Google

Translate blog

söndag 20 mars 2022

Comet 67P visar på förekomsten av syre.

 


67P/Churyumov-Gerasimenko är en komet i vårt solsystem. På denna landade den 12 november 2014 den obemannade ESA-rymdsonden Rosettas landare Philae och blev därmed det första människoskapade föremål som landat på en komet.

Rosetta upptäckte rikligt med molekylärt syre som läckte ut från kometen vilket förbryllade forskarna. Detta hade de aldrig sett ske från en komet tidigare. Konsekvenserna blev att forskare nu fick ta hänsyn till detta vilket innebar att ompröva allt de trodde att de redan visste om kemin i det tidiga solsystemet och hur det bildats.

Men en ny analys med ledning av planetforskare Adrienn Luspay-Kuti vid Johns Hopkins Applied Physics Laboratory (APL) i Laurel, Maryland, visas dock att Rosettas upptäckt kanske inte är så uppseendeväckande som forskarna först ansåg. Istället tyder upptäckten på att kometen har två inre reservoarer som får det att verka som om det finns mer syre här än vad som faktiskt finns.

"Det är en illusion", säger Luspay-Kuti. "I verkligheten har kometen inte ett högt syre-överflöd utan förklaringen är att ackumulerat syre fastnat i de övre lagren av kometen som släpps ut allt på en gång på grund av uppvärming vid närmande till solen och reaktion från vattenis. Även om det på jorden är vanligt med molekylärt syre (två syreatomer dubbelt kopplade till varandra) är det ovanligt i universum.

Molekylärt syre binder snabbt till andra atomer och molekyler och då speciellt till de universellt rikliga atomerna väte och kol. Syre förekommer endast i små mängder i några molekylära moln därute. Detta faktum fick många forskare att dra slutsatsen att syre i den protosolära nebulosa som bildade vårt solsystem troligen hade plockats upp på liknande sätt som väte och kol.

När Rosetta fann syre som steg ut ur kometen 67P vändes dock allt på huvudet. Ingen hade upptäckt syre i en komet tidigare och som den fjärde mest rikliga molekylen i kometens ljusa koma (efter vatten, koldioxid och kolmonoxid) behövde detta en förklaring. Syret tycktes lossna från kometen med hjälp av vatten vilket fick många forskare att misstänka att syret antingen var urtida - vilket innebar att det blev bundet med vatten vid solsystemets födelse och samlats i kometen när den senare bildades - eller bildats av vatten efter att kometen hade bildats.

Som rapporterats i deras studie, publicerad 10 mars i Nature Astronomy, fann teamet att när södra halvklotet vände sig bort och var tillräckligt långt från solen försvann länken mellan syre och vatten. Mängden vatten som kom från kometen sjönk så snabbt att syre verkade starkt kopplat till koldioxid och kolmonoxid, något kometen fortfarande släppte ut. Teamet föreslog då att kometens syre inte kommer från vatten utan från två reservoarer: en innehållande syre, kolmonoxid och koldioxid djupt inne i kometens steniga kärna; och en grundare ficka närmare ytan där syre kemiskt kombineras med vattenismolekyler.

Idén är: En djup reservoar av syre, kolmonoxid och koldioxidis avger ständigt gaser eftersom syre, koldioxid och kolmonoxid alla förångas vid mycket låga temperaturer. När syret passerar ur kometens inre på sin väg mot ytan tränger en del av det kemiskt in i vatten-isen (en viktig beståndsdel i kometens kärna) och bildar då en andra grundare syrereservoar. Men vattenis förångas vid en mycket högre temperatur än syre  så tills solen värmer ytan tillräckligt och förångar vattenisen kommer syret därför  ingenstans.

Det innebär  att syre kan ackumuleras i denna grunda reservoar under långa tider tills kometytan värms upp tillräckligt (när kometen kommer nära nog solen) för att vattenisen ska förångas vilket då frigör en plym som är mycket rikare av syre än vad som faktiskt fanns från början i kometen.

"Med andra ord återspeglar syreförekomsterna som mäts i kometens koma inte nödvändigtvis dess överflöd i kometens kärna", förklarade Luspay-Kuti.

Luspay-Kuti säger att hon vill undersöka ämnet djupare genom att undersöka kometens mindre molekylära innehåll av ex metan och etan och dess korrelation med molekylärt syre. Hon misstänker att detta kan  hjälpa forskare att få en bättre uppfattning om vilken typ av is som syret införlivades i.

"Du måste fortfarande komma på ett sätt att införliva syret i kometen", sa Luspay-Kuti, med tanke på att mängden syre fortfarande är högre än vad som ses i de flesta molekylära moln. Men hon sade att hon förväntade sig att en majoritet av forskarna ska välkomna studien och dess slutsatser med en lättnadens suck. 

Forskare  slipper nu omtolka universums födelse och nutid se ovan i inlägget (min anm.).Men visst behövs kompletterande analyser för att säkert veta hur syre kom in eller inte kom in i kometen.

Bild på kometen från vikipedia.