerat utvecklingstillstånd vilka James Webb Space Telescope upptäckt. Dessa galaxer, som existerar bara 300 miljoner år eller så efter Big Bang, verkar ha en mognadsnivå och massa som vanligtvis förknippas med ett de måste funnits i miljarder år i kosmisk utveckling.

Dessutom är de förvånansvärt små i storlek vilket lägger till ytterligare ett mysterium i ekvationen.

I Fritz Zwickys https://sv.wikipedia.org/wiki/Fritz_Zwicky trötta ljusteori” föreslås att rödförskjutningen av ljus från avlägsna galaxer beror på den gradvisa förlusten av energi i form av fotoner över stora kosmiska avstånd. Det anses dock strida mot de observationer som gjorts. Ändå fann Gupta att man genom att låta denna teori samexistera med teorin om det  expanderande universum göra det möjligt att omtolka rödförskjutningen som ett hybridfenomen snarare än enbart bero på expansion och avstånd.

Förutom Zwickys ”trötta ljusteori” introducerar Gupta idén om "kopplingskonstanter", som Paul Dirac la fram i en hypotes. Kopplingskonstanter är grundläggande fysikaliska konstanter som styr interaktionerna mellan partiklar. Enligt Dirac kan dessa konstanter ha varierat över tid. Genom att låta dem utvecklas över tid kan tidsramen för bildandet av tidiga galaxer som observerats av Webbteleskopet med höga rödförskjutningar förlängas från några hundra miljoner år från BigBang till flera miljarder år. Detta ger en bättre förklaring till den avancerade utvecklingsnivå och massa som observerats i dessa gamla galaxer.

Dessutom föreslår Gupta att den traditionella tolkningen av den "kosmologiska konstanten", som representerar mörk energi som anses vara anledningen till universums accelererande expansion behöver revideras. Istället föreslår han en konstant som står för utveckling av kopplingskonstanterna. Denna modifiering i den kosmologiska modellen hjälper då  till med att ta itu med gåtan av små galaxstorlekar som observerats i det tidiga universum och möjliggör mer exakta observationer.

Det är en gåta vad Webbteleskopet hittar så ovan diskussion kan mycket väl vara närmare sanningen än den i dag rådande.

Bild från pixabay.com

En brun dvärgstjärna som avger radiostrålning

 


Att fördjupa vår kunskap om svala bruna dvärgar som den här kommer att hjälpa oss att förstå stjärnors utveckling, säger huvudförfattare och doktorand vid Kovi Rose vid University of Sydney.

 Astronomer vid University of Sydney har visat att en liten ljussvag stjärna är den svalaste som registrerats som producerar radiovågor.

Den "ultrasvala bruna dvärgen" som undersöktes i studien är en gasboll  med en temperatur av 425 grader Celsius men här sker ingen kärnfusion. 

Däremot är yttemperaturen hos solen den kretsar kring ett kärninferno med en temperatur av cirka 5600 grader Celcius.

Även om det inte är den kallaste bruna dvärg som  hittats är det den svalaste som analyserats med  med radioastronomi. Resultaten av studien publicerades nyligen  i The Astrophysical Journal Letters.

Huvudförfattaren och doktorand vid School of Physics, Kovi Rose, beskriver att det är mycket sällsynt att hitta svala bruna dvärgstjärnor som denna som producerar radiovågor. Det beror på att deras dynamik vanligtvis inte konstruerar de magnetfält som genererar radioutsläpp som kan detekteras från jorden.

Därför kan denna bruna dvärg  fördjupa vår kunskap om svala bruna dvärgar och hjälpa oss att förstå utvecklingen av stjärnor och hur de genererar magnetfält.

Hur den inre dynamiken är hos bruna dvärgar vilka en del producerar radiovågor är inte förstått. Medan astronomer har en bra uppfattning av hur större stjärnor som vår  sol genererar magnetfält och radiostrålning är det inte helt känt varför färre än 10 procent av bruna dvärgstjärnor producerar detta.

Den snabba rotationen av svala dvärgar tros spela en roll i att generera starka magnetfält. När magnetfältet roterar med en annan hastighet än dvärgens joniserade atmosfär kan det skapa elektriska strömflöden.

I det här fallet tror man att radiovågorna produceras av inflödet av elektroner till den bruna dvärgens  magnetiskt polära områden vilket tillsammans med rotationen av den  producerar regelbundet upprepade radioskurar.

Bruna dvärgstjärnor, så kallade eftersom de avger lite energi eller ljus, är inte tillräckligt massiva för att antända kärnfusion som större stjärnor som vår sol. Därför kallas de misslyckade stjärnbildningar.

Rose sa: "Dessa stjärnor är en slags felande länk mellan de minsta stjärnorna som bränner väte i kärnreaktioner och de största gasjätteplaneterna, som Jupiter."

Senna bruna dvärg har namnet T8 Dwarf WISE J062309.94-045624.6 och finns cirka 37 ljusår från jorden. Den upptäcktes 2011 av astronomer vid Caltech i USA.

Stjärnans radie är mellan 0,65 och 0,95% större än Jupiter. Dess massa är inte väl förstådd men är minst fyra gånger till 44 gånger mer massiv än Jupiter. Att jämför med vår sol som är 1000 gånger mer massiv än Jupiter.

Analysen av stjärnan gjordes av Mr Rose med hjälp av ny data från CSIRO ASKAP-teleskopet i västra Australien och följdes upp med observationer från Australia Telescope Compact Array nära Narrabri i NSW och MeerKAT-teleskopet i Sydafrika.

Bild Vikipedia Jämförelsebild: de flesta bruna dvärgar är något större än Jupiter (15–20%),[1] men är fortfarande upp till 80 gånger tyngre på grund av större densitet. Bilden är skalenlig, med Jupiters radie 11 gånger jordens, och solens radie är 10 gånger Jupiters.