Google

Translate blog

Visar inlägg med etikett svarta hål. Visa alla inlägg
Visar inlägg med etikett svarta hål. Visa alla inlägg

måndag 9 december 2024

Ursprungliga svarta hål kan gömma sig i planeter och även i vardagliga föremål här på jorden

 




Bild wikimedia. Flyttblock med inskription i Hässlebackarna (RAÄ-nr Floby 47-1) 5374.jpg även i detta stenblock kan ett ursprungligt svart hål finnas.

I teorin tyds att små svarta hål som kom till i det tidiga universum kan ha lämnat efter sig ihåliga planetoider och mikroskopiska tunnlar och att vi kan söka efter dem i stenar och gamla byggnader. I ny forskning som leds från University at Buffalo föreslås att man tänker både stort och smått för att bekräfta deras existens och föreslår att deras signaturer kan sträcka sig från mycket stora - ihåliga planetoider i rymden till små mikroskopiska tunnlar i vardagliga material som finns på jorden, som sten, metall och glas.

Den teoretiska studien, som publiceras i decembernumret av Physics of the Dark Universe och som finns tillgänglig online beskriver hur att ett ursprungligt svart hål fångat i ett stort stenigt objekt ute i kosmos skulle förbruka dess flytande kärna och lämna det ihåligt. Alternativt kan ett snabbare ursprungligt svart hål lämna efter sig raka tunnlar som är tillräckligt stora för att vara synliga av ett mikroskop om de passerar genom fast material, inklusive material här på jorden.

– Chanserna att hitta dessa signaturer är små, men att söka efter dem skulle inte kräva mycket resurser och den potentiella vinsten bli att upptäcka det första beviset på ett ursprungligt svart hål vilket skulle vara enormt intressant, beskriver studiens medförfattare, Dejan Stojkovic, PhD, professor i fysik vid UB College of Arts and Sciences. – Vi måste tänka utanför boxen eftersom det som tidigare gjorts för att hitta ursprungliga svarta hål inte har fungerat. Ihåliga föremål behöver inte vara större än 1/10 av jorden. Dessa ihåliga objekt skulle kunna upptäckas med teleskop. Massan och därmed densiteten, kan bestämmas genom att studera ett objekts omloppsbana.

"Om objektets densitet är för låg för dess storlek är det en bra indikation på att det är ihåligt", beskriver Stojkovic. Objekt utan en flytande kärna kan helt enkelt passera genom och lämna efter sig en rak tunnel föreslås det i studien. Till exempel skulle ursprungliga svarta hål med en massa på 1022 gram lämna efter sig en tunnel som är 0,1 mikron i diameter.

En stor platta av metall eller annat material skulle kunna fungera som en effektiv detektor för svarta hål genom att övervakas för att upptäcka den plötsliga uppkomsten av dessa tunnlar, men Stojovic säger att det är bättre att söka efter befintliga tunnlar i mycket gamla material ex byggnader som är hundratals år gamla till stenar som är miljarder år gamla.

Mer och utförligare om detta intressanta forskningsområde kan man läsa om här från en artikel från University at Buffalo.






torsdag 26 september 2024

Fler svarta hål i det tidiga universum än väntat

 


Bild wikipedia av det svarta hålet i galaxen M87, från Event Horizon Telescope.

Det verkar finnas ett oräkneligt antal svarta hål i universum som drar till sig allt som passerar i dess närområde. De tyngsta svarta hålen, som väger miljoner eller miljarder gånger så mycket som vår sol finns i galaxers centrum. Dessa slukar allt som passerar i närheten och flammar då upp som ljusa fyrar i universum. Dessa kallas aktiva galaxkärnor. Men det finns även svarta hål inte drar  in omgivande material hela tiden, utan i perioder och i skurar vilket då får deras ljusstyrka att flimra.

Med hjälp av NASA:s rymdteleskop Hubble har nu ett internationellt forskarlag under ledning av forskare vid Institutionen för astronomi vid Stockholms universitet hittat fler svarta hål i det unga universum än vad som tidigare rapporterats. De nya resultaten kan hjälpa forskare att förstå hur supermassiva svarta hål skapas.

För närvarande har forskarna inte en hel bild av hur de första svarta hålen bildades efter bigbang. Det är känt att supermassiva svarta hål  kan väga mer än en miljard solar finns i mitten av flertalet, troligen alla,  galaxer, mindre än en miljard år efter bigbang.

– Många av de här objekten verkar vara mer massiva än vi först trodde de skulle vara så tidigt i tid och rum. Antingen bildades de väldigt massiva från början eller så växte de extremt snabbt, beskriver Alice Young, doktorand vid Stockholms universitet och medförfattare till studien.

Svarta hål spelar en viktig roll i alla galaxers livscykel men det finns stora osäkerheter i förståelsen av hur galaxer utvecklas. För att få en fullständig bild av kopplingen mellan galaxers och svarta håls utveckling  använde forskarna Hubbleteleskopet för att kartlägga hur många svarta hål som finns i en population av ljussvaga galaxer då universum bara var några procent av sin nuvarande ålder.

De första observationerna av kartläggningsområdet fotograferades på nytt av Hubble efter några år. Detta gjorde det möjligt för teamet att mäta variationer i galaxernas ljusstyrka. Dessa variationer är ett tydligt tecken på svarta håls fluktuation. Forskarlaget identifierade fler svarta hål än vad som tidigare hittats med andra metoder.

De nya observationerna tyder på att vissa svarta hål troligen bildades av kollaps av massiva stjärnor under den första miljarden år av kosmisk tid. Dessa typer av stjärnor (bildade av nästan enbart väte och helium) fanns bara vid mycket tidiga tidpunkter i universum eftersom senare generationers stjärnor är förorenade av rester av stjärnor som redan har funnits och kollapsat (och vid dessa supernovor fått betydligt fler metaller).

 Andra alternativ av teori för att bilda svarta hål är kollapsande gasmoln, sammanslagningar av stjärnor i massiva hopar och "ursprungliga" svarta hål som bildades (genom fysiskt spekulativa mekanismer) under de första sekunderna efter big bang. Med denna nya information av hur svarta hål bildas kan mer exakta modeller av hur galaxer bildas konstrueras.

– Bildningsmekanismen för tidiga svarta hål är en viktig del av pusslet av galaxers utveckling, beskriver Matthew Hayes vid Institutionen för astronomi vid Stockholms universitet och huvudförfattare till studien. Tillsammans med modeller för hur svarta hål växer kan beräkningar av galaxers utveckling nu placeras på en mer fysikaliskt motiverad grund, med ett exakt schema för hur svarta hål uppstod från kollapsande massiva stjärnor i tidens början.

Studien är publicerad i The Astrophysical Journal Letters.

Kan det vara så att svarta hål kan ha sitt ursprung i ett enda svart hål som fanns innan BigBang? När då gränsen för dess möjliga gravitation (sammanpressning)  och storlek blev kritisk uppstod BigBang. Och flertalet svarta hål uppkom ur det ursprungligt stora. Efter BigBang uppkom då stjärnbildning  till runt dessa av gas som kretsade runt de nu många stora svarta molnen som var en produkt av explosionen av det enorma som fyllt allt i rummet som var nästintill icke existerande i storlek. Ett annat alternativ är strängteorin den bör studeras mer för att lösa kosmos mysterier som verkar omöjliga att lösa med dagens paradigm

måndag 16 september 2024

Hubbleteleskopet och Chandra X-ray Observatory fann ett par svarta hål på kollisionskurs.

 


Bild wikipedia på Chandra X-ray Observatory som söker efter röntgenstrålning.

Galaxer kolliderar ibland. Avståndet mellan Vintergatan och den närliggande Andromedagalaxen är 2,2 miljoner ljusår. Dessa kommer så småningom att bli en enda stor galax då de är på kollisionskurs och när väl sammanslagningen sker kommer även galaxernas svarta hål att sammanslås och bli ett betydligt större.

Troligen alla galaxer har ett svara hål i centrum. Hubble teleskopet och Chandra X-ray Observatory såg på ett par galaxer som kolliderade och såg då två supermassiva svarta hål som valsade runt varandra. Här skedde infallande gas i de svarta hålen, infallande gas lyser starkt i aktiva galaxkärnor (AGN).

Galaxerna som betecknas som en enda ligger ungefär 300 ljusår från varandra. Detta är det från oss närmsta AGN-paret som kan ses i synligt ljus och röntgenvåglängder. Galaxen har beteckningen MCG-03-34-64 och är mycket gasrik.

Astronomer hade med hjälp av radioteleskop observerat ett par dubbelstjärnor på närmare håll från oss sett när de av en slump råkade se MCG-03-34-64.

Hubbles högupplösta avbildning avslöjade tre optiska diffraktionspikar i galaxen inbäddade inuti galaxen vilket indikerar en stor koncentration av glödande syrgas inom ett mycket litet område. "Vi hade inte förväntat oss att se något sådant här", beskriver Anna Trindade Falcão vid Center for Astrophysics | Harvard & Smithsonian i Cambridge, Massachusetts, huvudförfattare till en rapport publicerad i dagarna i The Astrophysical Journal. "Den här synen är inte en vanlig företeelse i det närliggande universum och den berättade för oss att det är något annat som pågår inuti galaxen."

Diffraktionspikar är avbildningsartefakter som orsakas när ljus från ett mycket litet område i rymden böjs runt spegeln inuti teleskop.

Falcãos team undersökte galaxen i röntgenstrålningsljus med hjälp av Chandra-observatoriet för att se vad som hände. – När vi såg på MCG-03-34-64 i röntgenbandet såg vi två separata, kraftfulla källor till högenergisk strålning som sammanföll med de ljusstarka optiska ljuspunkterna som även kunde ses med Hubble. Vi lade ihop dessa delar och kom fram till att vi sannolikt tittade på två supermassiva svarta hål som ligger nära varandra, beskriver Falcão.

AGN-binärer som denna var troligen vanligare i det tidiga universum när galaxsammanslagningar var mer frekventa. Upptäckten ger en unik närbild av galaxen som finns cirka 800 miljoner ljusår bort. Upptäckten var en slump att det var de två supermassiva svarta hålen som  en gång i tiden var kärnan i sina respektive galaxer. En sammansmältning mellan galaxerna gjorde att de svarta hålen kom nära varandra. De kommer att fortsätta att röra sig i en spiral närmare varandra tills de till slut sammanslås om kanske 100 miljoner år – och skakar om tid och rum som gravitationsvågor.

tisdag 20 augusti 2024

Allmänheten uppmanas hjälpa till med att söka efter nya svarta hål

 


Dutch Black Hole Consortium  har lanserat en 8-språkig version av BlackHoleFinder-appen en app som medborgare över hela världen kan använda till att hjälpa astronomer  identifiera okända nybildade svarta hål. Tidigare var app endast tillgänglig på nederländska och engelska. Nu finns den även på spanska, tyska, kinesiska, bengali, polska och italienska vilket kraftigt ökar antalet personer som kan komma åt medborgarforskningsappen på sitt modersmål.

Medborgare runt om i världen uppmanas att hjälpa astronomer att identifiera vilka källor som är intressanta och bör följas upp  ex potentiella kilonovor och vilka källor som är falska källor. Den första, och hittills enda, observationen av en kilonova gjordes den 18 augusti 2017: en kort ljusblixt som orsakades av att två neutronstjärnor slogs samman. Denna sammanslagning resulterade i bildandet av ett svart hål med massa som en stjärna. Det var en unik händelse.

Förutom en ljusblixt detekterades även gravitationsvågor under millisekunder fram till sammanslagningen. Det var första gången som astronomer kunde detektera både gravitationsvågor och elektromagnetisk strålning från en händelse som denna.

En kilonova är en övergående astronomisk händelse som inträffar i ett kompakt dubbelstjärnsystem när två neutronstjärnor eller en neutronstjärna och ett svart hål smälter samman. Dessa sammanslagningar tros producera gammablixtar och avge stark elektromagnetisk strålning och kallas "kilonovor

Bild wikipedia En visuell tolkning av ett svart hål eller neutronstjärna med en närliggande stjärna utanför dess Roche-gräns (följ gärna länken här för att se en intressant förklaring bild för bild på hur Rochegräns fungerar i förhållande till ett objekt) Infallande materia bildar en ackretionsskiva samtidigt som materia runt om med mycket hög energi slungas ut i form av strålar.

måndag 12 augusti 2024

Små svarta hål kan användas i sökandet efter stora dolda svarta hål

 


Ursprunget till supermassiva svarta hål som finns i vad man anser alla galaxers centrum är fortfarande ett av de största mysterierna. De kan alltid ha varit massiva och bildades när universum fortfarande var mycket ungt (eller i samband med BigBang eller kanske BigBang var anledning till dessa svarta hål som fanns någonstans i tid och rum och som var kärnan till senare galaxers bildning). Alternativt kan de ha vuxit med tiden genom att dra till sig materia och sammanslagits med andra svarta hål. När ett supermassivt svart hål är på väg att äta upp ett annat massivt svart hål kommer detta att sända ut gravitationsvågor som krusningar i rumtiden. Krusningar som fortplantar sig genom universum.

Gravitationsvågor har nyligen upptäckts från små svarta hål som är rester av stjärnor (inte att förväxla med stora centrala hål i galaxers centrala del). Att detektera signalerna från enskilda par av stora svarta hål är fortfarande omöjligt eftersom dagens detektorer inte är känsliga nog för de mycket låga gravitationsvågsfrekvenser som dessa avger. Planerade framtida detektorer, som den rymdbaserade ESA-ledda missionen LISA, kommer delvis råda bot på detta. Men att upptäcka de tyngsta paren av svarta hål kommer fortfarande inte att vara möjligt. 

Ett internationellt team av astrofysiker under ledning av tidigare studenter vid universitetet i Zürich har en ny idé och metod för att upptäcka par av de största svarta hålen som  i galaxers centrum genom att analysera gravitationsvågor som genereras av dubbelstjärnor som finns i närheten av små svarta hål ( resterna av kollapsade stjärnor). Detta tillvägagångssätt, som kommer att kräva en gravitationsvågsdetektor med deci-Hz, skulle göra det möjligt att upptäcka de största supermassiva svarta hålen genom effekter som ges på dessa stjärnor.

"Vår idé fungerar i princip som att lyssna på en radiokanal. Vi föreslår att man använder signalen från par av små svarta hål på samma sätt som radiovågor bär signaler. De supermassiva svarta hålen är den musik som är kodad i frekvensmoduleringen  av den detekterade signalen, beskriver Jakob Stegmann, huvudförfattare till studien och idén som påbörjade detta arbete vid universitetet i Zürich som gäststudent och som sedan dess flyttat till Max Planck-institutet för astrofysik som postdoktoral forskarassistent. "Den nya aspekten av denna idé är att använda höga frekvenser som är lätta att upptäcka för att kunna upptäcka lägre frekvenser som vi ännu inte har tillräckligt känsliga instrument för.

Nya resultat från pulsar-tidsmatriser stöder redan existensen av sammansmältande supermassiva binärer av svarta hål. Dessa bevis är dock indirekta och kommer från den kollektiva signalen från många avlägsna binärer som effektivt skapar ett bakgrundsbrus.

Den föreslagna metoden för att detektera enskilda supermassiva svarta håls binärer utnyttjar de subtila förändringar de orsakar i gravitationsvågor som sänds ut av ett par närliggande små svarta hål vilka har en vit dvärg som följeslagare. Det lilla svarta hålets dubbelstjärna fungerar alltså effektivt som en fyr som avslöjar existensen av de större svarta hålen. Genom att detektera de små modulationerna i signaler från små svarta håls binärer (vita dvärgstjärnor) kunde forskarna identifiera tidigare dolda supermassiva svarta hål-binärer (två stora svarta hål som sveper om varandra) med massor  från 10 miljoner till 100 miljoner gånger solens, även på stora avstånd.

Lucio Mayer, som är medförfattare till studien och svarta hål teoretiker vid universitetet i Zürich, tillägger: "Nu när vägen för Laser Interferometer Space Antenna (LISA) är utstakad, efter att projektet antogs av ESA i januari förra året, måste gemenskapen utvärdera den bästa strategin för nästa generation av gravitationsvågsdetektorer, i synnerhet vilka frekvensområden de ska rikta in sig på – studier som denna ger en stark motivation att prioritera en design av en deci-Hz-detektor."

Bild https://www.news.uzh.ch/ När ett supermassivt svart hål är på väg att sluka ett annat massivt svart hål kommer detta att sända ut gravitationsvågor, som  krusningar i rumtiden som fortplantar sig genom universum. (Källa: NASA:s Goddard Space Flight Center/Scott Noble; simuleringsdata, d'Ascoli et al. 2018)

onsdag 3 juli 2024

Mystik om Mörk materia.

 


I olika astronomiska observationer tyds det på att vanlig materia som vi kan se eller ta på endast utgör 5 % av universums totala massa. I Vintergatan finns det enligt denna teori för varje  kg vanlig materia i stjärnor 15 kg "mörk materia". Mörk materia som inte avger ljus och växelverkar endast med hjälp av sin gravitationskraft med vanlig materia.

De flesta forskare tror att den mörka energin består av okända elementarpartiklar, beskriver Dr Przemek Mróz från UW:s (university of Warszawa) astronomiska observatorium, huvudförfattare till två artiklar i ämnet. "Tyvärr, trots årtionden av ansträngningar har inget experiment, inklusive experiment som utförts med Large Hadron Collider, hittats partiklar som skulle kunna vara mörk materia." 

Sedan den första upptäckten av gravitationsvågor från ett sammansmältande par av svarta hål 2015 har experiment med LIGO- och Virgo instrumenten har upptäckts mer än 90 sådana händelser. Astronomer har lagt märke till att svarta hål som upptäckts av LIGO och Virgo vanligtvis är betydligt mer massiva (20–100 solmassor) än de som tidigare varit kända i Vintergatan (5–20 solmassor).

"Att förklara varför dessa två populationer av svarta hål är så olika är ett av de största mysterierna inom modern astronomi", betonar Dr Mróz.

En möjlig förklaring är att LIGO- och Virgo-detektorerna har upptäckt en population av ursprungliga svarta hål som  bildats i det mycket tidiga universum. Sedan den första upptäckten av gravitationsvågor har fler och fler forskare spekulerat i att sådana ursprungliga svarta hål kan utgöra en betydande del av, om  inte helt av mörk materia.

I en ny artikel i The Astrophysical Journal Supplement Series presenterar astronomer vid OGLE (Optical GravitationalLensing Experiment) resultaten av en nästan 20 år lång fotometrisk övervakning av nästan 80 miljoner stjärnor i en närliggande galax (Stora Magellanska molnet), av sökandet efter gravitationella mikrolinsningshändelser där. De analyserade uppgifterna samlades in under den tredje och fjärde fasen av OGLE-projektet från 2001 till 2020.

"Mikrolinsning uppstår när tre objekt – en observatör på jorden, en ljuskälla och en lins – praktiskt taget idealiskt är riktad mot ett teleskop", beskriver professor Andrzej Udalski, huvudforskare för OGLE-projektet. "Under en mikrolinsningshändelse kan källans ljus böjas och förstoras och vi observerar en tillfällig ljusökning och förstoring av källans ljus."

I den andra artikeln, publicerad i Nature, diskuteras de astrofysikaliska konsekvenserna av fynden.

– Om all mörk materiai Vintergatan bestod av svarta hål med 10 solmassor borde vi ha upptäckt 258 mikrolinsningar. För 100 svarta hål med solmassa förväntade vi oss 99 mikrolinsningshändelser. För 1000 svarta hål med solmassa – 27 mikrolinsningshändelser, förklarar Dr Mróz.

Men OGLE-astronomerna har bara hittat 13 mikrolinsningshändelser. Deras detaljerade analys visar att de alla kan förklaras av de kända stjärnpopulationerna i Vintergatan eller som undersökts det Stora Magellanska molnet inte beroende av svarta hål.

– Våra observationer tyder på att ursprungliga svarta hål inte kan utgöra en betydande del av den mörka materian men förklarar däremot de observerade svarta hålens fusionshastighet som uppmätts av LIGO och Virgo. De resultat vi fick fram kommer att finnas kvar i läroböcker i astronomi i årtionden framöver, beskriver professor Udalski.

Studien har publicerats i tidskrifterna "Nature" och "Astrophysical Journal Supplement Series

Bild flickr.com NASA:s Webb djupast infraröda bilden av universum hittills.

onsdag 3 april 2024

Inaktiva svarta hål vaknar upp då en stjärna kommer för nära.

 


I en ny undersökning av en klass av galaxer som kallas kompakta symmetriska objekt (eller CSO), har avslöjats att dessa objekt inte är helt vad de anses vara. CSO:er är i sig aktiva galaxer (här bildas nya stjärnor) med supermassiva svarta hål i centrum. Från dessa svarta hål uppstår från en del två jetstrålar som färdas i motsatta riktningar med nästan ljusets hastighet. I jämförelse med andra galaxer där våldsamma jetstrålar från deras centrala svarta hål sträcks långt ut i rymden  sträcker sig förstnämndas jetstrålar inte ut i stora avstånd – de är även mycket mer kompakta.

Under många årtionden misstänkte astronomer att dessa CSO:s (Compact Symmetric Objects med korta jetstrålar) sänder ut nybildade jetstrålar och att dessa jetstrålar så småningom vid upprepning blir längre efterhand som tiden går.

Men detta antagande har omtolkats och omtolkningen beskrivs i tre olika artiklar i The Astrophysical Journal där ett Caltech-lett team av forskare kommit fram till att CSO inte är unga utan snarare har en relativ kort existens som utkastare av jetstrålar.

"Dessa CSO är inte unga", förklarar Anthony (Tony) Readhead, Robinson-professor emeritus i astronomi, som ledde undersökningen. – Man skulle inte kalla en 12-årig hund ung trots att den har levt ett kortare liv än en vuxen människa. Dessa objekt är en distinkt jetstråle som finns under tusentalet år snarare än de miljontals år som är vanliga i galaxer med långlivade jetstrålar. I de nya studierna granskade teamet litteratur och tidigare observationer av mer än 3 000 CSO-kandidater, verifierade 64 som verkliga och identifierade ytterligare 15 CSO:er. Alla dessa objekt hade tidigare observerats av National Radio Astronomy Observatory's Very Long Baseline Array (VLBA), finansierad av National Science Foundation (NSF) och några hade observerats av andra högupplösta radioteleskop. "VLBA-observationerna är de mest detaljerade och ger bilder med detaljer som motsvarar att mäta bredden på ett mänskligt hårstrå på ett avstånd av 160 km", beskriver Readhead.

Forskarnas analys visar att CSO driver ut jetstrålar i 5 000 år eller mindre därefter slocknar strålarna ut. – CSO-jetstrålarna är väldigt energirika men de verkar stänga av efter en kort tid kosmiskt sett, beskriver Vikram Ravi, biträdande professor i astronomi vid Caltech och medförfattare till en av studierna. " Vad som driver de kortlivade jetstrålarna tror forskarna är en tidvattenstörning (TDE), som inträffar när en ensam stjärna vandrar för nära ett supermassivt svart hål och slukas av detta. De TDE:er som vi tidigare har sett varade bara i några år", beskriver Ravi. "Vi tror att de anmärkningsvärda TDE:erna som driver CSO:er varar mycket längre eftersom de splittrade stjärnorna är mycket stora, mycket massiva, eller både och.

Beroende på storleken av stjärnan eller stjärnorna som slukas av ett svart hål beror kraften på jetstrålarnas existens och längd blir som jag tolkar det analysen ovan kortfattat.

De tre studierna är "Compact Symmetric Objects - I Towards a Comprehensive Bona Fide Catalog", "Compact Symmetric Objects – II Confirmation of a Distinct Population of High-Luminosity Jetted Active Galaxies" och "Compact Symmetric Objects – III Evolution of the High-Luminosity Branch and a Possible Connection with Tidal Disruption Events." Studierna finansierades av NSF, NASA, Caltech, Max Planck-institutet för radioastronomi i Bonn, Tyskland och Europeiska forskningsrådet.

Bild https://www.caltech.edu/ Den här illustrationen visar hur kompakta symmetriska objekt, eller CSO:er, sannolikt bildas. När en massiv stjärna vandrar för nära ett svart hål (till vänster) slukas den. Detta får det svarta hålet att skjuta ut en ultrasnabb, bipolär jetstråle (mitten). Strålen sträcker sig utåt och dess heta ändar glöder av radiostrålning (till höger).

Upphovsman: B. Saxton/NRAO/AUI/NSF

onsdag 13 mars 2024

Hur svarta hål växer och nya stjärnor bildas

 


När supermassiva svarta hål är aktiva har de en avgörande roll för hur galaxer utvecklas. Fram tills nu har man ansett att tillväxten utlöses av den våldsamma kollisionen mellan två galaxer som smälter samman. Men ny forskning ledd från University of Bath tyder på att galaxsammanslagningar inte räcker för att driva ett svart hål – en reservoar av kall gas i mitten av galaxen behövs också.

Den nya studien, som publicerats i tidskriften Monthly Notices of the Royal Astronomical Society, tros vara den första som beskriver användning av AI  för att klassificera galaxkollisioner med det specifika syftet att utforska förhållandet mellan galaxkollision, supermassiv ansamling av svarta hål och stjärnbildning.

Hittills har koncentrationer av svarta hål klassificerats (ofta felaktigt) enbart genom mänsklig observation. Under större delen av sin tid är svarta hål icke aktiva fast materia kretsar runt dem. Materia som har liten inverkan på galaxen som helhet. Men under korta faser i tid (korta endast på en astronomisk skala troligen varar de miljoner till hundratals miljoner år) sker stark gravitation som drar stora mängder gas till det svarta hålet (en händelse som kallas ackretion), vilket resulterar i en ljusstark skiva som i ljusstyrka kan överglänsa galaxen.

Det är dessa korta aktivitetsfaser som är viktigast i galaxers utveckling, eftersom de enorma mängder energi som frigörs från ackretionsskivan kan påverka att många stjärnor bildas i galaxen. Av goda skäl är därför en av de största utmaningarna inom astrofysiken att fastställa vad som får en galax att röra sig mellan sina två tillstånd – vilande och stjärnbildande.

Bild https://freerangestock.com/

onsdag 21 februari 2024

Svarta hål fanns innan galaxer och stjärnor

 


Svarta hål existerade i tidernas begynnelse och gav upphov till nya stjärnor och galaxbildning visar en ny analys av data från James Webb Space Telescope. Analysen vänder upp och ner på teorin om hur svarta hål format kosmos och utmanar den klassiska förståelsen av att de bildades efter att de första stjärnorna och galaxerna uppstått.

I stället verkar svarta hål dramatiskt ha påskyndat uppkomsten av nya stjärnor under universums första 50 miljoner år. Vi vet att ett stort svart hål finns i mitten av troligen alla galaxer. Överraskningen nu är att de fanns i universums begynnelse och var kanske byggstenar eller frön till de  tidiga galaxerna med dess stjärnor", beskriver huvudförfattaren till en ny studie (publicerad i tidskriften Astrophysical Journal Letters) Joseph Silk, professor vid institutionen för fysik och astronomi vid Johns Hopkins University och Institute of Astrophysics, Paris, Sorbonne University. "Det är en helomvändning jämfört med vad vi ansåg var möjligt tidigare – så mycket att detta nya rön helt kan skaka om vår förståelse av hur galaxer bildas."

"Vi argumenterar nu för att svarta hål strömmar ut krossade gasmoln, förvandlar dem till stjärnor och kraftigt påskyndar stjärnbildningshastigheten", beskriver Silk. – Annars är det väldigt svårt att förstå var dessa ljusstarka galaxer kom från så fort efter BigBang eftersom de vanligtvis är mindre i det tidiga universum. Varför och hur i hela friden skulle annars stjärnor bildats så snabbt?"

Svarta hål är områden i rymden där gravitationen är så stark att ingenting kan undkomma deras dragningskraft, inte ens ljus. På grund av denna kraft genererar de kraftfulla magnetfält som skapar våldsamma stormar, kastar ut turbulent plasma och i slutändan fungerar som enorma partikelacceleratorer, beskriver Silk. Denna process, säger han, är sannolikt anledningen till att Webbs detektorer har upptäckt fler av dessa svarta hål och ljusstarka galaxer än vad forskarna förväntat sig.

"Vi kan inte riktigt se dessa våldsamma vindar eller jetstrålar långt bort i tid och rum, men vi vet att de måste finnas eftersom vi ser många svarta hål redan tidigt i universum", förklarar Silk. – De enorma vindarna som kommer ur de svarta hålen krossar närliggande gasmoln och då uppkommer stjärnor. Det är den felande länken som förklarar varför dessa första galaxer lyser så mycket ljusare än vi förväntat oss. 

Silks team förutspår att det unga universum hade två faser. Under den första fasen påskyndade utflöden från svarta hål stjärnbildningen och i en andra fas avtog utflödena. Några hundra miljoner år efter big bang kollapsade gasmoln på grund av magnetiska stormar från svarta hål och nya stjärnor bildades i en takt som vida översteg den som observeras miljarder år senare i dagens galaxer, beskriver Silk. Skapandet av stjärnor saktades ner eftersom dess kraftfulla utflöden övergick till ett tillstånd av energibesparing, beskriver han, vilket minskar gasen som är tillgänglig för att bilda stjärnor i galaxer.

"Den stora frågan är, vad  vår början var? Solen är en stjärna på 100 miljarder i Vintergatan, och det finns också ett massivt svart hål i mitten av Vintergatan. Vad är kopplingen mellan de två?" undrar han. "Inom ett år kommer vi att ha så mycket bättre data och många av våra frågor kommer att börja få svar."

Uppstod de  första svarta hålen direkt efter BigBang eller var de ursprunget till BigBang? Varifrån kom dessa  utflöden av gas från de svarta hålen i tidens början som bildade de första stjärnorna? Misstanken enligt mig är att de drog in och släppte ut gas genom en koppling mellan ett universum som kollapsat samtidigt som vårt universum uppstod. Tid och rum är relativt.

Bland författarna till studien finns Colin Norman och Rosemary F. G. Wyse från Johns Hopkins; Mitchell C. Begelman of University of Colorado and National Institute of Standards and Technology; och Adi Nusser från Israel Institute of Technology. Teamet stöds av Israel Science Foundation och Asher Space Research Institute, samt Eric och Wendy Schmidt på rekommendation av Schmidt Futures-programmet.

Bild vikipedia NGC 2207 och IC 2163 är två spiralgalaxer på ungefär 80 miljoner ljusårs avstånd från oss som kolliderar med varandra, bilden tagen av Hubbleteleskopet.

lördag 18 november 2023

Nancy Grace Roman Space Telescope kan hitta svarta hål efter BigBang

 


När universum uppstod i en  expansion  kallad Big Bang komprimerades materia i ett litet område för att sedan expandera utåt och skapa ett allt större universum. Kosmologer har teorier om att subatomär materia i vissa regioner kan ha varit så tätt packad att materia kollapsade direkt till svarta hål. Om dessa ursprungliga svarta hål existerar   kan de gömma sig i galaxer eller mellan galaxerna likt ensamma planeter gör. Forskare har försökt uppställa de svarta hålens släktträd. De vet att vissa massiva stjärnor kommer att kollapsa in i sig själva mot slutet av sina liv och bilda svarta hål bestående av den resterande stjärnmassan. De vet att supermassiva svarta hål finns i centrum av galaxer som Vintergatan. Det finns också allt fler bevis för att svarta hål med medelstor massa finns i galaxerna.

Men hur är det med ursprungliga svarta hål? Om de existerar bildades de långt innan den första stjärnan kom till. De kan enligt teorin vara hur stora som helst och kan ha spelat en roll i galaxbildning. I kampen för att förstå hur svarta hål blir så massiva (likt de i centrum av galaxer och större) kan dessa fylla ett tomrum av kunskap. Det finns också indikationer på att de (SVARTA HÅL SOM KOM TILL VID BigBang) om de existerar, kan bestå av mörk materia.

 Ny forskningsteori visar hur NASA:s Nancy Grace Roman Space Telescope kanske kan hitta dessa ursprungliga svarta hål när det kommer i drift. Svarta hål kan gömma sig bland en mystisk population av objekt med låg massa. Objekten där de kan finnas är ex fritt flytande planeter (planeter som flyter mellan galaxerna).

I Artikeln "Rogue worlds meet the dark side: revealing terrestrial-mass primordial black holes with the Nancy Grace Roman Space Telescope" har publicerats på pre-print-servern arXiv. Huvudförfattare är William DeRocco från fysikinstitutionen vid UC Santa Cruz där beskrivs dessa teorier.

Jag anser att det är fullt möjligt att svarta hål bildades lika snabbt som stjärnor eller tidigare. Någon bra förklaring till varför svarta hål finns i centrum av galaxer är det dåligt med. Kan det innan BigBang funnits en enda sak ett mycket litet och så kompakt svart hål som dragits samman till en kritisk nivå som resulterat till BigBang och vårt universum?

Bild vikipedia Nancy Grace Roman Space Telescope planerat att sändas upp 2027 och söka av universum i infrarött ljus.

söndag 29 oktober 2023

Svarta hål kan finnas som par.

 


Svarta hål har en otrolig densitet och en så stark gravitationskraft att ingenting inte ens ljus kan ta sig ut från dessa om det fångas in. Ett svart hål skulle kunna packa ihop jordens massa till ett utrymme stort som en ärta.

Forskare från University of Southampton har tillsammans med kollegor vid universiteten i Cambridge och Barcelona visat att det är teoretiskt möjligt att svarta hål existerar som balanserade par – som hålls i jämvikt av en kosmologisk kraft (gravitation) – men ses som ett enda svart hål i ett teleskop.

Studien genomfördes av professor Oscar Dias (University of Southampton), professor Gary Gibbons (University of Cambridge), professor Jorge Santos (University of Cambridge) och Dr Benson Way (University of Barcelona). Studien publicerades i en artikel med titeln "Static Black Binaries in de Sitter Space" publicerad i tidskriften Physical Review Letters och granskad som en Viewpoint-artikel.

Konventionella teorier om svarta hål baserade på Einsteins allmänna relativitetsteori beskriver hur statiska eller snurrande svarta hål kan existera på egen hand, isolerade i rymden (utan samband med en galax). Svarta hål som av någon anledning hamnat som par skulle så småningom av gravitation enligt teorin  sammanslås till ett enda svart hål.

Detta är sant om man antar att universum är statiskt. Men hur är det med ett  universum som ständigt är i rörelse (som vårt där en ständigt ökande expansion sker)? Kan då par av svarta hål existera i harmoni i ett ständigt expanderande universum och då inte upptäckas som två stycken?

Standardmodellen i kosmologin utgår från att Big Bang gav upphov till universum och att det för cirka 9,8 miljarder år sedan dominerades av en mystisk kraft, kallad "mörk energi", som accelererar universum i en konstant ökande takt, beskriver professor Oscar Dias vid University of Southampton.

Forskare hänvisar till denna mystiska kraft som en "kosmologisk konstant". I ett universum som förklaras utifrån Einsteins teori utifrån en kosmologisk konstant finns svarta hål i en kosmologiskt accelererad bakgrund. Detta flyttar de teoretiska målstolparna av hur svarta hål kan interagera och existera tillsammans.

Genom komplexa numeriska metoder visar teamet bakom den senaste studien att två statiska (icke-spinnande) svarta hål kan existera i jämvikt – deras gravitation till varandra kompenseras av expansionen i samband med en kosmologisk konstant. Till och med i accelerationen av ett ständigt ökat expanderande universum förblir de svarta hålen låsta på ett fast avstånd från varandra. Hur mycket expansionen än försöker dra isär dem, kompenserar gravitationsattraktionen detta.

Sett på avstånd skulle ett par svarta hål vars attraktion kompenseras av den kosmiska expansionen se ut som ett enda svart hål. Det gör det svårt att upptäcka om det är ett enda svart hål eller ett par av dem, tillägger professor Dias.

Professor Jorge Santos vid University of Cambridge tillägger: Vår teori är bevisad för ett par statiska svarta hål, men vi tror att den kan tillämpas på snurrande hål också. Det verkar också troligt att vår lösning skulle kunna gälla för tre eller till och med fyra svarta hål vilket öppnar upp för en hel rad möjligheter.

Bild vikipedia av: Simulering av hur ett svart hål framför Vintergatan skulle se ut. Det svarta hålet har 10 solmassor och ses här från ett avstånd på 600 km. För att upprätthålla detta avstånd krävs en motacceleration på omkring 400 miljoner g.

lördag 23 september 2023

Det kan finnas svarta hål betydligt närmre jorden än vi tidigare ansett.

 


I en ny forskningsrapport publicerad i septembernumret av tidskriften Monthly Notices of the Royal Astronomical Society beskriver ett team av astronomer  den kosmiska historien om en närliggande stjärnhop som kallas Hyades-klustret  vilket är den närmaste stjärnhopen till jorden. Här finns hundratals stjärnor av ungefär samma ålder, kemiska sammansättning och med likartat rörelsemönster.

Med hjälp av data från Europeiska rymdorganisationens stjärnkartläggande Gaia-satellit datasimulerade teamet de senaste 650 miljoner åren av stjärnhopens utveckling. De fann att den bästa förklaringen till hopens nuvarande stjärnfördelning beror på närvaron av minst två kanske tre små svarta hål gömda i Hyades-klustrets centrum. Svarta hål som subtilt påverkar stjärnornas rörelser genom sin kraftfulla gravitation. 

Våra simuleringar kan utifrån storleken på Hyades-klustret förklaras bäst om några svarta hål finns i centrum av klustret idag (eller tills nyligen), beskriver studieförfattaren Stefano Torniamenti, postdoktoral forskare vid universitetet i Padua i Italien.

Om detta resultat bekräftas vid vidare studier skulle dessa misstänkta svarta hål vara de närmaste till jorden som hittills upptäckts. Dessa potentiella svarta hål finns då endast 150 ljusår från vår planet och är ungefär 10 gånger närmare oss än den närmaste kandidaten - det märkliga stjärnkretsande svarta hålet Gaia BH1 som finns cirka 1 500 ljusår bort från oss. 

Bild vikipedia av en illustratörs tolkning av den solliknande stjärnan (vänster) och det svarta hålet (uppe till höger) i Gaia BH1-systemet

torsdag 31 augusti 2023

En del svarta hål rör sig i en svindlande hastighet genom universum.

 


I en studie publicerad i tidskriften Physical Review Letters överstiger den maximalt möjliga rekylhastigheten" för kolliderande svarta hål  63 miljoner mph (102 miljoner km/h) - ungefär en tiondel av ljusets hastighet. Detta inträffar då två svarta hål kolliderar och då  antingen smälter samman eller sprids isär när de närmar sig varandra, enligt studieförfattarna.

Nu hoppas forskare med hjälp av Einsteins relativitetsekvation  bevisa att denna hastighet inte kan överskridas vilket annars skulle innebära potentiella konsekvenser för fysikens grundläggande lagar. Det innebär att om dessa ekvationer visar sig inte stämma skulle  en ny fysik behövas.

Vi skrapar på ytan av något som kan vara en ny och bättre universell beskrivning av fenomenet, beskriver medförfattaren Carlos Lousto, professor i matematik och statistik vid Rochester Institute of Technology (RIT) i New York, till Live Science. Denna eventuella överskridna hastighetsgräns kan vara en del av en större uppsättning fysiska lagar som påverkar allt "från de minsta till de största föremålen i universum", beskriver Lousto.

När två svarta hål passerar nära varandra kommer de antingen att smälta samman eller svänga runt sitt gemensamma masscentrum innan de dras isär ät varsitt håll (eller in i varandra) i en hastighet av minst den nämnda ovan. 

För att identifiera den maximala möjliga rekylhastigheten av svarta hål som flyger isär använde Lousto och studieförfattaren James Healy, forskningsassistent i RIT School of Mathematics and Statistics, superdatorer för att köra numeriska simuleringar. Dessa beräkningar gick igenom ekvationerna för allmän relativitet som beskriver hur två interagerande svarta hål kommer att agera. Lousto förklarade att även om forskare försökte lösa dessa ekvationer numeriskt för mer än 50 år sedan, utvecklades inte numeriska tekniker för att förutsäga storleken på gravitationsvågor från sådana kollisioner förrän 2005 - bara 10 år innan gravitationsvågorna själva upptäcktes för första gången av Laser Interferometer Gravitational-Wave Observatory (LIGO). 

Sedan dess har LIGO observerat nästan 100 kollisioner med svarta hål. Tidigare trodde forskare att svarta hål som närmar sig varandra skulle smälta samman i spiralformad rörelse mot varandra i nästan cirkulära banor, enligt Lousto. Upptäckten av att det även var elliptiska banor breddade utbudet av möjliga kollisionshändelser och fick forskarna att leta efter extrema kollisionsscenarier. Vad vi ville göra är att tänja på gränserna för dessa kollisioner", beskriver Lousto. Genom att köra 1381 simuleringar - som var och en tog två till tre veckor - fann forskarna en topphastighet av de möjliga rekylhastigheterna för svarta hål med motsatta snurr som svepte förbi varandra. Medan svarta hål avger gravitationsvågor i alla riktningar, förvränger de motsatta spinnen dessa vågor vilket skapar en dragkraft som ökar rekylhastigheten.

Rekylen från svarta hål efter att de smälter samman är en kritisk del av deras interaktion, beskriver Imre Bartos, docent vid fysikavdelningen vid University of Florida, till Live Science via e-post

"Som med alla begränsande teoretiska kvantiteter kommer det att bli intressant att se om naturen överstiger detta i någon situation som kan signalera avvikelser från vår förståelse av hur svarta hål fungerar, enligt Bartos. På grund av detta liknar Lousto denna interaktion vid en smidig fasövergång, som en andra ordningens fasövergångar av magnetism och supraledning, i motsats till de explosiva första ordningens fasövergångar av uppvärmt vatten, till exempel, där en begränsad mängd latent värme absorberas innan allt kokar. Forskarna skymtade också vad som kan likna de skalningsfaktorer som är karakteristiska för dessa fasövergångar även om ytterligare högupplösta simuleringar behövs för att identifiera dessa definitivt.

Bild pxfuel.com

lördag 8 juli 2023

Ljudet av gravitationsvågorna då två svarta hål sammanslås.

 


Efter 15 år av datainsamling i ett stort experiment har forskare för första gången "hört" det eviga ljudet av gravitationsvågor som krusar genom vårt universum och det är högre än man väntat. Upptäckten gjordes av forskare med hjälp av North American Nanohertz Observatory for Gravitational Waves (NANOGrav) då man observerade stjärnor som kallas pulsarer vilka fungerar som himmelska metronomer. 

De nyligen upptäckta gravitationsvågorna - krusningar i rumtidens tyg - är överlägset de mest kraftfulla som någonsin uppmätts: De innehåller ungefär en miljon gånger mer energi än engångsutbrott av gravitationsvågor från svarta håls och neutronstjärnfusioner som upptäckts av  LIGO och Virgo

De flesta av de gigantiska gravitationsvågorna produceras troligen av par av supermassiva svarta hål som i spiraler dras samman för katastrofala kollisioner vilket sker överallt i kosmos, rapporterar NANOGrav-forskarna i en serie nya artiklar som publicerats i The Astrophysical Journal Letters.

Det är som en kör, med alla dessa supermassiva svarta hålpars rörelser  som hörs på olika frekvenser", säger NANOGrav-forskaren Chiara Mingarelli, som arbetade med de nya resultaten tillsammans med forskare vid Flatiron Institute's Center for Computational Astrophysics (CCA) i New York City.

Det är det första beviset någonsin av gravitationsvågbakgrundens ljud. Vi har öppnat ett nytt observationsfönster i universum. Gravitationsvågbakgrundens existens och sammansättning  var länge bara en teori och aldrig hörd. Resultatet är en skattkista till nya insikter i sedan länge långvariga frågor, från ödet för supermassiva svarta hålpar till frekvensen av ljud vid galaxsammanslagningar, beskriver Mingarelli.

För närvarande kan NANOGrav bara mäta den totala gravitationsvågbakgrunden och inte strålning från  enskilda "objekt" (menat dsom från ett enstaka svarta hål-pars sammanförande). Men även detta brus  medförde överraskningar.

Gravitationsvågbakgrundens ljud är ungefär dubbelt så högt som vad jag förväntade mig, skriver Mingarelli biträdande professor vid Yale University. Det är verkligen i den övre änden av vad våra modeller kan detektera från supermassiva svarta hål. Den öronbedövande volymen kan bero på experimentella begränsningar eller tyngre och större supermassiva svarta hål. Men det finns också möjligheten att något annat genererar kraftfulla gravitationsvågor, skriver Mingarelli, till exempel mekanismer som förutsägs av strängteorin eller alternativa förklaringar till universums födelse. Vad som upptäckts  härnäst vet ingen, beskriver hon. Det här är bara början på något nytt.

För mer utförlig och faktatyngd information om detta ämne och möjlighet att lyssna på det insamlade ljudet följ följande länk från https://phys.org 

Bild från  https://phys.org/  En konstnärs tolkning då ett par supermassiva svarta hål (överst till vänster) ger upphov till gravitationsvågor som krusningar genom rumtidens tyg. Dessa gravitationsvågor komprimerar och ger radiovågor som emitteras av pulsarer (vita). Genom att noggrant mäta radiovågorna gjorde ett team av forskare nyligen den första upptäckten av universums gravitationsvågbakgrund. Upphovsman: Aurore Simonnet för NANOGrav Collaboration. 

torsdag 4 maj 2023

Ett Svart hål slukar bit för bit av närliggande stjärnor o kastar ut resterna i rymden

 


Det antas nu att svarta hål av medelstor storlek och medelmassa kan dra åt sig stjärnor och ta några bitar av dessa för att sedan kasta ut resterna ut i galaxen. Det låter konstigt men i en ny Northwestern University-ledd studie fann man detta.

Det var i nya 3D-datorsimuleringar astrofysiker modellerade svarta hål med varierande massa och placerade sedan stjärnor (ungefär av storleken av vår sol) i dess väg för att se vad som hände.

Forskarna upptäckte då att när en stjärna med medelstor massa närmar sig ett svart hål fastnar den initialt i en bana runt det svarta hålet. Därefter drar det svarta hålet materia från stjärnan. Varje gång stjärnan gör ett varv runt hålet drar det svarta hålet ytterligare mer från stjärnan så småningom finns inget kvar förutom stjärnans missformade och täta kärna.

Då kastar det svarta hålet ut denna rest tillbaks ut i galaxen.

Datasimuleringarna visar inte bara detta okända beteende hos svarta hål med av denna medelstorlek och massa, de ger också astronomer nya ledtrådar till att hitta dessa medelstora svarta hål.

Vi kan inte observera svarta hål direkt eftersom de inte avger något ljus, påtalar Northwesterns Fulya Kıroğlu som ledde studien och tillägger. Istället måste vi för att hitta dem söka efter tecken på samspelet mellan svarta hål och miljön omkring detta. Vi fann att stjärnor genomgår flera passager runt hålet innan stjärnkärnan kastas iväg. Efter varje passage förlorar de massa vilket orsakar ljus då de slits isär. Varje utbrott är ljusare än föregående vilket skapar en signatur som kan hjälpa astronomer att hitta dem.

Medan astrofysiker har bevisat förekomsten av svarta hål med låg och hög massa har svarta hål med mellanliggande massa förblivit svårfångade. De små svarta hålen blev till då supernovor kollapsade och är stjärnresterna efter en sådan händelse. De har ungefär 3 till 10 gånger större  massa än vår sol. I andra änden av spektrumet är supermassiva svarta hål. De som finns i galaxernas centrum med miljoner till miljarder gånger högre i massa än vår sol.

Om svarta hål med medelhög massa existerar (inget har ännu hittats) skulle de passa någonstans i mitten - 10 till 10 000 gånger mer massiva än små svarta hål men inte alls lika massiva som supermassiva svarta hål. Även om dessa svarta hål med medelmassa teoretiskt bör existera, har astrofysiker ännu inte hittat bevis på det.

Deras existens diskuteras fortfarande beskriver Kıroğlu det. Astrofysiker har upptäckt troliga bevis på att de existerar men fynden kan förklaras utifrån  andra mekanismer. Till exempel kan det som verkar vara ett svart hål med medelstor massa vara ackumuleringen från svarta hål av stjärnmassa (små svarta hål).

För att utforska beteendet hos dessa undvikande objekt utvecklade Kıroğlu och hennes team nya hydrodynamiska simuleringar. Först skapade de en modell av en stjärna. Sedan skickade de stjärnan mot det svarta hålet och beräknade gravitationskraften som verkar på partiklarna i stjärnan.

"Vi kan beräkna specifikt vilken partikel som är bunden till stjärnan och vilken partikel som störs (eller inte längre är bunden till stjärnan)", säger Kıroğlu.

Genom dessa simuleringar upptäckte Kıroğlu och hennes team att stjärnor kunde kretsa kring ett svart hål med medelhög massa så många som fem gånger innan de slutligen kastades därifrån. För varje gång stjärnan passerar det svarta hålet förlorar stjärnan mer och mer av sin massa då den slits isär. Sedan föser det svarta hålet resterna bort från hålet i otrolig hastighet - ut i galaxen (kan det vara en effekt av gravitationskollaps som gör detta?).

Det är fantastiskt att stjärnan inte blir helt sönderriven, påtalar Kıroğlu. Vissa stjärnor kan ha tur och överleva närkontakten. Utkastningshastigheten är så hög att dessa stjärnor kan identifieras som hyperhastighetsstjärnor något som har observerats i galaxers centrum.

Men förklaringen på vad som gör att inte hela stjärnan slukas finns ännu inte heller varför stjärnkärnan kastas iväg. Kanske min antydan är en möjlig forskningsidé? Se kursiv stil ovan.

Bild https://creazilla.com/

lördag 15 april 2023

Gaia BH1 och Gaia BH2 två annorlunda svarta hål i vårt närområde.

 


De två svarta hål det handlar om är Gaia BH1 som finns 1 560 ljusår från jorden i riktning mot stjärnbilden Ophiuchus (Ormbäraren) och Gaia BH2 som finns 3800 ljusår bort i stjärnbilden Kentauren. De upptäcktes i data som samlats in av Europeiska rymdorganisationens (ESA) rymdfarkost Gaia. Gaia är utrustad för att göra upptäckter av detta slag då Gaia har instrument till att exakt kunna mäta positionen och rörelsen hos miljarder stjärnor mot dess bakgrund. 

Det är dock inte bara närheten till jorden som får dessa svarta hål extraordinära. De kretsar kring stjärnor på mycket större avstånd än vad som tidigare  observerats för andra svarta håls följeslagare (följeslagare här innebär stjärnor i ex närområdet till de centralt belägna svarta hålen i en galax centrum).

Det som skiljer denna nya grupp av svarta hål från de vi redan känner till är deras breda separation från sina följeslagare (de ingår ofta i binära system), beskriver forskargruppledaren Kareem El-Badry, från Harvard-Smithsonian Center for Astrophysics i Massachusetts och Max-Planck Institute for Astronomy  Tyskland, det i ett uttalande.

Studien publicerades i slutet av mars 2023 i Monthly Notices of the Royal Astronomical Society.

Ordinära svarta hål-följeslagare är vanligen stjärnor dom kallas röntgenbinärer och är vanligtvis ljusstarka och sänder ut högenergirik röntgen- och radiostrålning. Röntgenbinärer är täta dubbelstjärnor som främst ger sig till känna genom sin starka röntgenstrålning. Dessa system består vanligtvis av en tämligen normal stjärna och en kompakt stjärnrest - en vit dvärg, neutronstjärna eller ett svart hål - som kretsar kring varandra. Det gör dem lättare att hitta än svarta hål som inte sväljer materia och därmed inte avger kraftfulla energiutbrott. Gaia BH1 och Gaia BH2 är helt mörka (osynliga) och upptäcktes via gravitationseffekten de har på sina följeslagare.

Dessa två svarta hål har sannolikt en helt annan bildningshistoria än röntgenbinärer vanligtvis har, beskriver El-Badry det och tillägger. Vi misstänkte att det kunde finnas svarta hål i större system men vi var inte säkra på hur de skulle kunna bildas. Deras upptäckt innebär att vi måste anpassa våra teorier av utvecklingen av dubbelstjärnesystem eftersom det ännu inte är förstått hur dessa system bildas

Gaia-observationerna backades upp av mätningar av varje följeslagares (stjärnas) rörelse av andra observatorier. Till exempel visade uppföljningsundersökningar av Gaia BH2 med NASA: s Chandra X-ray Observatory och det sydafrikanska MeerKAT-radioteleskopet inget detekterbart ljus från detta svarta hål.

"Även om vi inte upptäckte ljus, är denna information otroligt värdefull eftersom den berättar mycket om miljön runt detta svarta hål, beskriver teammedlem Yvette Cendes, från Harvard-Smithsonian Center for Astrophysics det.

En bild från https://www.space.com varifrån inlägget ovan även diskuteras utifrån och förklaras på svenska från av Vintergatan som visar platsen för de två nyupptäckta svarta hål som finns närmast jorden som hittills hittats. (Bildkredit: ESA / Gaia / DPAC; CC BY-SA 3.0 IGO, CC BY-SA 3.0 IGO)

tisdag 28 februari 2023

Kan svarta hål vara källan till mörk energi?

 


Mörk energi är en hypotetisk form av energi som genomtränger hela rymden och antas vara det som ökar universums expansionstakt. Den är i vår tid sättet att förklara vad som enligt observationer och experiment tolkats som en accelererande expansion av universum. Konkret att rumtiden förefaller att expandera allt fortare och fortare.

Svarta hål däremot kan enligt en ny teori förklara ursprunget eller källan för denna energi.

Tingen som utgör världen omkring oss består av materia men enbart 5 % av allt i universum är materia något vi kan ta på och se  (se bild ovan där procenten mellan de skilda slagen visas  av materia och energi,  bilden är från vikipedia.  Inlägget i övrigt utgår från  Chris Pearsons Astronomy Group Lead, Space Operations Division at RAL Space, and Visiting Fellow, The Open University, Dave Clements Reader in Astrophysics, Imperial College London artikel i https://theconversation.com/).  

 27 % är mörk materia en inte helt förstådd och inte bevisad materia kanske  en form av vanlig materia som inte avger, reflekterar eller absorberar ljus. Cirka 68 % består av mörk energi. En form av energi vi ännu inte förstår. För min del anser jag mörk energi och mörk materia är en form av den energi och materia vi känner till men inte förstår)

Teorin att svarta hål kan vara källan till mörk energi beskrivs i en vetenskaplig artikel publicerad i The Astrophysical Journal Letters. Studien är ett arbete av 17 astronomer i nio länder under ledning från University of Hawaii. Samarbetet inkluderade forskare i Storbritannien, baserade vid STFC RAL Space, The Open University och Imperial College London.

Genom att söka igenom data som spänner över nio miljarder år av kosmisk historia (något som ska ses som insamlad data från stjärnor i skilda tidsepoker upp till miljarder ljusår från oss) har astronomerna upptäckt de första bevisen på "kosmologisk koppling", vilket innebär tillväxten av svarta hål över tid kopplad till expansionen av universum. Tanken att svarta hål kan innehålla något som kallas vakuumenergi (en manifestation av mörk energi, en f ysisk kraft kallad Casimireffekten och Casimir-Polderkraften som uppstår ur kvantfälteffekter. ) är inte ny och diskuterades redan på 1960-talet. Men den nya studien visar att denna energi (och därmed massan av de svarta hålen) ökar över tid och kan ha ett samband med att när universum expanderar.

Teamet beräknade hur mycket av den mörka energin i universum som kunde hänföras till denna process. De fann att svarta hål potentiellt kan förklara den totala mängden mörk energi i universum idag.

Universum började med en Big Bang för cirka 13,7 miljarder år sedan. Energin från denna explosion i rymd och tid gjorde att universum att expanderade snabbt (och även uppkom). Länge förväntade vi oss att denna expansion gradvis skulle sakta ner på grund av gravitation.

Det här är ansågs fram till slutet av 1990-talet. Men då rymdteleskopet Hubble upptäckte något konstigt. Observationer av avlägsna (miljarder ljusår bort) exploderande stjärnor (supernovor) visade att universum expanderade långsammare i det förgångna än i vår tid. Universums expansion har inte avtagit över tid på grund av gravitation utan accelererat i hastighet.

För att försöka förstå detta föreslogs att "mörk energi" var anledningen till expansionen och att denna hade en kraftigare  effekt än gravitationen (gravitationen blev verkningslös på expansionen). Begreppet mörk energi var mycket likt en matematisk konstruktion som Einstein hade föreslagit men senare kasserat - en "kosmologisk konstant" som motsatte sig gravitationen och hindrade universum från att kollapsa.

Lösningen verkar kunna finnas i ett annat kosmiskt mysterium: svarta hål. Svarta hål uppstår vanligtvis när massiva stjärnor exploderar som en supernova. Gravitationen och trycket i dessa våldsamma explosioner komprimerar stora mängder materia till ett litet utrymme. Till exempel skulle en stjärna med ungefär samma massa som vår sol klämmas samman till några tiotals kilometer.

Ett svart håls gravitationskraft är så stark att inte ens ljus kan undkomma när det sugits in. I det svarta hålet finns en plats som kallas singularitet, där materia krossas till en punkt med oändlig densitet. Problemet är att singularitet är en matematisk konstruktion som inte borde finnas i verkligheten. De svarta hålen som finns i galaxers centrum är mycket kraftigare än de som blir till när stjärnor kollapsar (som supernovor). Dessa  "supermassiva" svarta hål i galaxers centrum kan väga miljoner till miljarder gånger mer än vår sol.

Alla svarta hål ökar i storlek genom att de drar till sig materia ex i form av stjärnor som kommer för nära eller genom att smälta samman med andra svarta hål. Så de blir allt större efterhand som universum blir allt äldre.

Teamet jämförde observationer av elliptiska galaxer, som saknar stjärnbildning. Dessa avsomnade galaxer (i betydelsen att här bildas inga nya stjärnor) har förbrukat allt sitt bränsle (gas mm mellan solsystemen där) så varje ökning av deras svarta håla massa kan inte tillskrivas de normala processerna (indragning av gas stjärnor mm) genom vilka svarta hål växer genom att ackumulera materia.

Istället föreslog teamet att dessa svarta hål  innehåller vakuumenergi och  är "kopplade" till varför universums expansion ökar. (Kanske mörk materia och energi om det finns dras in i svarta hål och ökar dess massa. Men här diskuteras att svarta hål producerar mörk energi och att denna process ökar expansionen av universum)

Denna modell ger ett möjligt ursprung för den mörka energin i universum. Det kringgår också de matematiska problem som påverkar vissa studier av svarta hål eftersom det undviker behovet av en singularitet i mitten.

Teamet beräknade också hur mycket av den mörka energin i universum som kunde hänföras till denna kopplingsprocess. De drog slutsatsen att det skulle vara möjligt för svarta hål att tillhandahålla den nödvändiga mängden vakuumenergi för att redogöra för all mörk energi som vi mäter i universum idag.

Detta skulle inte bara förklara ursprunget till mörk energi i universum utan skulle också få oss att radikalt ompröva vår förståelse av svarta hål och deras roll i kosmos.

Mycket mer arbete måste göras för att testa och bekräfta denna idé, både från observationer och ur teori. Men vi kanske äntligen ser ett  sätt att lösa problemet med mörk energi. Vad jag förstår om detta nu stämmer skulle det även förklara varför universums expansionstakt ökar. En takt som egentligen alltid kommer att öka då, utifrån teorin att  vaccumenergin ökar.

Bild vikipedia vilken enligt uppskattning visar i bild en NASA-graf vilkenvisar att universums energiinnehåll  består av cirka 70 %  mörk energi, vars närvaro härleds i dess effekt på universums expansion. Men lite är känt om dess natur.