Google

Translate blog

Visar inlägg med etikett slukar. Visa alla inlägg
Visar inlägg med etikett slukar. Visa alla inlägg

lördag 10 augusti 2024

AI (artificial intelligence) används i sökandet efter stjärnor som slukar planeter

 


Vita dvärgar är stjärnor i sitt sista skede. De har förbrukat sitt bränsle, släppt ut sina yttre lager av materia i rymden och svalnar långsamt. En dag kommer vår sol att bli en vit dvärg efter att solen först svällt upp till en röd jättestjärna och troligen slukat Jorden. En typisk vit dvärg har en radie som är 1 procent av solens men grovt räknat samma massa. Detta motsvarar en täthet på cirka 1 ton per kubikcentimeter.

Astronomer har nyligen hittat hundratals vita dvärgstjärnor i Vintergatan som slukar planeter som finns i omloppsbana runt dem (inte att förväxla med då en sol sväller upp till en röd jätte och slukar en planet. I vita dvärgstadiet som kommer efter det röda då en sol dras samman handlar det om gravitation från en mycket tät kropp som drar till sig en en planet). Planeter som dessa är svåra att finna men intressanta att studera under den tid de förstörs eller kommer att förstöras genom att de dras in mot och ner på en vit dvärgstjärna..

Historiskt sett har astronomer varit tvungna att manuellt gå igenom mängder av kartläggningsdata för att hitta tecken på dessa stjärnors existens. Uppföljande observationer skulle sedan bevisa eller motbevisa tecken på deras existens. Genom att använda en ny form av artificiell intelligens, kallad mångfaldig inlärning, har ett team under ledning av doktoranden Malia Kao vid University of Texas i Austin påskyndat processen med en ny AI algoritm som till 99 % lyckas med identifiering av dessa objekt.

Vi vet  planeterna som kretsar kring en vit dvärg kan dras mot den dennas starka gravitation och slitas isär och förtäras. När detta händer blir den vita dvärgen  "förorenad" med tungmetaller från planeten kärna. Eftersom vita dvärgars atmosfärer nästan helt består av väte och helium kan närvaron av andra grundämnen på ett tillförlitligt sätt tillskrivas externa källor.

"För förorenade vita dvärgar bränns planetenskärna bokstavligen fast på stjärnans yta så vi kan upptäcka den", beskriver Kao. "Förorenade vita dvärgar  är det bästa sättet vi kan karakterisera exoplaneters inre på efter att de slukats."

Även om astronomer kan identifiera dessa stjärnor genom att manuellt granska data från astronomiska kartläggningar är det tidskrävande. För att testa en snabbare process använde därför teamet AI på data som fanns tillgänglig från rymdteleskopet Gaia insamling. "Gaia ger en av de största spektroskopiska undersökningarna av vita dvärgar hittills, men dess data är så lågupplöst att vi trodde att det inte skulle vara möjligt att hitta förorenade vita dvärgar med den", beskriver Hawkins. "Men det här arbetet visar att det går."

För att hitta dessa svårfångade stjärnor använde teamet sig av AI-tekniken som innebär mångfaldig inlärning. Med algoritmen letas efter liknande funktioner i en uppsättning data och klumpar ihop liknande objekt i ett förenklat, visuellt diagram. Forskarna kan sedan granska diagrammet och avgöra vilka klumpar som motiverar ytterligare undersökning.

Astronomerna skapade algoritmen för att sortera över 100 000 möjliga vita dvärgar. Av dessa sågs 375 stjärnor lovande ut. Det visade den viktigaste egenskapen, att de hade tungmetaller i sina atmosfärer. Uppföljande observationer med Hobby-Eberly-teleskopet vid UT:s McDonald-observatorium bekräftade astronomernas misstankar. 

Forskningen använde sig av data från Europeiska rymdorganisationens (ESA) uppdrag Gaia. Uppgifterna bearbetades av Gaia Data Processing and Analysis Consortium. Uppföljande observationer gjordes med Hobby-Eberly Telescope (HET), som är ett samarbete mellan University of Texas i Austin, Pennsylvania State University, Ludwig Maximilians-Universitaet München och Georg-August Universitaet Göttingingen, och med Very Large Telescope (VLT) vid Europeiska sydobservatoriet (ESO). Texas Advanced Computing Center vid UT Austin tillhandahöll högpresterande databehandlings-, visualiserings- och lagringsresurser för denna forskning.

Resultaten av denna lyckade identifiering publicerades nyligen  i Astrophysical Journal.

Bild https://news.utexas.edu/ Bildkredit: NASA, ESSA, Joseph Olmsted (STScI).

söndag 14 maj 2023

En stjärna slukar en planet därute, ett öde även Jorden kommer att dela i framtiden.

 


Astronomer har med hjälp av teleskopet Gemini South i Chile vilket drivs av NSF:s NOIRLab för första gången sett när en slocknande stjärna lik vår sol uppslukar en exoplanet. Händelsen hittades i ett avslöjande "långt och lågenergirikt" utbrott av en stjärna i Vintergatan cirka 13 000 ljusår från jorden. Samma öde drabbar en gång jorden då vår sols bränsle tar slut och den då sväller upp till en röd jättestjärna innan den dras samman sig till en vit dvärgstjärna.

Bilden av en sådan händelse sågs i ett utdraget lågenergiutbrott av stjärnan och man  kunde se en planet som skummar längs med stjärnans yta. En process som troligen liknar jordens slutliga öde då vår sol närmar sig slutet av sin tid om cirka fem miljarder år.

Under större delen av sin existens omvandlar en solliknande stjärna väte till helium i sin heta, täta kärna vilket gör att stjärnan kan trycka tillbaka den krossande vikten av dess yttre lager. När vätet i kärnan tar slut börjar stjärnan omvandla helium till kol och vätefusionen migrerar till stjärnans yttre del vilket får denna att expandera och stjärnan sväller då upp och blir en röd jättestjärna. 

En sådan omvandling berör alla planeter i det inre av ett solsystem. Då stjärnans yta expanderar slukas snart dess inre planeterna i solsystemet då interaktionen utlöser ett spektakulärt utbrott av energi, material vid uppsvällningen. Denna process bromsar planetens omloppshastighet vilket resulterar i att den dyker in i stjärnan.

De första antydningarna om denna händelse upptäcktes ur optiska bilder från Zwicky Transient Facility. Arkivinfraröd täckning från NASA: s Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) som kan se in i dammiga miljöer på jakt efter utbrott och andra övergående händelser. Dessa bilde bekräftade  uppslukningshändelsen vilken fått namnet ZTF SLRN-2020.

 Vårt teams anpassade omanalys av infraröda kartor över skyn från NEOWISE exemplifierar den stora upptäcktspotentialen för arkivundersökningsdatamängder, beskriver NOIRLab-astronomen Aaron Meisner medförfattare till studien det i denna som publicerades i Nature.

Utbrottet från uppslukningen varade i cirka 100 dagar och egenskaperna i dess ljuskurva liksom det utkastade materialet gav astronomer insyn i stjärnans massa. Det utkastade materialet bestod av cirka 33 jordmassor (innebär material som motsvarar 33 planeter av jordens storlek) bestående av väte och  damm.

Om ca 5 miljarder  år kommer även solen att svälla upp och Jordens existens slutar då den slukas i en slutlig blixt (innebärande att solen sväller upp till en röd jätte och slukar de inre planeterna som Merkurius, Venus, Jorden och ev Mars.) ett skeende som tar enbart några månader.

Bild https://phys.org/ Bildtext översatt. Astronomer har med hjälp av teleskopet Gemini South i Chile som drivs av NSF:s NOIRLab, observerat de första övertygande bevisen på att en döende solliknande stjärna slukar en exoplanet. Händelse sågs i ett långt lågenergiutbrott från stjärnan - den avslöjande signaturen av en planet som skummar längs en stjärnas yta. Denna aldrig tidigare sedda process kan förebåda jordens slutliga öde när vår egen sol närmar sig slutet av sitt liv om cirka fem miljarder år. Upphovsman: International Gemini Observatory / NOIRLab / NSF / AURA / M. Garlick / M. Zaman

 

fredag 17 mars 2023

En stjärna slukar en planet för att sedan kasta ut den igen.

 


Det händer att en sol slukar en planet i sitt närområde. Men det behöver inte sluta i undergång för planeten. Ett team av astrofysiker som har använt datorsimulering i forskningssyfte upptäckte att planeter inte bara kan överleva när deras sol slukar dem utan detta kan också driva på dess framtida utveckling. Se denna länk från uiversetoday.com varifrån idén till mitt inlägg kommer. 

Modeller av bildandet av planetsystem har visat att många planeter ofta hamnar i i ett läge där dess sol drar till sig den nybildade protoplaneten då den är under bildning i ackretionsskivan runt sin sol.  

Slumpmässiga interaktioner mellan nybildade planeter i den protoplanetära skivan (ackretionsskivan) som omger en ung stjärna kan skicka planeter på kaotiska banor. Banor som driver planeten ut från sin sol eller  in mot sin sol. Jorden drev en bit från sin sols ackretionsskiva en gång.

En annan risk till uppslukande sker nära slutet av en stjärnas liv när den sväller upp till en röd jätte (något som en gång sker med vår sol). Även detta påverkar systemets gravitationsdynamik och kan få planeter att hamna in i moderstjärnans atmosfär vid uppsvällandet om planeten ligger på riskabelt avstånd för händelsen. Men överraskande nog utplånas inte alltid planet när detta händer. Astronomer har hittat många udda system i vår galax som indikerar att planeter har överlevt dessa närkontakterna ovan med sin sol.

 Till exempel finns det vita dvärgsystem som kretsar mycket nära en jätteplanet, för nära, för att planeten ska ha bildats naturligt där den finns efter det att den närliggande stjärnan krympt samman till en vit dvärg.. Det finns även stjärnor med en överraskande mängd tunga metaller i sin atmosfär, ett tecken på att ett stenigt föremål har slukats av dem. Och det finns stjärnor som roterar alldeles för snabbt för aytt det ska vara normalt, deras rotationshastighet har troligast förstärkts av en infallande planet. Alla dessa system kan vara resultat av planeter som kommit in i sin sol.

Men kan en planet verkligen överleva i en stjärnas intensiva atmosfär? Ett team av astrofysiker bestämde sig för att ta itu med den frågan med hjälp av datorsimuleringar av en stjärnas inre och spåra utvecklingen och ödet för olika typer av planeter då de faller in i stjärnan. Simuleringarna innefattade planeter av olika massor och även bruna dvärgar. Resultatet stärker att vissa slag av planeter kan klara ett uppslukande.

Till exempel kan planeten i vissa fall bestå i tusentals år och virvla runt i stjärnans atmosfär. Detta kan dock resultera i att materia kastas ut från stjärnans atmosfär och tunnar ut solatmosfärens ytterkanter. Utbytet driver  upp temperaturen i stjärnatmosfären vilket gör att den ser mycket ljusare ut än den normalt skulle gjort. Men för klara uppslukandet måste planeten själv vara relativt stor åtminstone av Jupiters massa. Små planeter som jorden klarar inte ett uppslukande utan utplånas. Men om planeten är tillräckligt stor och beroende på den exakta utvecklingen kan planeten klara sin passage genom stjärnan och faktiskt påskynda stjärnans utveckling till att stjärnan slutar kollapsa snabbt och befria planeten från sin farliga omfamning.

Troligen är inte bara storleken av planeten viktigt för att den ska klara detta utan även att det är en gasplanet likt Jupiter är. Så den dagen vår sol sväller upp i sin sista tid har jorden ingen möjlighet att bestå.

Bild flickr.com Illustratörs koncept av exoplaneten WASP-12b. Obs inlägget ovan handlar inte om denna planet. WASP-12b är den hetast kända planeten i Vintergatan och har  den kortast kända åldern. Den dödsdömda planeten äts upp av sin moderstjärna, enligt observationer gjorda av ett instrument på NASA:s Hubbleteleskops Cosmic Origins Spectrograph (COS). Planeten kanske bara har ytterligare 10 miljoner år kvar innan den är helt slukad. WASP-12b finns så nära sin solliknande stjärna att den har en temperatur av ca 1500 C  och sträcks ut av enorma tidvattenkrafter. Atmosfären har blåsts upp till nästan tre gånger Jupiters radie och vissa delar av den försvinner in i stjärnan redan nu. WASP-12b är 40 procent massivare än Jupiter. Upphovsman till bild: NASA / ESA / G. Bacon

lördag 10 december 2022

Ett svart hål på väg att sluka en stjärna på avstånd.

 


Stjärnor som befinner sig nära ett svart hål slits itu efterhand av de enorma tidvattenkrafter som råder där. Omkring 1 procent av dessa fenomen ger upphov till jetstrålar av plasma en strålning som då sker från det roterande svarta hålets poler.

1971 introducerade en av de första som sökte efter svarta hål John Wheeler begreppet “jet-TDE” som namn och liknande dessa som en tandkrämstub som kläms åt i mitten och sprutar material i båda ändarna”.

”Vi har sett en handfull  jet-TDE:s. De anses som ovanliga och svårförståeliga fenomen” säger Nial Tanvir vid Leicesters universitet i Storbritannien vilken var den som ledde observationerna med syftet att bestämma det nu upptäckta objektets avstånd  till hjälp användesVLT (very Large telekop) i Chile. Astronomer söker vidare efter dessa unika objekt med syftet att förstå hur jetstrålarna skapas och varför en så liten del av TDE-fenomen finns.

En tanke kan dessa ovanliga fenomen från ett svart hål vara tecken på att dessa är de eftersökta maskhålen? (mina anm.). 

Ett flertal teleskop, bland annat Zwicky Transient Facility (ZTF) i USA kartlägger kontinuerligt skyn efter spår av kortlivade, ofta extrema, händelser som kan studeras i större detalj med teleskop som ESO:s VLT i Chile. “Vi har utvecklat ett öppet dataflöde för att lagra och hämta information från ZTF-kartläggningen  som larmar i realtid när ovanliga fenomen uppträder” förklarar Igor Andreoni, astronom vid Maylands universitet i USA och medförfattare till artikeln som publicerats i dagarna om det senast upptäckta jet-TDE:s. i Nature tillsammans med Michael Coughlin vid Minnesotas universitet.

det var i februari 2022 detekterade ZTF ett nytt objekt i synligt ljus som fick beteckningen och AT2022cmc som liknade en gammablixt – det mest energirika fenomenet i universum. Ett flertal teleskop riktades omedelbart dit för att observera objektet i detalj, bland annat VLT med instrumentet X-shooter. VLT-observationerna placerade objektet på ett avstånd långt bort i rum och tid. Fenomen: ljuset från AT2022cmc sändes ut när universum var ungefär en tredjedel av sin nuvarande ålder.

Strålningen var energirik gammastrålning till radiovågor och samlades in av 21 teleskop över hela världen. Astronomerna jämförde denna insamlade data med kända typer av objekt, från kollapsande stjärnor till kilonovor. Men det enda objektet som kunde förklara observationerna var en TDE   en jetstråle som pekade mot jorden. 

Giorgios Leloudas, astronom vid DTU Space i Danmark och medförfattare till studien, förklarar att “eftersom  jetstrålen har riktning mot oss blir ljuskällan mycket ljusstarkare än den annars skulle ha varit och är synlig över ett större våglängdsområde”. 

Avståndsbestämningen med VLT är inte det enda som är rekordartat med detta objekt. “Tills nu har de få kända jet-TDE:s upptäckts med något annat än gamma- eller röntgenteleskop. Detta var första gången fenomenet upptäcktes i synligt (optiskt) ljus” säger Daniel Perley, astronom vid Liverpool John Moores universitet i Storbritannien och medförfattare till artikeln. Därmed finns nu ett nytt sätt att upptäcka jet-TDE:s, som gör det möjligt att studera dem närmare och avslöja de extrema omgivningarna kring svarta hål.

Bild vikipedia på Very large teleskop i norra Chile. De fyra enhetsteleskopen bildar VLT tillsammans med de fyra hjälpteleskopen (VST till höger på bilden)

tisdag 15 oktober 2019

Andromedagalaxen är på väg mot oss för att sluka Vintergatan


Andromedagalaxen är en spiralgalax i Vintergatans närområde och är svagt synlig med blotta ögat i riktning mot stjärnbilden med samma namn. Den är vår tvillinggalax då det gäller dess form. Avstånd från oss är ca 2,5 miljoner ljusår. Storleksmässigt är den dubbelt så stor som Vintergatan. 


Liksom de flesta stora galaxer, är den likt Vintergatan en galax som dragit till sig andra galaxer och likt Vintergatan har en del dvärggalaxer genom tiderna upptagits i den.

Likt Stora- och Lilla Magellanska molnen vilka är på väg att slukas av Vintergatan i framtiden har Andromediagalaxen slukat dvärggalaxer vilket man ser spåren av i dess utkant.


Vad som sker vid sammanslagningen i en framtid med Vintergatan är okänt. Men då avstånden mellan stjärnorna i båda galaxerna även i en sammanslagning blir långt händer förmodligen inte mer än att det blir en mycket stor galax i slutändan. Kanske kommer även en del solsystem att bli dubbelstjärnsystem.


Dock misstänker jag (min anm.) att det kommer att bli mycket turbulens av asteroider som får en kursändring och meterornedslagen kommer att öka i flera solsystem. Risken för jorden blir stora för meteornedslag under en begränsad tid.



Bild från Vikipedia på Andromedagalaxen.

söndag 4 mars 2018

Kan de svarta hålen en gång sluka hela universum. Kanske som ett enda otroligt stort svart hål.


Vi har hört att det som kallas BigBang alltings början innebärande en expansion i ingenting som fortsätter än idag.

I denna teori ansågs för inte så länge sedan att denna expansion eller utökning av universum en gång ska avta och bli till sin motsats. En sammandragning igen där allt åter dras samman till en punkt eller ingenting som innan BigBang,

Men ny forskning visar att expansionen inte minskat sedan BigBang utan istället ökar hela tiden i hastighet med resultatet att galaxerna försvinner från varandra och det en gång ser tomt ut i universum för en betraktare när avstånden blivit så stora.

Men en annan tanke börjar ta form numera. Idag vet vi att varje galax mitt har minst ett svart hål och detta växer. I detta dras all näraliggande materia in och inget inte ens ljuset släpps ut.

Vi vet även att nya stjärnor bildas i centrala delarna av galaxerna där materia är mest förekommande.

Men tankar finns idag att det kanske en dag istället börjar bli så att nya stjärnors produktion inte blir så snabb som det svarta hålets utvidgning. Resultat skulle då bli att det svarta hålet eller hålen därute slukar mer materia än vad som nybildas till stjärnor av materian därute utan mer o mer slukas in i hålen och att det blir början till slutet för en galax.

Galaxen, över lång tid, slukas och till slut skulle alla galaxer ha slukats och de svarta hålen börja närma sig varandra och till slut bli ett enda stort svart hål. Expansionstakten eller hastigheten av de svarta hålens utvidgning blir större än en expanderande expansion av universum till slut.

Ett enda svart hål blir resultatet  vilket till slut skulle implodera i sig själv och vi skulle ha ett läge som kunde ses som innan BigBang. Kanske det är vad som sker en gång och kanske detta är ett över mycket lång tid återupprepat förfarande av skepelse av liv och död av universum ett nytt BigBang av oräkneliga tidigare BigBang och universum.

Vem vet kanske detta är sanningen om tillvaron då nu BigBang teorin om expansion och sammandragning av universum inte stämmer. Svarta håls slukande av universum  (kanske)  istället är sanningen.

Bilden talar för sig själv enligt tankarna ovan