Google

Translate blog

Visar inlägg med etikett stjärnor. Visa alla inlägg
Visar inlägg med etikett stjärnor. Visa alla inlägg

fredag 4 oktober 2024

Den felande länken till de första stjärnorna

 


Bild ESA  på Galaxen GS-NDG-9422

Genom att se in i det tidiga universum med NASA:s James Webb Space Telescope har astronomer hittat en galax med en udda ljussignatur som lyser starkare än galaxens stjärnor tillsammans skulle göra. Galaxen GS-NDG-9422 finns ungefär en miljard år efter bigbang och kan vara en felande länk i galaxers utveckling. Tiden mellan universums första stjärnor och galaxers bildande med stjärnor som dagens.

"Min första tanke när jag tittade på galaxens spektrum var 'något är konstigt', vilket är precis vad Webb-teleskopet var designat för att hitta: okända fenomen i det tidiga universum som ska hjälpa oss att förstå hur den kosmiska historien började", beskriver forskaren Alex Cameron vid University of Oxford.

Cameron tog kontakt med kollegan Harley Katz, som är teoretiker för att diskutera det märkliga fyndet. Genom att arbeta tillsammans fann  teamet  datormodeller av kosmiska gasmoln som värms upp av mycket heta massiva stjärnor i en sådan utsträckning att gasen lyste starkare än stjärnorna i en galax. Datamodellen blev nästan en perfekt matchning med Webbs observation.

"Det ser ut som att dessa stjärnor måste vara mycket varmare och mer massiva änr stjärnor är i det nutida universum, vilket är logiskt eftersom det tidiga universum var en mycket annorlunda miljö", beskriver Katz, vid Oxford och University of Chicago.

I dagens universum har typiska heta, massiva stjärnor en temperatur som sträcker sig mellan 40 000 till 50 000 grader Celsius. Enligt teamet har galax GS-NDG -9422 stjärnor som är varmare än 80 000 grader Celsius.

Forskargruppen misstänker att galaxen befinner sig mitt i en kort fas av intensiv stjärnbildning inuti ett moln av tät gas där det produceras ett stort antal massiva, heta stjärnor. Gasmolnet träffas av så många fotoner av ljus från stjärnorna så det lyser extremt starkt.

Förutom att det är nytt är det spännande med nebulosor (gasmoln) som lyser så starkt är det förutspått att miljön för universums första generation av stjärnor, som astronomer klassificerar som population III-stjärnor (bestående av nästan enbart väte och helium).

– Vi vet att den här galaxen inte har Population III-stjärnor, eftersom Webbs data visar för mer kemisk komplexitet. Dessa stjärnor är annorlunda än vad vi är bekanta med (från denna tid) de exotiska stjärnorna i den här galaxen kan vara en guide för att förstå hur galaxer övergick från urstjärnor till de typer av galaxer med stjärnor vi känner till av idag, beskriver Katz.

Vid det här laget är denna galax ett exempel på denna fas av galaxers utveckling, men det finns fortfarande många frågor att besvara. Är dessa förhållanden vanliga i galaxer vid den här tidsperioden, eller är de sällsynta? Vad mer kan de visa om ännu tidigare faser av galaxers utveckling? Cameron, Katz och deras forskarkollegor arbetar aktivt med att identifiera fler galaxer att lägga till denna population för att bättre förstå vad som hände i universum under den första miljarden år efter big bang.

Mycket verkar bekräfta att denna galax är en felande länk mellan de allra första stjärnorna som bestod av nästan enbart väte och helium och dagens stjärnor som uppkom efter supernovor och består av järn mfl metaller .

onsdag 18 september 2024

Superjordar söktes vid metallfattiga stjärnor

 


Bild wikipedia. Två tänkbara superjordar, med Jorden som jämförelse (till höger).

En superjord är en exoplanet (gasplanet) vars massa är större än Jordens, men mindre än solsystemets mindre gasjättar Uranus och Neptunus.

I en ny studie ger astronomer vid Ohio State University bevis på gränserna av hur och var  planeter  kan bildas och man har funnit att planeter som är större än jorden  har svårt för  att bildas i närheten av stjärnor med lågt metallinnehåll.

Med solen som baslinje kan astronomer mäta när en stjärna bildades genom att bestämma dess metallinnehåll eller nivån av tunga grundämnen som finns i solen. Metallrika stjärnor eller nebulosor bildades relativt nyligen, medan metallfattiga objekt  fanns under det tidiga universum.

Tidigare studier har visat ett svagt samband mellan metallinnehåll och planetbildning och man har noterat att när en stjärnas metallinnehåll minskar, minskar också planetbildning för vissa planetpopulationer, så kallade superjordar. Ändå är detta arbete det första som observerar och visar riktigheten i detta, att nuvarande teorier stämmer. Det är betydligt ovanligare att det bildas superjordar nära metallfattiga stjärnor än metallrika stjärnor vilket tyder på en strikt gräns för de förhållanden som krävs för att en sådan ska bildas, beskriver huvudförfattaren till studien  Kiersten Boley nybliven doktor i astronomi vid Ohio State University.

När stjärnor cirkulerar genom historien och åldras  och slutar som  supernovor bildas nya slag av metaller som berikar den omgivande rymden. Metaller som ex järn då bildas planeter som är metallrika som Jorden. Men även för stjärnor med lägre metallinnehåll trodde man allmänt att antalet planeter till viss del kunde bildas inom, beskriver Boley.

Andra studier har föreslagit att planetbildningen i Vintergatan borde börja när stjärnor finns mellan negativ metallinnehåll på 2,5 och minus 0,5 men hittills har den teorin varit obevisad.

För att testa denna teori utvecklade och sökte teamet igenom en katalog med 10 000 av de mest metallfattiga stjärnorna som observerats av NASA:s TESS-uppdrag (Transiting Exoplanet Survey Satellite). Om det hade varit korrekt, skulle en extrapolering av kända trender för att söka efter små, kortperiodiska planeter runt ett område med 85 000 metallfattiga stjärnor ha lett dem till att upptäcka cirka 68 superjordar.

Förvånansvärt nog upptäckte forskarna i detta arbete inga alls, beskriver Boley.  Forskare sätter nu en tidsram under vilken metallinnehåll var för lågt för att planeter skulle kunna bildas vilken sträcker sig till ungefär halva universums ålder. Det innebär att superjordar inte bildades tidigt i universums historia. " Sju miljarder år bakåt i tiden är förmodligen den perfekta punkten där vi börjar se en början till superjordbildning", säger Boley.

Studien är publicerad i The Astronomical Journal.

De första stjärnorna och galaxerna bestod av nästan enbart väte och helium. När de åldrats och exploderat uppkom  fler metaller som blev grunden till nya slags stjärnor som vår sol ex. Det började nu bildas planeter av överbliven gas från tidigare stjärnors rester som innehöll järn mm. Vi ska komma ihåg att i kosmologin anses även helium och väte som metaller. Dessa två grundämnen var de som nästan var ensamma i tidens början och som de första metallfattiga stjärnorna bestod av.

onsdag 11 september 2024

Hubbleteleskopet zoomar in i galaxen Andromedas rosenröda slingor

 


Bild https://science.nasa.gov Forskare såg nyligen med hjälp av Hubbleteleskopet in i  Andromedas spiralarmar med syftet att analysera samlingen av stjärnhopar som är dolda i dessa. NASA, ESA, M. Boyer (Space Telescope Science Institute) och J. Dalcanton (University of Washington); Bildbehandling: Gladys Kober (NASA/Catholic University of America).

Stjärnhopar lyser upp det interstellära mediet (gasen mellan stjärnorna) i Andromedagalaxen vilken finns cirka 2,5 miljoner ljusår bort. Andromedagalaxen är Vintergatans närmast liggande större galax och en gång i en avlägsen framtid blir dessa galaxer en enda. Andromedia är på kollisionskurs mot oss eller tvärtom hur man vill se det. Denna sammanslagning sker om ca 2-4 miljarder år.  

Andromeda är likt Vintergatan en spiralgalax. Andromedas slingrande armar är en av dess mest anmärkningsvärda kännetecken. NASA:s rymdteleskop Hubble zoomade in dessa för att ta en närmare titt på en av dessa armar den i nordost och avslöjade då att delar i denna bestod av joniserad gas. Områden med gas –är vanliga i spiralgalaxer och oregelbundna galaxer och tyder ofta på att nya stjärnor bildas där.

Forskare vid Goddard Space Flight Center Maryland, undersökte Andromedas spiralarmar med hjälp av Hubbles Advanced Camera for Surveys (ACS) och Wide Field Camera 3 (WFC3) för att analysera samlingen av stjärnor som ligger dolda i dessa armar. Med ACS och WFC3:s breda spektrala täckning kunde Hubble kika in i gasen och observera ett urval av de stjärnor som finns där. Studien sträckte sig över ett stort antal stjärnor, vilket inte bara gav en tydlig bild av Andromedas stjärnhistoria och mångfald utan också gav mer kunskap om stjärnors bildning och utveckling överlag. Genom att undersöka dessa stjärnor i vårt lokala kosmiska grannskap kan forskare bättre förstå mer om de som finns i galaxer i det mer avlägsna universum.

fredag 9 augusti 2024

I Vintergatans utkant finns uråldriga stjärnor.

 


Maskininlärning har kastat nytt ljus över vår Vintergatas bildningshistoria: i en överraskande upptäckt om utvecklingen av vår galax med hjälp av data från Gaia-uppdraget hittades ett stort antal gamla stjärnor i omloppsbanor som liknar vår sols. De fanns i Vintergatans tunna skiva redan mindre än 1 miljard år efter Big Bang, flera miljarder år tidigare än man tidigare trott. 

Vintergatan har en stor halo i form av en central utbuktning och en stavform bestående av en kraftig och en tunn skiva. De flesta stjärnor befinner sig i den så kallade tunna skivan i Vintergatan och följer en organiserad rotation runt Vintergatans centrum. Medelålders stjärnor som vår 4,6 miljarder år gamla sol finns i den tunna skivan som man allmänt anser började bildas för cirka 8 till 10 miljarder år sedan.

Att förstå hur Vintergatan bildades är ett viktigt mål i galaxarkeologi. För att uppnå detta behövs detaljerade kartor över galaxen som visar stjärnornas ålder, kemiska sammansättning och rörelser. Dessa kartor, kända som kronokemo-kinematiska kartor hjälper till att pussla ihop vår galax historia. Att skapa dessa detaljerade kartor är utmanande eftersom det kräver stora datamängder av stjärnor med känd ålder.

Ett vanligt tillvägagångssätt för att övervinna denna utmaning är att studera mycket metallfattiga stjärnor. Stjärnor av detta slag är gamla (de var de första stjärnorna) vilket ger ett fönster mot den tidiga Vintergatan. Mycket metallfattiga stjärnor är därför kända för att vara gamla eftersom de var bland de första stjärnorna som bildades när universum fortfarande till stor del bestod av väte och helium, innan många av de tyngre grundämnena skapades efter att de första stjärnor (vilka var kortlivade)  exploderade.

Med hjälp av data från Europeiska rymdorganisationen (ESA) Gaia Mission har ett internationellt forskarlag under ledning från  astronomer vid Leibniz Institute for Astrophysics Potsdam (AIP) studerat stjärnor i solens närhet, cirka 3200 ljusår från solen. De upptäckte ett förvånansvärt stort antal mycket gamla stjärnor Majoriteten av dessa är äldre än 10 miljarder år, några av dem till och med äldre än 13 miljarder år. Dessa uråldriga stjärnor uppvisar ett brett spektrum av metallsammansättningar en del är mycket metallfattiga (som väntat), medan andra har dubbelt så mycket metallinnehåll som vår mycket yngre sol, vilket tyder på att en snabb metallanrikning ägde rum i den tidiga fasen av Vintergatans utveckling.

– De här uråldriga stjärnorna i skivan tyder på att Vintergatans tunna skiva började bildas mycket tidigare än man tidigare trott, redan efter cirka 4-5 miljarder år efter BigBang, beskriver Samir Nepal vid AIP och huvudförfattare till studien. Studien visar även att vår galax hade en intensiv stjärnbildning under tidiga epoker vilket ledde till mycket snabb anrikning av metaller i de inre regionerna och bildandet av skivans stjärnor. Upptäckten stämmer överens med tidslinjen för hur Vintergatans skivor bildats med de galaxer som observerats av James Webb Space Telescope (JWST) och Atacama Large Millimeter Array (ALMA) Radio Telescope. Det tyder på att kalla skivor kan ha bildats och stabiliseras mycket tidigt i universums historia vilket ger nya insikter om galaxers utveckling.

– Vår studie tyder på att Vintergatans tunna skiva kan ha bildats mycket tidigare än vi trodde och att dess bildning är starkt relaterad till den tidiga kemiska anrikningen från de innersta delarna av vår galax, beskriver Cristina Chiappini. "Kombinationen av data från olika källor och tillämpningen av avancerad maskininlärningsteknik har gjort det möjligt för oss att öka antalet stjärnor med högkvalitativa stjärnparametrar, ett viktigt steg för att leda vårt team till nya kunskaper."

Resultaten möjliggjordes från den tredje publiceringen av data från Gaia-uppdraget (ett uppdrag där universums stjärnor kartläggs). Teamet analyserade stjärnparametrarna för mer än 800 000 stjärnor med hjälp av ny maskininlärningsmetod som kombinerar information från olika typer av data för att ge förbättrade stjärnparametrar med hög precision. Dessa exakta mätningar inkluderar gravitation, temperatur, metallinnehåll, avstånd, kinematik och stjärnornas ålder. I framtiden kommer en liknande maskininlärningsteknik att användas för att analysera miljontals spektra, som samlats in av kartläggningen 4MIDABLE-LR med 4-meters Multi-Object Spectroscopic Telescope (4MOST), med start 2025. 

Bild wikipedia. Illustration av Vintergatan som visar dess armar och solens placering (originalbilden från NASA).

söndag 23 juni 2024

En svärm små stjärnor svävar runt Sagittarius A* (det svarta hålet i centrum av Vintergatan).

 


För ungefär trettio år sedan upptäcktes högdynamiska stjärnor i omedelbar närhet av det supermassiva svarta hålet Sgr A* i Vintergatans centrum. Dessa stjärnor, även kända som S-stjärnor, sveper runt det supermassiva svarta hålet med hastigheter på flera tusen kilometer per sekund i en omloppsbana som tar  några år. Stjärnorna är förvånansvärt unga och deras närvaro förbryllande då man enligt populära teorier endast hade förväntat sig gamla och ljussvaga stjärnor i omedelbar närhet av det svarta hålet.

Observationer visar nu att de nyupptäckta unga stjärnobjekten (YSO ungt stjärnobjekt som betecknar en stjärna i dess tidiga utvecklingsstadium.) i omedelbar närhet av det supermassiva svarta hålet Sagittarius A* i mitten av vår galax beter sig annorlunda än väntat. De beskriver liknande banor som redan kända  utvecklade stjärnor och är arrangerade i ett eget mönster runt det svarta hålet. Studier har visat att Sgr A* får stjärnobjekten att inta vissa formationer på sin färd. Förutom S-stjärnorna har forskare  sett på ett dussintal objekt i omedelbar närhet av det supermassiva svarta hålet som åven de har liknande egenskaper.

De upptäckte att objekten var betydligt yngre än de redan kända höghastighetsstjärnorna. – Intressant nog uppvisar dessa YSO:er samma beteende som S-stjärnor (Stjärnor runt det supermassiva svarta hålet i Vintergatans galaxcentrum, associerade med radiokällan Sagittarius A). Det innebär att YSO:erna sveper runt det supermassiva svarta hålet med hastigheter på flera tusen kilometer per sekund på några år, beskriver Florian Peißker vid institutet för astrofysik vid Kölns universitet och korresponderande och författare till studien.

– S-stjärnorna visade sig vara förvånansvärt unga (därav beteckningen YSO young star objekt). Enligt konventionella teorier är så unga stjärnor fortfarande under bildning helt oväntad att finna här", tillade Dr Peißker.

Dessutom verkar denna grupp av höghastighetsobjekt som består av YSO- och S-stjärnor vid första anblicken likna en kaotisk bisvärm där de drar fram. Men på samma sätt som en bisvärm har ett mönster och regelbundna formationer har YSO:erna och S-stjärnorna det. På så sätt kunde forskarna visa att både YSO- och S-stjärnor är arrangerade på ett specifikt, organiserat sätt i ett tredimensionellt rum. Det betyder att det finns specifika stjärnkonstellationer (mönster i rörelse och gruppering) som de föredrar. (Spännande teori men var vi söker och vad vi söker efter i universum eller i mikrokosmos finner vi mönster tänk bara på snöflingans kristallmönster)

 Fördelningen av båda stjärnvarianterna sveper fram i en skivliknande formation vilket ger intrycket av att det supermassiva svarta hålet tvingar stjärnorna att inta en organiserad omloppsbana (troligast genom sin starka dragningskraft i form av gravitation) , beskriver Peißker. Skillnaden mellan S-stjärnor och YSO-stjärnor är att Begreppet S-stjärnor innefattar alla åldrar av stjärnor som sveper i området vid det svarta hålet medan YSO-stjärnor är de stjärnor som är mycket unga eller till och med under bildning.

Studien av fenomenet ovan har fått titeln "Young Stellar Objects in the S-cluster: The Kinematic Analysis of a Sub-population of the Low-mass G-objects close to Sgr A*" och har publicerats i Astronomy & Astrophysics. Forskare från universitetet i Köln, Masaryk-universitetet i Brno (Tjeckien), Karlsuniversitetet i Prag (Tjeckien), Tjeckiens vetenskapsakademi och Max Planck-institutet för radioastronomi i Bonn deltog i studien.

Bild vikipedia (engelska) Sagittarius A* avbildad av Event Horizon Telescope, med linjer överlagrade för att markera orienteringen av magnetfältets polarisation.

tisdag 7 maj 2024

Skillnad av uppbyggnad i stjärnor i ett dubbelstjärnsystem

 


En dubbelstjärna eller binärt stjärnsystem är ett stjärnsystem som består av två stjärnor i stället för en enda som i vårt eget solsystem. Dubbelstjärnorna kretsar kring samma tyngdpunkt.

85 % av stjärnorna därute ingår i dubbelstjärnsystem (eller tre-fyrstjärnsystem) enligt nuvarande uppskattningar. Stjärnpar utvecklas tillsammans ur samma molekylmoln av de material som finns i detta. Astronomer förväntar sig därför att systemen(stjärnorna) har nästan identiska sammansättningar och så även deras planetsystem. Men i många system är det inte så. Föreslagna förklaringar till dessa olikheter är händelser som inträffade efter att stjärnorna utvecklats. Men nu har ett team av astronomer för första gången bekräftat att de faktiskt kan härstamma från tiden innan stjärnorna ens började bildas.

Teamet leddes av Carlos Saffe vid Institute of Astronomical, Earth and Space Sciences (ICATE-CONICET) i Argentina där teleskopet Gemini South i Chile användes och ena halvan av International Gemini Observatory, delvis finansierat av U.S. National Science Foundation som drivsav NSF NOIRLab. Med den nya, exakta Gemini High Resolution Optical SpecTrograph (GHOST) studerade teamet olika våglängder av ljus, (spektra) som avgavs från ett par jättestjärnor (binära) vilket avslöjade signifikanta skillnader i deras kemiska sammansättning.

Tidigare studier har föreslagit tre möjliga förklaringar till kemiska skillnader mellan stjärnor i ett dubbelstjärnsystem. Två förklaringar involverar processer som skulle inträffat långt senare i stjärnornas utveckling: atomic diffusion eller sedimentering av kemiska grundämnen i gradientskikt (förändringar i skiktet) beroende på varje stjärnas temperatur och ytgravitation; eller uppslukandet av en liten, stenig planet, vilket skulle introducera kemiska variationer i en stjärnas sammansättning.

Den tredje möjliga förklaringen går tillbaka till själva stjärnbildningen vilket tyder på att skillnaderna härstammar från ursprungliga områden med olikhet i molekylmolnet vari de bildades. Enkelt uttryckt, om molekylmolnet har en ojämn fördelning av kemiska grundämnen, kommer stjärnor som bildas i det molnet att ha olika sammansättningar beroende på vilka grundämnen som fanns tillgängliga på den plats där var och en av stjärnorna bildades. Hittills har studier kommit fram till att alla tre förklaringarna är troliga.

Nuvarande studie som med hjälp av de precisionsmätningar från ex GHOST-instrumentet samlar nu Gemini South nu in vilket innebär observationer av stjärnor i slutet av sin existens för att avslöja den miljö de kom till i, beskriver Martin Still, NSF:s programchef för International Gemini Observatory.  Detta ger oss möjlighet att utforska hur de förhållanden under vilka stjärnor bildas kan påverka hela deras fortsatta existens under miljoner eller miljarder år, tillägger han.

Tre konsekvenser av denna studie är av särskild betydelse. För det första ger dessa resultat en förklaring till varför astronomer ser dubbelstjärnor med så olika planetsystem. "Olika planetsystem kan betyda mycket olika planeter – steniga, jordliknande, isjättar, gasjättar – som kretsar kring sina stjärnor på olika avstånd och där potentialen att stödja liv kan vara mycket olika", beskriver Saffe.

För det andra utgör dessa resultat en avgörande utmaning för konceptet kemiskt innehåll – att använda kemisk sammansättning för att identifiera stjärnor som kommit från samma miljö eller stjärnmiljö – genom att visa att stjärnor med olika kemisk sammansättning kan ha samma ursprung (men inte behöver ha det).

Slutligen kommer observerade skillnader som tidigare tillskrivits nedslag av planeter på en stjärnas yta att behöva granskas eftersom de nu kan ses som att skillnaden har funnits där från stjärnans bildande.

Då det gäller att stjärnor kan bildades i gasmoln men ändå vara olikt uppbyggda är det inte konstigt, se på nebulosor dessa är inte kemiskt välblandade (påstår jag).

Bild vikipedia. Animation av ett binärt stjärnsystem som visar överföring av massa mellan stjärnorna.

fredag 12 april 2024

Varför stjärnorna i galaxer av hög ålder rör sig kaotiskt

 


Ett internationellt forskarlag under ledning från det australiska forskningscentret ASTRO 3D rapporterar att galaxers ålder förändrar hur stjärnorna rör sig i dessa.

Unga galaxer kännetecknas av att stjärnorna i dessa roterar i ett ordnat mönster. Med undantag av att en mindre del av dem som rör sig mer slumpmässigt. Medan stjärnor i äldre galaxer rör sig mer kaotiskt. Fram tills nu har forskare varit osäkra på vad som orsakar rörelse och åldersförändring i galaxer. De har diskuterat om det kan vara den omgivande miljön eller galaxens massa som är anledningen.

"När vi gjorde analysen fann vi att ålder  hur vi än undersöker med skilda parametrar är den viktigaste anledningen", beskriver huvudförfattaren till studien Prof Scott Croom, en ASTRO 3D-forskare vid University of Sydney och tillägger. ”När man tar hänsyn till ålder finns det i princip ingen miljötrend, och det är likadant för massa (som påverkar lika mycket). Om du hittar en ung galax kommer den att rotera, oavsett vilken miljö den befinner sig i och om du hittar en gammal galax kommer den att ha fler slumpmässiga banor, oavsett om den finns i en tät miljö av damm och gas eller i ett tomrum."

I unga galaxer sker stor stjärnbildning (här finns mycket råmaterial för detta i form av gas och damm) medan stjärnbildningen upphör i de äldre galaxerna (här finns mindre av damm och gas men många stjärnor).

– Vi vet att åldern påverkar miljön. Om en galax faller in i en tät miljö (av stjärnor) tenderar den att stänga av stjärnbildningen (här finns många stjärnor men inte så mycket gas och damm för stjärnbildning). Galaxer i stjärnrika miljöer är i genomsnitt äldre, beskriver van de Sande.

Vintergatan, har fortfarande en tunn stjärnbildande skiva, så den anses fortfarande vara en rotationsgalax med högt spinn.

– Men när vi ser på Vintergatan i detalj ser vi något som kallas Vintergatans tjocka skiva. Den är inte dominerande när det gäller ljus men den finns där och det ser ut att vara äldre stjärnor här som mycket väl kan ha värmts upp i den tunna stjärnrika skivan vid tidigare tidpunkter eller uppstått av hög turbulent rörelse i det tidiga universum, beskriver professor Croom.

Studien publicerades i dagarna i MNRAS (Monthly Notices of the Royal Astronomical Society). I studien beskrivs att stjärnornas tendens att ha slumpmässiga rörelser främst beror på galaxens ålder vilket ger slumpartade stjärnrörelser (vanligare i äldre  galaxer ).

 I forskargruppen ingick även forskare från Macquarie University, Swinburne University of Technology, University of Western Australia, Australian National University, University of New South Wales, University of Cambridge, University of Queensland och Yonsei University i Sydkorea.

Forskarna använde data från observationer som gjorts inom ramen för SAMI Galaxy Survey. SAMI-instrumentet vilket byggdes 2012 av University of Sydney och Anglo-Australian Observatory (numera Astralis). SAMI använder Anglo-Australian Telescope vid Siding Spring Observatory, nära Coonabarabran, New South Wales. Den har kartlagt 3000 galaxer i ett stort antal miljöer.

(Förslagsvis kanske man skulle undersöka om rörelseökningen av stjärnor i äldre galaxer kan bero på att här inte finns så mycket materia för stjärnbildning och detta tomrum accelererar stjärnors rörelse i tomrummet. Ingen gravitation från detta material bromsar längre stjärnors rörelser. Istället får det stjärnrika men mellan dessa stjärnor tomrummet och bristen på gas och damm gravitationen från skilda stjärnor stjärnor att röra sig kaosartat)

Bild https://astro3d.org.au/ som visar jämförelse mellan en ung (överst) och gammal (nederst) galax som observerats som en del av SAMI Galaxy Survey. Subaru-källa: Bild från Hyper Suprime-Cam Subaru Strategic Program

onsdag 13 mars 2024

Hur svarta hål växer och nya stjärnor bildas

 


När supermassiva svarta hål är aktiva har de en avgörande roll för hur galaxer utvecklas. Fram tills nu har man ansett att tillväxten utlöses av den våldsamma kollisionen mellan två galaxer som smälter samman. Men ny forskning ledd från University of Bath tyder på att galaxsammanslagningar inte räcker för att driva ett svart hål – en reservoar av kall gas i mitten av galaxen behövs också.

Den nya studien, som publicerats i tidskriften Monthly Notices of the Royal Astronomical Society, tros vara den första som beskriver användning av AI  för att klassificera galaxkollisioner med det specifika syftet att utforska förhållandet mellan galaxkollision, supermassiv ansamling av svarta hål och stjärnbildning.

Hittills har koncentrationer av svarta hål klassificerats (ofta felaktigt) enbart genom mänsklig observation. Under större delen av sin tid är svarta hål icke aktiva fast materia kretsar runt dem. Materia som har liten inverkan på galaxen som helhet. Men under korta faser i tid (korta endast på en astronomisk skala troligen varar de miljoner till hundratals miljoner år) sker stark gravitation som drar stora mängder gas till det svarta hålet (en händelse som kallas ackretion), vilket resulterar i en ljusstark skiva som i ljusstyrka kan överglänsa galaxen.

Det är dessa korta aktivitetsfaser som är viktigast i galaxers utveckling, eftersom de enorma mängder energi som frigörs från ackretionsskivan kan påverka att många stjärnor bildas i galaxen. Av goda skäl är därför en av de största utmaningarna inom astrofysiken att fastställa vad som får en galax att röra sig mellan sina två tillstånd – vilande och stjärnbildande.

Bild https://freerangestock.com/

söndag 18 februari 2024

Pärlband av stjärnor

 


NASA:s rymdteleskop Hubble har haft teleskopet riktat mot 12 interagerande galaxer som har långa, grodyngelliknande tidvattensvansar av gas, stoft och där finns en uppsjö av stjärnor. Genom Hubbleteleskopets skärpa och känslighet för ultraviolett ljus har avslöjats 425 hopar av nya stjärnor längs dessa svansar, som  liknar strängar av ljus. Varje stjärnhop innehåller så många som 1 miljon blå, nya stjärnor.

Kluster av stjärnor i tidvattensvansar har varit kända i årtionden. När galaxer växelverkar drar gravitationens tidvattenkrafter ut långa strömmar av gas och stoft.

Ett team av astronomer använde en kombination av nya observationer och arkivdata för att få fram åldrar och ett antal tidvattensvansstjärnhopar. De fann att dessa hopar av stjärnor är mycket unga endast 10 miljoner år gamla. Och de verkar bildas i samma takt längs svansarna (bestående av gas och stoft)  som sträcker ut sig tusentals ljusår.

– Det är en överraskning att se de unga stjärnorna i svansarna. Det säger oss en hel del om hur effektiv klusterbildning är, beskriver huvudförfattaren till studien Michael Rodruck Randolph-Macon högskola i Ashland, Virginia.

Svansarna ser ut som en galax spiralarm som sträcks ut i rymden. Den yttre delen av armen dras samman av gravitationen  mellan ett par interagerande galaxer.

Före sammanslagningarna var galaxerna rika på stoftmoln av molekylärt väte som helt enkelt kan ha förblivit inerta. Men då molnen knuffades och stötte i varandra under mötena komprimerades vätet till en punkt där det utlöste en storm av stjärnfödelse i de då bildade svansarna.

Ödet för dessa utsträckta stjärnhopar är osäkert. De kan förbli gravitationellt intakta och utvecklas till klotformiga stjärnhopar – liknande de som kretsar utanför Vintergatans plan (ex stora och lilla Magellanska molnet). Eller kan de skingras för att bilda en halo av stjärnor runt sin värdgalax eller kastas ut för att bli vandrande intergalaktiska stjärnor.

Rymdteleskopet Hubble är ett internationellt samarbetsprojekt mellan NASA och ESA. NASA:s Goddard Space Flight Center i Greenbelt, Maryland, förvaltar teleskopet. Space Telescope Science Institute (STScI) i Baltimore, Maryland, bedriver analys av Hubble- och Webbtelskopets insamlade bildmaterial . STScI drivs för NASA av Association of Universities for Research in Astronomy, i Washington, D.C.

Bild https://hubblesite.org/ Galaxen AM 1054-325.

torsdag 4 januari 2024

De första stjärnorna bildade grundämnen med högre atomnummer än uran-238

 


De första stjärnorna i universum var mycket stora. De bestod nästan endast av väte och helium och var upp till 300 gånger  massivare än vår sol. I dem bildades de första av de tyngre grundämnena, som sedan kastades ut i kosmos vid slutet av deras korta existens som slutade i en supernova. Dessa grundämnen var början till alla de stjärnor och planeter som nu finns. I en ny studie visas att dessa första stjärnor skapade mer än bara de naturliga grundämnen upp till uran-238.

Med undantag för väte, helium och några spår av andra lätta grundämnen har alla atomer vi ser omkring oss skapats genom astrofysikaliska processer, såsom  supernovor, kollisioner mellan neutronstjärnor och högenergirika partikelkollisioner. Tillsammans skapades  tyngre grundämnen som uran-238, som är det tyngsta naturligt förekommande grundämnet.

Uran bildas vid kollisioner mellan supernovor och neutronstjärnor genom den så kallade r-processen, där neutroner snabbt fångas upp av atomkärnor och då blir till ett tyngre grundämne. R-processen är komplex, och det finns fortfarande mycket som inte förstås i  hur den processen uppstår eller vad dess övre massgräns är.

Studien ger resultat som tyder på  att r-processen i de allra första stjärnorna kan ha producerat mycket tyngre grundämnen med atommassa större än 260 (se periodiska systemet).  

Teamet såg på 42 stjärnor i Vintergatan för vilka grundämnessammansättningen är förstådd. I stället för att bara leta efter närvaron av tyngre grundämnen tittade de på det relativa överflödet av grundämnen i alla stjärnor. De fann att överflödet av vissa grundämnen som silver och rodium inte stämmer överens med det förutspådda överflödet från vad som sker i en r-processnukleosyntes.

Ny data tyder istället på att dessa grundämnen är sönderfallsrester från mycket tyngre kärnor  högre än 260 i atommassanummer. Förutom r-processen med snabb neutroninfångning finns det två andra sätt att skapa tunga atomkärnor: p-processen där neutronrika kärnor fångar protoner, och s-processen där en kärna av en atom kan fånga in en neutron. Men ingen av dessa kan skapa en snabb uppbyggnad av massa som är nödvändig för grundämnen med högre nummer än uran. Det är bara i den hypermassiva första generationens stjärnor som r-processens nukleosyntes som på något vis kan ha genererat sådana grundämnen.

Studien tyder alltså på att r-processen kan skapa grundämnen med högre atomnummer än uran, och sannolikt skedde det i de första stjärnorna i universum. Om det inte finns en isolerad plats av stabilitet för några av dessa ultratunga grundämnen kommer dessa då bildade grundämnen för länge sedan att ha sönderfallit till de naturliga grundämnen vi ser idag. Men det faktum att de en gång existerade kommer att hjälpa forskare att bättre förstå r-processen och dess begränsningar.

Inlägget ovan grundas på en artikel ihttps://www.universetoday.com/ där det hänvisas till en källan Roederer, Ian U., et al. “Element abundance patterns in stars indicate fission of nuclei heavier than uranium.” Science 382.6675 (2023): 1177-1180.

Tunga grundämnen i högre skiktet av periodiska system bildas och finns oftast endast kortvarigt i kärnkraftverk eller laboratoriemiljö.

Bild vikipedia En atomkärna visas här som ett kompakt knippe av de två typerna av nukleoner, protoner (röda) och neutroner (blå). I bilden visas protonerna och neutronerna som distinkta, vilket är den gängse uppfattningen inom till exempel kemi. Men i en verklig kärna, som förstås av modern kärnfysik är nukleonerna delvis delokaliserade och organiserar sig enligt kvantkromodynamikens lagar.

tisdag 31 oktober 2023

1952 försvann 3 stjärnor.

 


Den 19 juli 1952 genomförde Palomarobservatoriet en fotoundersökning av natthimlen. Bland annat för att hitta och identifiera asteroider. Omkring klockan 20.52 på kvällen fångades på en fotografisk plåt ljuset från tre stjärnor som låg nära varandra. Med en magnitud på 15 var de ganska ljusstarka. Klockan 21.45 fångades samma område på himlen igen, men den här gången syntes de tre stjärnorna ingenstans. På mindre än en timme var de försvunna.

De tre stjärnorna ses i den vänstra bilden ovan men är borta i den högra. Antagandet är att stjärnornas ljus plötsligt måste ha dämpats men det är svårt att förklara hur. Senare observationer fann inga tecken på att stjärnorna skulle blivit ljussvagare än magnitud 24. Det innebär att de sannolikt har försvagats med en faktor på 10 000 eller mer. Vad skulle kunna få stjärnorna att försvagas så otroligt mycket på ca en timme?

En idé är att det inte var tre stjärnor, utan en. Kanske råkade en stjärna lysa upp under en kort tid, till exempel genom en snabb radioblixt från en magnetar. Medan detta hände passerade kanske ett svart hål mellan objektet och oss vilket fick utbrottet att gravitationellt linsas som tre bilder under en kort tid. Problemet med denna idé är att en sådan händelse skulle vara ytterst sällsynt, ytterligare foton tagna under 1950-talet visar liknande snabba försvinnanden av stjärnor. I vissa fall är stjärnorna åtskilda av bågminuter vilket skulle vara svårt att åstadkomma med gravitationslinsning

En annan idé är att det inte alls var stjärnor. De tre ljuspunkterna låg inom 10 bågsekunder från varandra. Om de var tre enskilda föremål, måste något ha utlöst deras ljusförstärkning. Med tanke på tidsspannet på cirka 50 minuter skulle kausalitet och ljusets hastighet kräva att de inte var mer än 6 AU (1 AU är avståndet solen-jorden) från varandra. Det betyder att de inte behöver vara mer än 2 ljusår bort från oss. De kan ha varit objekt i Oorts kometmoln där någon händelse fick dem att lysa upp ungefär samtidigt. Senare observationer kunde inte hitta dem eftersom de sedan dess då bör ha drivit vidare längs sina banor. 

Ett tredje förslag är att de inte alls var objekt. Palomarobservatoriet ligger inte så långt från New Mexicos öknar där kärnvapentester ägde rum under 1950-talet. Radioaktivt damm från testerna kan ha förorenat de fotografiska plåtarna och skapat ljusa fläckar på vissa bilder. Med tanke på liknande försvinnanden som setts på andra fotografiska plåtar från 1950-talet verkar detta fullt möjligt. 

Det tredje förslaget anser jag vara det troligaste.

Bild https://www.universetoday.com/ Tre stjärnors försvinnande. Källa: Palomarobservatoriet/Solano, et al

lördag 5 augusti 2023

Tre stjärnor spelar blinka lilla stjärna där.

 


Forskare har skapat en 3D-simulering av energivågor som krusade genom tre separata stjärnor. De omvandlade dessa krusningar till ljudvågor och ställde in krusningarna till den välbekanta melodin "Twinkle Twinkle Little Star."

Stjärnor verkar visuellt blinka från vår utsiktspunkt på jorden på grund av atmosfärens effekter men stjärnkroppar har också en inneboende vågton associerad med den plasma som krusar runt på deras ytor. Det senare är omärkligt även för de mest avancerade teleskopen på jorden.

För att se ( i detta fall höra) denna ton skapade forskare vid Northwestern University simuleringar av energi som krusar från kärnprocessen i stjärnornas inre upp till deras ytor. Genom att omvandla dessa porlande plasmavågor till ljudvågor har teamet gjort det möjligt för rymdentusiaster att höra de kusliga men fascinerande toner som skapas inuti små, medelstora och stora stjärnor.

När vågorna kommer upp till stjärnans yta, beskriver Anders, får de ytan att skicka ut plasmavågor på ett sätt som astronomer försöker observera. För första gången har vi utvecklat datormodeller som gör det möjligt för oss att bestämma hur mycket en stjärna bör blinka (ska ses som plasmavågspulser) som ett resultat av dessa vågor. Arbetet gör det möjligt för framtida rymdteleskop att undersöka de centrala regionerna i en stjärna där stjärnor smider de element vi är beroende av för att leva och andas. Evan Anders är postdoktor vid Northwesterns centrum för tvärvetenskaplig prospektering och forskning inom astrofysik (CIERA).

Här finns videon där man kan höra blinka lilla stjärna melodin utifrån pulserna. 

Bild pixabay.com

tisdag 25 juli 2023

Vissa stjärnor har så starka magnetfält på ytan så det inte passar in i teorin om stjärnbildning.

 


Astronomer har funnit bevis på att vissa stjärnor har ett oväntat starkt magnetfält på sin yta. Det är en upptäckt som utmanar nuvarande modeller av hur stjärnor utvecklas.

I stjärnor som vår sol är magnetism på ytan kopplad till stjärnspinn, en process som liknar den inre funktionen i en dynamo. Starka magnetfält finns i centrum av solfläcksregioner och orsakar en mängd olika rymdväderfenomen. Fenomen som utkast så stora av elektromagnetisk strålning att det ibland  slår ut elektronik på Jorden.  Hittills har stjärnor med lägre massa än vår sol rotera antingen mycket snabbt eller relativt långsamt - ansetts ha mycket låga nivåer av magnetisk aktivitet. Något som gjort att de ansetts som idealiska solar för potentiellt beboeliga planeter i sitt solsystem.

I en ny studie, publicerad  i The Astrophysical Journal Letters, hävdar nu forskare från Ohio State University att en ny intern mekanism som kallas kärnhöljefrikoppling innebärande att när stjärnans yta och kärna börjar snurra i samma takt och sedan driver isär - kan det öka magnetfältet på dessa stjärnor i miljarder år och påverka livsutvecklingen hos deras närliggande exoplaneter negativt.

Den nya forskningen möjliggjordes genom en teknik som Lyra Cao, huvudförfattare till studien och doktorand i astronomi vid Ohio State och medförfattare Marc Pinsonneault, professor i astronomi vid Ohio State, utvecklade i år (2023) för att mäta stjärnfläckar och magnetfält på stjärnor.

Även om stjärnor med låg massa är de vanligaste stjärnorna i Vintergatan och ofta har exoplaneter vet forskare relativt lite om dem, enligt Cao.

I årtionden antogs  att de fysiska processerna hos stjärnor med lägre massa kunde jämföras  de hos stjärnor av solens slag.  Eftersom stjärnor gradvis förlorar sitt rörelsemängdsmoment när deras  snurrande är starkt kan astronomer använda stjärnspinn som metod  att förstå arten av en stjärnas fysiska processer och hur de interagerar och påverkar sina exoplaneter och omgivning. Man uthår i många fall efte rhur vår sol fungerar. Det finns dock tillfällen där stjärnrotationsklockan verkar stanna av, skrev Cao.

Med hjälp av offentlig data från Sloan Digital Sky Survey studerades ett urval av 136 stjärnor i stjärnhopen  Messier 44 vilka  befinner sig 610 ljusår bort från jorden och är en av de närmaste öppna stjärnhoparna till oss. Här fann teamet att magnetfälten hos stjärnorna med låg massa i området verkade vara mycket starkare än nuvarande modell kan förklara.

Medan tidigare forskning avslöjade att stjärnhopen innehåller många stjärnor som trotsar nuvarande teorier om rotationsutveckling, var en av Caos teams mest intressanta upptäckter att nu kunna bestämma hur dessa stjärnors magnetfält kan vara lika ovanliga i betydelsen mycket starkare än vad som förutspås av nuvarande modeller.

Vi fann bevis för att det finns en okänd typ av dynamomekanism som driver magnetismen hos dessa stjärnor, beskriver Cao. Arbetet visar att stjärnfysik kan ge överraskande konsekvenser även i andra forskningsområden.

Enligt studien har upptäckten viktiga konsekvenser för vår förståelse av astrofysik särskilt på jakten efter liv på andra planeter. Stjärnor som har denna starka magnetism kommer sannolikt att bombadera sina planeter med högenergistrålning, enligt Cao. En effekt som förutspås pågå i miljarder år från vissa stjärnor så det är viktigt att förstå vad det kan ge för effekt på deras eventuella exoplaneters liv eller om liv kan utvecklas där.

Med dessa fynd bör man få mer inblick i vad man ska leta efter för solsystem som kan vara värdar för liv. Cao att hennes teams upptäckter kan leda till bättre datasimuleringar och teoretiska modeller av stjärnors utveckling.

Bild vikipedia på den öppna stjärnhopen M44 i riktning mot stjärnbilden Kräftan 610 ljusår bort från oss där ovan upptäckt gjordes.

torsdag 4 maj 2023

Ett Svart hål slukar bit för bit av närliggande stjärnor o kastar ut resterna i rymden

 


Det antas nu att svarta hål av medelstor storlek och medelmassa kan dra åt sig stjärnor och ta några bitar av dessa för att sedan kasta ut resterna ut i galaxen. Det låter konstigt men i en ny Northwestern University-ledd studie fann man detta.

Det var i nya 3D-datorsimuleringar astrofysiker modellerade svarta hål med varierande massa och placerade sedan stjärnor (ungefär av storleken av vår sol) i dess väg för att se vad som hände.

Forskarna upptäckte då att när en stjärna med medelstor massa närmar sig ett svart hål fastnar den initialt i en bana runt det svarta hålet. Därefter drar det svarta hålet materia från stjärnan. Varje gång stjärnan gör ett varv runt hålet drar det svarta hålet ytterligare mer från stjärnan så småningom finns inget kvar förutom stjärnans missformade och täta kärna.

Då kastar det svarta hålet ut denna rest tillbaks ut i galaxen.

Datasimuleringarna visar inte bara detta okända beteende hos svarta hål med av denna medelstorlek och massa, de ger också astronomer nya ledtrådar till att hitta dessa medelstora svarta hål.

Vi kan inte observera svarta hål direkt eftersom de inte avger något ljus, påtalar Northwesterns Fulya Kıroğlu som ledde studien och tillägger. Istället måste vi för att hitta dem söka efter tecken på samspelet mellan svarta hål och miljön omkring detta. Vi fann att stjärnor genomgår flera passager runt hålet innan stjärnkärnan kastas iväg. Efter varje passage förlorar de massa vilket orsakar ljus då de slits isär. Varje utbrott är ljusare än föregående vilket skapar en signatur som kan hjälpa astronomer att hitta dem.

Medan astrofysiker har bevisat förekomsten av svarta hål med låg och hög massa har svarta hål med mellanliggande massa förblivit svårfångade. De små svarta hålen blev till då supernovor kollapsade och är stjärnresterna efter en sådan händelse. De har ungefär 3 till 10 gånger större  massa än vår sol. I andra änden av spektrumet är supermassiva svarta hål. De som finns i galaxernas centrum med miljoner till miljarder gånger högre i massa än vår sol.

Om svarta hål med medelhög massa existerar (inget har ännu hittats) skulle de passa någonstans i mitten - 10 till 10 000 gånger mer massiva än små svarta hål men inte alls lika massiva som supermassiva svarta hål. Även om dessa svarta hål med medelmassa teoretiskt bör existera, har astrofysiker ännu inte hittat bevis på det.

Deras existens diskuteras fortfarande beskriver Kıroğlu det. Astrofysiker har upptäckt troliga bevis på att de existerar men fynden kan förklaras utifrån  andra mekanismer. Till exempel kan det som verkar vara ett svart hål med medelstor massa vara ackumuleringen från svarta hål av stjärnmassa (små svarta hål).

För att utforska beteendet hos dessa undvikande objekt utvecklade Kıroğlu och hennes team nya hydrodynamiska simuleringar. Först skapade de en modell av en stjärna. Sedan skickade de stjärnan mot det svarta hålet och beräknade gravitationskraften som verkar på partiklarna i stjärnan.

"Vi kan beräkna specifikt vilken partikel som är bunden till stjärnan och vilken partikel som störs (eller inte längre är bunden till stjärnan)", säger Kıroğlu.

Genom dessa simuleringar upptäckte Kıroğlu och hennes team att stjärnor kunde kretsa kring ett svart hål med medelhög massa så många som fem gånger innan de slutligen kastades därifrån. För varje gång stjärnan passerar det svarta hålet förlorar stjärnan mer och mer av sin massa då den slits isär. Sedan föser det svarta hålet resterna bort från hålet i otrolig hastighet - ut i galaxen (kan det vara en effekt av gravitationskollaps som gör detta?).

Det är fantastiskt att stjärnan inte blir helt sönderriven, påtalar Kıroğlu. Vissa stjärnor kan ha tur och överleva närkontakten. Utkastningshastigheten är så hög att dessa stjärnor kan identifieras som hyperhastighetsstjärnor något som har observerats i galaxers centrum.

Men förklaringen på vad som gör att inte hela stjärnan slukas finns ännu inte heller varför stjärnkärnan kastas iväg. Kanske min antydan är en möjlig forskningsidé? Se kursiv stil ovan.

Bild https://creazilla.com/

torsdag 27 april 2023

Metallfattiga stjärnors planeter har bäst livsmiljö

 


Stjärnor som innehåller jämförelsevis stora mängder tunga grundämnen ger mindre gynnsamma förutsättningar till uppkomsten av komplext liv i sina planetsystem än metallfattiga stjärnors. Metallfattiga stjärnor var den första generationen stjärnor. Idag är dessa få till antalet därute (vår sol tillhör inte denna grupp). Stjärnor som bildats efter de första metallfattiga stjärnorna har liksom vår sol bildats av rester från supernovor. Vid en sådan bildas nya grundämnen och därför är andra generationens stjärnor metallrika likt vår sol. De första stjärnorna de metallfattiga stjärnorna ger bättre miljö för liv i sina planetsystem visas i en rapport från forskare vid Max Planck-instituten för solsystemforskning och kemi samt från universitetet i Göttingen.

Forskarna visade hur metalliciteten (metallhalten) i en stjärna är kopplad till dess planeters förmåga att omge sig med ett skyddande ozonskikt. Avgörande för skyddsbehov är intensiteten hos det ultraviolett ljus som stjärnan sänder ut i rymden, i skilda våglängdsområden. Ett ozonskikt som bildats runt en planet likt det finns på jorden skyddar liv på planeten från farlig strålning från sin sol. Ju högre metallhalt en stjärna har desto högre halt av farlig strålning kommer från denna.

Studien ger forskare som söker på himlen med rymdteleskop efter beboeliga stjärnsystem viktiga ledtrådar om var dessa kan vara särskilt lovande. De föreslår följande slutsats: att när universum åldras blir det alltmer ovänligt till uppkomst av komplext liv på nya planeter. Dessutom visar studien en nästan paradoxal slutsats att när universum åldras kommer det sannolikt att bli alltmer fientligt mot liv på de planeter som då bildas. Metaller och andra tunga grundämnen bildas inuti stjärnor i slutet av deras flera miljarder år långa livstid och - beroende på stjärnans massa - släpps de ut i rymden som stjärnvind eller i en supernovaexplosion. Det som blir byggmaterial för nästa generation stjärnor. Ju yngre stjärnor desto högre metallhalt innehåller de.

Varje nybildad stjärna har därför mer metallrikt byggmaterial tillgängligt än sina föregångare. Stjärnorna i universum blir mer metallrika för varje generation (och sänder ut allt mer strålning som är farlig för liv bör man förtydliga det) , beskriver Dr. Anna Shapiro (forskare vid Max Planck Institute for Solar System Research och huvudförfattare till den aktuella studien) det.

 Enligt studien minskar sannolikheten för att stjärnsystem kommer att producera nytt liv på en planet också då universum åldras. Sökandet efter livet är dock inte hopplöst. När allt kommer omkring har många stjärnors exoplaneter en liknande ålder som solen. Och vår sol hyser komplexa och intressanta livsformer på minst en av sina planeter. Jorden.

Vad vi kan lära oss är därför att nuvarande liv här och på eventuella andra planeter är värdefullt och att det i en framtid inte kan ersättas med nytt liv.

Bild vikipedia Stjärnhopen Messier 22 fotograferat rymdteleskopet Hubble. En vacker stjärnsamling.

lördag 4 mars 2023

I universums ”barndom” var stjärnorna enorma i storlek

 


De första stjärnorna i kosmos var upp till över 10 000 gånger större än vår sols massa vilket är ungefär 1 000 gånger större stjärnor än de största stjärnorna som idag finns därute enligt en ny studie. I vår tid är de största stjärnorna 100 solmassor. Men i det tidiga universum bestod universum av mycket stora stjärnor. Stjärnor som snabbt gjorde slut på sitt bränsle och gjorde slut på sitt bränsle redan efter ca 1 miljon år, enligt nya forskarrön.

Genom sin storlek och sin korta existens fick universum vid dessas kollaps därefter nya grundämnen. De som sedan blev grunden till våra stjärnor av i dag och till uppbyggnaden av ex människan.

För mer än 13 miljarder år sedan, inte långt efter Big Bang, hade universum inga stjärnor. Det fanns inget annat än en varm soppa av neutral gas, nästan helt bestående av enbart väte och helium. Under hundratals miljoner år pressades den neutrala gasen  samman av gravitation till allt tätare bollar av materia. Denna tid är känd ses som den kosmiska mörka tiden.

I dagens universum kollapsar täta bollar av materia snabbare och då bildas stjärnor. Men det beror på att det moderna universum har något som det tidiga universum saknade: många olika grundämnen tyngre än väte och helium. Detta gör att de täta klumparna bestående av damm och gas i dag kan dras samman snabbt och  till hög densitet för att utlösa kärnfusion den process som driver stjärnors ljus och sken genom att kombinera lättare grundämnen till tyngre.

Men det enda sättet att få tyngre element i första skedet av universum var genom kärnfusionsprocess. Flera generationer av stjärnor som bildades, smälte och dog och berikade kosmos till dess nuvarande tillstånd av grundämnen.

Utan förmågan att snabbt släppa ifrån sig  värme måste den första generationen stjärnor bildats under mycket olika och mycket svåra förhållanden mot dagens stjärnor. För att förstå hur  de första stjärnor kom till vände sig ett team av astrofysiker till sofistikerade datorsimuleringar som skulle visa förhållandena  som vi förstår dem under  de mörka åldrarna då nästan enbart väte och helium fanns,  för att förstå vad som hände då. Resultatet  beskrevs i januari i en artikel som publicerades i preprintdatabasen arXiv och skickades in för peer review till Monthly Notices of the Royal Astronomical Society.

Det teori som utarbetades innehåller alla vanliga kosmologiska ingredienser: den mörka materian för att skapa galaxer, utveckling och ihopklumpning av neutral gas, strålning, kylning och ibland uppvärmning av gas. Teorin innehåller också något som andra har teorier saknat: kallfronter – snabba strömmar av kyld materia – som smäller in i redan bildade strukturer.

Forskarna fann att en komplex ström av interaktioner av detta slag föregick den första stjärnbildningen. Neutral gas började samlas och klumpa ihop. Väte och helium släppte ut lite värme vilket gjorde det möjligt för klumpar av den neutrala gasen att långsamt nå högre densitet.

Dessa bildade klumpar med hög densitet blev mycket varma och producerade strålning som bröt isär den neutrala gasen och hindrade den från att fragmenteras i  mindre klumpar. Det innebar att stjärnor bestående av dessa klumpar kunde bli otroligt stora. Dessa fram och tillbaka interaktioner mellan strålning och neutral gas ledde till massiva pooler av neutral gas vilket blev början på de första galaxerna. Gasen djupt inne i dessa protogalaxer bildade snabbt snurrande ackretionsskivor - snabbt flytande ringar av materia som bildas runt protostjärnor inklusive svarta hål i universum. 

Under tiden och runt protogalaxernas ytterkanter slog kalla fronter av gas ner. De kallaste, mest massiva fronterna trängde in i protogalaxerna hela vägen fram till ackretionsskivan runt en protostjärna. Dessa kallfronter smällde in i skivorna och ökade snabbt både deras massa och densitet till en kritisk tröskel, vilket gjorde att de första stjärnorna kunde komma till och då i enorm storlek.

De första stjärnorna var inte vanliga fusionsstjärnor som vår sol. De var gigantiska klumpar av neutral gas som tändes genom fusion i dess kärna med en gång utan att först  fragmenteras i små bitar vilket sker i dagens stjärnbildningsprocess. Den resulterande stjärnmassan var enorm.

De första stjärnorna var mycket ljusstarka och bestod under kort tid, mindre än en miljon år. (Stjärnor i det moderna universum kan existera i miljarder år). Därefter skulle dessa första stjärnor slutat som supernovor

Dessa supernovor gav upphov till element tyngre än väte och helium - som sedan blev början till nästa generation av stjärnbildning vår tids stjärnor. Men då universum efter hand blev alltmer förorenad av tyngre element än väte och helium kunde processen då enorma stjärnor bildades av väte och helium aldrig mer kunna uppkomma.

Själv ser jag det som möjligt att hitta dessa jättar som var väldigt ljusstarka men kortlivade i sökandet i tid och rum med James Webbteleskopet. Om de  nu funnits.

Inlägget har som utgångspunkt en artikel av Paul M. Sutter är forskningsprofessor i astrofysik vid SUNY Stony Brook University och Flatiron Institute i New York City

Bild vikimedia tagen av Hubble teleskopet. I den här bilden förstoras och förvrängs en avlägsen galax ljus kraftigt av effekten av gravitationlinsing. Efter att bilden släppts offentligt använde astronomer bilden för att mäta galaxens avstånd från oss vilket visade sig vara 9,4 miljarder ljusår.

lördag 31 december 2022

Här finns Vintergatans äldsta stjärnor

 


En grupp MPIA-astronomer (Max Planck Society) har lyckats identifiera Vintergatans äldsta stjärnor. De finns i en population av stjärnor som  kvar från den tidigaste historien av vår hemgalax. Det är metallfattiga stjärnor i centrum av galaxen.  Dessa första stjärnor var annorlunda då de innehöll ingen metall.  Flertalet i universum av de första stjärnorna  har gjort slut på sitt bränsle och exploderat som supernovor för länge sedan och då gett upphov till dagens stjärnor och planeter av hög  metallhalt. 

Forskarnas data kommer från den senaste utgåvan av ESA: s Gaia Mission ett neuralt nätverk för att extrahera metalliciteter i två miljoner  jättestjärnor i den inre regionen av vår galax.

Upptäckten av dessa gamla stjärnor och dess uppbyggnad ger bekräftelse för de kosmologiska datasimuleringar av vår hemgalax tidigaste historia som tidigare gjorts och dragits slutsatser från.

Vintergatan, bildades gradvis under nästan hela universums historia som sträcker sig över 13 miljarder år tillbaks i tiden. Under de senaste decennierna har astronomer genom datamodellering lyckats rekonstruera olika epoker av den galaktiska historien.  Alla stjärnor har genomgått en uppbyggnadsmodell som möjliggör en allmän bedömning av ålder: en stjärnas metallhalt, definierad som mängden kemiska element tyngre än helium i stjärnans atmosfär.

Grundämnen, som astronomer kallar metaller, produceras inuti stjärnor genom kärnfusion och släpps ut nära eller i slutet av en stjärnas liv - då en stjärna med låg massas atmosfär skingras.  Men desto större massa en stjärna innehåller desto mer våldsamt slut får en stjärna den exploderar då som en supernova. På detta sätt förändras varje generation av stjärnor ur den interstellära gasen från vilken nästa generation stjärnor bildas och i allmänhet kommer varje generation av stjärnor att innehålla högre metallhalt än tidigare generationer av stjärnor.

För mer om detta ämne se denna länk https://phys.org/news/2022-12-astronomers-ancient-heart-milky-galaxy.html

Bild  https://phys.org/ Karta över särskilt metallfattiga jättestjärnor identifierade från Gaia DR3-data som visar, som en koncentrerad region (markerad med en circke), de äldsta stjärnorna  i centrala delarna av Vintergatan. Kartan visar hela natthimlen på samma sätt som vissa kartor över världen visar jordens yta. I mitten av kartan är riktningen mot mitten av Vintergatan. Upphovsman: H.-W. Rix / MPIA