Google

Translate blog

Visar inlägg med etikett ifrågasätts. Visa alla inlägg
Visar inlägg med etikett ifrågasätts. Visa alla inlägg

söndag 29 december 2024

Ny forskningsstudie visar att mörk energi inte existerar

 


Bild https://ras.ac.uk  Grafiken ovan ger en glimt av universums historia, som vi för närvarande förstår den. Kosmos började expandera i och med Big Bang, men cirka 10 miljarder år senare började universum märkligt nog accelerera i sin expansion tack vare ett teoretiskt fenomen som kallas mörk energi enligt nuvarande teori. Credit NASA Licence type Attribution (CC BY 4.0)

I dag är den allmänna uppfattningen att kosmos expanderar lika mycket i alla riktningar. Expansionen sker på grund av den mystiska mörka energin. Energin som kan ses som förklara okänd energi som ännu inte förstås eller bevisats mer än som något som påverkar universum.

Nu utmanar ett team av fysiker och astronomer vid University of Canterbury i Christchurch, Nya Zeeland, status quo genom att använda förbättrad analys av supernovors ljuskurvor för att visa att universum expanderar på ett mer varierat, vis.

De nya bevisen stöder "timescape"-modellen (Inhomogeneous cosmology) för kosmisk expansion, som inte har ett behov av mörk energi eftersom skillnaderna i att sträcka ut ljuset inte är resultatet av ett accelererande universum utan istället en konsekvens av hur vi kalibrerar tid och avstånd.

Modellen tar hänsyn till att gravitationen saktar ner tiden så en klocka i tomma rymden tickar snabbare än en i en galax.

Modellen föreslår att en klocka i Vintergatan skulle vara cirka 35 procent långsammare än samma klocka vid en genomsnittlig position i stora kosmiska tomrum vilket innebär att miljarder fler år skulle ha passerat i tomrum. Detta skulle i sin tur tillåta mer expansion av rymden, vilket får det att verka som om expansionen blir snabbare när sådana stora tomrum växer och  dominerar universum.

Professor David Wiltshire, som ledde studien, beskriver det som att "Våra resultat visar att vi inte behöver mörk energi för att förklara varför universum ses expandera i en accelererande takt.

"Mörk energi är en felaktig identifiering av variationer i den kinetiska expansionsenergin, som inte är enhetlig i ett universum som är så klumpigt som det vi lever i."

Han tillägger: "Forskningen ger övertygande bevis som kan lösa några av de viktigaste frågorna kring egenheterna i vårt expanderande kosmos.

"Med dessa nya data kan universums största mysterium lösas i slutet av decenniet."

Mörk energi anses allmänt vara en svag antigravitationskraft som verkar oberoende av materia och utgör cirka två tredjedelar av universums massa-energitäthet.

Standardmodellen av universum (Lambda Cold DarkMatter, ΛCDM) kräver mörk energi för att förklara den observerade accelerationen av hastighet med vilken kosmos expanderar. 

Forskare baserar denna slutsats på mätningar av avstånden till supernovaexplosioner i avlägsna galaxer som verkar vara längre bort än de borde vara om universums expansion inte accelererade.

Universums nuvarande expansionstakt utmanas dock alltmer av nya observationer.

För det första visar bevis från efterglöden av Big Bang – känd som den kosmiska mikrovågsbakgrunden (CMB) att expansionen i det tidiga universum står i strid med den nuvarande expansionen, en anomali som kallas "Hubbles lag". 

Dessutom har en nyligen genomförd analys av nya data med hög precision av Dark Energy Spectroscopic Instrument (DESI) visat att CDM-modellen inte passar lika bra som modell där mörk energi "utvecklas" över tid utan snarare förblir konstant.

Både Hubbles lag och de överraskningar som avslöjas av DESI är svåra att lösa i modeller som använder en förenklad 100 år gammal kosmisk expansionslag kallad Friedmanns ekvation. 

Ekvationen förutsätter att universum i genomsnitt expanderar likformigt som om alla kosmiska strukturer kunde köras genom en mixer för att göra en soppa utan särdrag utan någon komplicerad struktur. Men det nuvarande universum innehåller i själva verket ett komplext kosmiskt nät av galaxhopar i skikt och filament som omger och väver samman stora tomma tomrum.

Professor Wiltshire tillägger: "Vi har nu så mycket data att vi på 2000-talet äntligen kan svara på frågan om hur och varför det uppstår en enkel genomsnittlig expansionslag ur komplexitet?

"En enkel expansionslag som överensstämmer med Einsteins allmänna relativitetsteori behöver inte vara överens med Friedmanns ekvation."

Forskarna menar att den europeiska rymdorganisationen ESA:s satellit Euclid, som sköts upp i juli 2023, har förmågan att testa och särskilja Friedmanns ekvation från timescape-alternativet. Detta kommer dock att kräva minst 1 000 oberoende observationer av supernovor av hög kvalitet. 

När den föreslagna timescape-modellen senast testades 2017 visade analysen att den bara passade något bättre än ΛCDM som förklaring till kosmisk expansion, så Christchurch-teamet hade ett nära samarbete med Pantheon+-samarbetsteamet som mödosamt hade producerat en katalog med 1535 olika supernovor.

De säger att de nya uppgifterna nu ger "mycket starka bevis" för timescape. Det kan också peka på en övertygande lösning av Hubblespänningen och andra anomalier relaterade till universums expansion.

Ytterligare observationer från Euclid och Nancy Grace Roman Space Telescope behövs för att stärka stödet för timescape-modellen, beskriver forskarna och nu pågår kapplöpningen för att använda denna rikedom av nya data för att avslöja den sanna naturen av kosmisk expansion och mörk energi.

Den nya analysen har publicerats i tidskriften Monthly Notices of the Royal Astronomical Society Letters.

För min del har jag aldrig varit en vän av gåtfulla energier som mörk energi eller materia som mörk materia. Jag är övertygad om att ovan forskare är på rätt spår i sin forskning.

söndag 23 juli 2023

Kanske universum är dubbelt så gammalt som vi beräknat

 


Universum kan vara dubbelt så gammalt som nuvarande uppskattningar visar enligt en ny studie som utmanar den dominerande kosmologiska modellen och kastar nytt ljus över det så kallade tidiga galaxproblemet. I den nya studien visas en modell som ökar den möjliga galaxbildningstiden med flera miljarder år. Svaret här blir att universum är 26,7 miljarder år gammalt och inte 13,7 som tidigare uppskattats, enligt författaren till studien Rajendra Gupta, adjungerad professor i fysik vid naturvetenskapliga fakulteten vid University of Ottawa. Något som gör att de tidiga galaxer som Webbteleskopet upptäckt  inte var så tidiga.

Länge har astronomer och fysiker beräknat åldern på vårt universum genom att mäta tiden som gått sedan Big Bang genom att studera de äldsta stjärnorna baserat på rödförskjutningen av ljus i avlägsna galaxer. 2021, tack vare ny teknik och tekniska framsteg, uppskattades vårt universums ålder således till 13.797 miljarder år med hjälp av Lambda-CDM-konkordansmodellen. 

Men många forskare har sedan dess blivit förbryllade över förekomsten av stjärnor som Methuselah som verkar vara äldre än den uppskattade åldern i vårt universum och av upptäckten av tidiga galaxer i ett avancerat utvecklingstillstånd vilka James Webb Space Telescope upptäckt. Dessa galaxer, som existerar bara 300 miljoner år eller så efter Big Bang, verkar ha en mognadsnivå och massa som vanligtvis förknippas med ett de måste funnits i miljarder år i kosmisk utveckling.

Dessutom är de förvånansvärt små i storlek vilket lägger till ytterligare ett mysterium i ekvationen.

I Fritz Zwickys https://sv.wikipedia.org/wiki/Fritz_Zwicky trötta ljusteori” föreslås att rödförskjutningen av ljus från avlägsna galaxer beror på den gradvisa förlusten av energi i form av fotoner över stora kosmiska avstånd. Det anses dock strida mot de observationer som gjorts. Ändå fann Gupta att man genom att låta denna teori samexistera med teorin om det  expanderande universum göra det möjligt att omtolka rödförskjutningen som ett hybridfenomen snarare än enbart bero på expansion och avstånd.

Förutom Zwickys ”trötta ljusteori” introducerar Gupta idén om "kopplingskonstanter", som Paul Dirac la fram i en hypotes. Kopplingskonstanter är grundläggande fysikaliska konstanter som styr interaktionerna mellan partiklar. Enligt Dirac kan dessa konstanter ha varierat över tid. Genom att låta dem utvecklas över tid kan tidsramen för bildandet av tidiga galaxer som observerats av Webbteleskopet med höga rödförskjutningar förlängas från några hundra miljoner år från BigBang till flera miljarder år. Detta ger en bättre förklaring till den avancerade utvecklingsnivå och massa som observerats i dessa gamla galaxer.

Dessutom föreslår Gupta att den traditionella tolkningen av den "kosmologiska konstanten", som representerar mörk energi som anses vara anledningen till universums accelererande expansion behöver revideras. Istället föreslår han en konstant som står för utveckling av kopplingskonstanterna. Denna modifiering i den kosmologiska modellen hjälper då  till med att ta itu med gåtan av små galaxstorlekar som observerats i det tidiga universum och möjliggör mer exakta observationer.

Det är en gåta vad Webbteleskopet hittar så ovan diskussion kan mycket väl vara närmare sanningen än den i dag rådande.

Bild från pixabay.com