Google

Translate blog

tisdag 10 september 2024

De krossade sten för och fick insikt om att inget kan förutses

 


Bild från Hopkins Extreme Materials Institute.

Med hjälp av en ny teknik och avancerade datorsimuleringar avslöjade en forskargrupp att material kan bete sig på oväntade sätt när de träffas i höga hastigheter.

"Vår studie visar att olika delar av ett och samma material och till och med olika sandkorn kan bete sig på mycket olika vis fast de ingår i samma kollision med något", beskriver forskargruppens ledare Ryan Hurley, docent i maskinteknik vid Johns Hopkins Universitys Whiting School of Engineering och forskare vid Hopkins Extreme Materials Institute (HEMI). "Det vi hittade har potential att ligga till grund för tillämpningar som sträcker sig från asteroidavböjning till industriella processer som tillverkning av surfplattor."

Teamet avfyrade projektiler från en gaskanon med hastigheter upp till  2 km/s in i granulara prover bestående av aluminium och soda lime-glas och observerade provernas beteende under de första mikrosekunderna efter nedslaget. Även om experiment som detta vanligtvis görs på plats vid HEMI på JHU:s campus i Baltimore, ägde just detta rum vid Advanced Photon Source (APS) i Chicago eftersom det krävde användning av en  speciell röntgenanläggning för att visualisera nedslaget.

"Om du går till stranden kan du bara se sanden på ytan, men med röntgen kan du se vad som händer under sanden", beskriver Sohanjit Ghosh, doktorand i maskinteknik och artikelns huvudförfattare. – Vi kombinerade röntgenbilder med numeriska modeller som vi har utvecklat och det gör den tvådimensionella röntgenbilden till en tredimensionell process som ger oss en helhetsbild av vad som händer i tid och rum.

Forskarna fann  förutom att kemiska reaktioner leder värmen som skapas av intensiv kompression  att kornen spricker, smälter och stelnar igen.

"Det är intressant att se hur korn interagerar olika med varandra vid olika anslagshastigheter", beskriver Ghosh. "Vi fann att när man går till högre och högre hastigheter överförs så mycket termisk energi att kornen faktiskt smälter men sedan återbildas."

Teamet observerade att olika metalliska material uppvisar olika sätt att avleda energi vid kollision i hög hastighet. Material som aluminium absorberar energi genom att bilda defekter och plasticitet medan spröda material som soda lime-glas avleder energi genom att spricka och fragmentera.

Forskarna säger att dessa resultat kan ligga till grund för framtida uppdrag som liknar 2022 års DART-uppdrag,där en sond slog ner i en asteroid och ändrade dess bana. 

"Alla asteroider har ett lager av sand, som kallas regolit (en region av småsten, sand och damm som finns ovanpå berggrunden som yta och när något kolliderar med ytan är det regoliten som skingrar av anslagsenergin", beskriver Ghosh. "Från kombinationen av sådana modelleringar och experiment kan vi dra slutsatser om hur olika material i olika miljöer och påverkansförhållanden kommer att bete sig."

"Tidsramarna för experimenten var mycket korta några hundra nanosekunder", beskriver Ghosh. – Vi förbereder ett helt experiment i en månad och sedan är det över på några mikrosekunder.

Mohmad Thakur, biträdande forskare vid HEMI, var också medlem i forskargruppen vars arbete beskrivs i Journal of the Mechanics and Physics of Solids.