Google

Translate blog

Visar inlägg med etikett tid. Visa alla inlägg
Visar inlägg med etikett tid. Visa alla inlägg

måndag 23 december 2024

Planetbildning i universums första tid.

 


Bild https://webbtelescope.org/ Protoplanetära skivor i NGC 346 (NIRCam-bild)

Känsligheten och upplösningen av Webbteleskopet har nu löst ett mysterium som är mer än två decennier gammalt. År 2003 upptäckte Hubbleteleskopet en massiv planet runt en uråldrig stjärna. Detta förbryllade astronomerna som ansåg att sådana stjärnor i det tidiga universum saknade många av de tyngre grundämnen som ses nödvändiga för att bygga upp planeter. Nuvarande modeller förutspår att skivorna runt den här typen av stjärnor har kort livslängd, så kort att planeter inte kan bli stora eller kanske ens bildas. Men fyndet visar att det var fel slutledning

Astronomerna vände sig  till ett närliggande område av det unga universum – det stjärnbildande området NGC 346. Där upptäckte Hubbleteleskopet tecken på att planetbildande skivor existerade runt stjärnor som var 20 till 30 miljoner år gamla mycket äldre än vad teorierna förutspådde att sådana skivor kunde bestå. 

Hubble-fynden var spännande, men utan ett sätt att få fram spektra kunde forskarna inte vara säkra på att de bevittnade en  ackretionkiva. Nu har forskare med hjälp av Webb bekräftat att det finns ackretionskivor i NGC 346 där planetbildning sker och att dessa skivor är långlivade. Upptäckten bekräftar Hubble-resultatet och det får forskare att ompröva nuvarande modeller för planetbildning.

Studien om fyndet har rubriken Protoplanetary Disks around Sun-like Stars Appear to Live Longer When the Metallicity is Low* Författare är Guido De Marchi, Giovanna Giardino, Katia Biazzo, Nino Panagia, Elena Sabbi, Tracy L. Beck, Massimo Robberto, Peter Zeidler, Olivia C. Jones, Margaret MeixnerShow full author list Published 2024 December 16 • © 2024. The Author(s). Published by the American Astronomical Society.

The Astrophysical Journal, Volume 977, Number 2

Citation Guido De Marchi et al 2024 ApJ 977 214

DOI 10.3847/1538-4357/ad7a63 

torsdag 26 september 2024

Fler svarta hål i det tidiga universum än väntat

 


Bild wikipedia av det svarta hålet i galaxen M87, från Event Horizon Telescope.

Det verkar finnas ett oräkneligt antal svarta hål i universum som drar till sig allt som passerar i dess närområde. De tyngsta svarta hålen, som väger miljoner eller miljarder gånger så mycket som vår sol finns i galaxers centrum. Dessa slukar allt som passerar i närheten och flammar då upp som ljusa fyrar i universum. Dessa kallas aktiva galaxkärnor. Men det finns även svarta hål inte drar  in omgivande material hela tiden, utan i perioder och i skurar vilket då får deras ljusstyrka att flimra.

Med hjälp av NASA:s rymdteleskop Hubble har nu ett internationellt forskarlag under ledning av forskare vid Institutionen för astronomi vid Stockholms universitet hittat fler svarta hål i det unga universum än vad som tidigare rapporterats. De nya resultaten kan hjälpa forskare att förstå hur supermassiva svarta hål skapas.

För närvarande har forskarna inte en hel bild av hur de första svarta hålen bildades efter bigbang. Det är känt att supermassiva svarta hål  kan väga mer än en miljard solar finns i mitten av flertalet, troligen alla,  galaxer, mindre än en miljard år efter bigbang.

– Många av de här objekten verkar vara mer massiva än vi först trodde de skulle vara så tidigt i tid och rum. Antingen bildades de väldigt massiva från början eller så växte de extremt snabbt, beskriver Alice Young, doktorand vid Stockholms universitet och medförfattare till studien.

Svarta hål spelar en viktig roll i alla galaxers livscykel men det finns stora osäkerheter i förståelsen av hur galaxer utvecklas. För att få en fullständig bild av kopplingen mellan galaxers och svarta håls utveckling  använde forskarna Hubbleteleskopet för att kartlägga hur många svarta hål som finns i en population av ljussvaga galaxer då universum bara var några procent av sin nuvarande ålder.

De första observationerna av kartläggningsområdet fotograferades på nytt av Hubble efter några år. Detta gjorde det möjligt för teamet att mäta variationer i galaxernas ljusstyrka. Dessa variationer är ett tydligt tecken på svarta håls fluktuation. Forskarlaget identifierade fler svarta hål än vad som tidigare hittats med andra metoder.

De nya observationerna tyder på att vissa svarta hål troligen bildades av kollaps av massiva stjärnor under den första miljarden år av kosmisk tid. Dessa typer av stjärnor (bildade av nästan enbart väte och helium) fanns bara vid mycket tidiga tidpunkter i universum eftersom senare generationers stjärnor är förorenade av rester av stjärnor som redan har funnits och kollapsat (och vid dessa supernovor fått betydligt fler metaller).

 Andra alternativ av teori för att bilda svarta hål är kollapsande gasmoln, sammanslagningar av stjärnor i massiva hopar och "ursprungliga" svarta hål som bildades (genom fysiskt spekulativa mekanismer) under de första sekunderna efter big bang. Med denna nya information av hur svarta hål bildas kan mer exakta modeller av hur galaxer bildas konstrueras.

– Bildningsmekanismen för tidiga svarta hål är en viktig del av pusslet av galaxers utveckling, beskriver Matthew Hayes vid Institutionen för astronomi vid Stockholms universitet och huvudförfattare till studien. Tillsammans med modeller för hur svarta hål växer kan beräkningar av galaxers utveckling nu placeras på en mer fysikaliskt motiverad grund, med ett exakt schema för hur svarta hål uppstod från kollapsande massiva stjärnor i tidens början.

Studien är publicerad i The Astrophysical Journal Letters.

Kan det vara så att svarta hål kan ha sitt ursprung i ett enda svart hål som fanns innan BigBang? När då gränsen för dess möjliga gravitation (sammanpressning)  och storlek blev kritisk uppstod BigBang. Och flertalet svarta hål uppkom ur det ursprungligt stora. Efter BigBang uppkom då stjärnbildning  till runt dessa av gas som kretsade runt de nu många stora svarta molnen som var en produkt av explosionen av det enorma som fyllt allt i rummet som var nästintill icke existerande i storlek. Ett annat alternativ är strängteorin den bör studeras mer för att lösa kosmos mysterier som verkar omöjliga att lösa med dagens paradigm

torsdag 5 september 2024

Istäcken på Mars visar spår av klimatet för länge sedan

 


Bilden publicerad av https://faculty.dartmouth.edu  Mars polaristäcke (NASA/JPL/Space Science Institute/USGS)

De spiralmönster i isen som ses på bilden ovan består av omväxlande lager av is och damm och är 400 till 1 000 meter djupa, liknande lager kan inte ses någonstans på jorden.

"Men vi förstår inte varför de bildats eller hur de utvecklas över tid?" beskriver Katherine Lutz som är doktorand vid Guarini School of Graduate and Advanced Studies och National Science Foundation Fellow professor Marisa Palucis laboratorium vars forskningsområden inkluderar planetarisk landskapsutveckling och ställer frågorna. "Varför är de här? Hur kan vi förstå de här lagrens ursprung?"

– Mars har genomgått massiva klimatförändringar och vi som planetforskare ägnar mycket tid åt att försöka förstå detta, beskriver Palucis. "Frågan om hur mycket vatten som har flödat över dess yta (och när)."

I forskning från 2013 föreslogs att dessa "dalar som ses på bilden" kan ha orsakats av katabatiska vindar – vindar som börjar röra sig snabbt, orsakar erosion och sedan snabbt sjunker i styrka och avtar vilket då resulterar i avlagringar.  Som ett resultat av detta kan man förvänta sig att dalarna har asymmetriska väggar samt molnformationer som svävar över dem som motsvarar katabatisk vindaktivitet.

Tillsammans med Robert Hawley, professor i geovetenskap vid Palucis och Geovetenskap, analyserade Lutz ett decennium av bilder och data från Mars och upptäckte att medan 80 procent av dalarna verkligen var asymmetriska, var ungefär 20 procent inte det. Snarare bildar trågen på de yttre kanterna av inlandsisen en ganska enhetlig "V"-form med väggarna som på båda sidor mäter ungefär samma höjd. Dessutom var det inte alla dalar som hade ett molntäcke.

I en artikel som publicerades under 2024 i Journal of Geophysical Research: Planets, beskriver forskarna att dessa yttre dalar är yngre än de i mitten av polarisen och sannolikt orsakats av kraftig erosion kontra en katabatisk vindcykel. Det kan tyda på, beskriver Lutz, att det för 4 till 5 miljoner år sedan skedde en förändring i Mars klimat som förändrade planetens vattencykel vilket fick vindar, moln och is att flöda annorlunda än tidigare.

Något skedde som efter hand bildade den Mars vi ser idag. Men vad som skedde och varför är ännu en gåta. Då det gäller de katabatiska vindarnas effekt  och brist på molnformationer över vissa dalar bör man i analysen ta hänsyn till Mars atmosfärs tunnhet, gravitationen på Mars och geografin där dessa moln saknas. Men det kanske de gjort har ej läst rapporten.

söndag 7 juli 2024

Små ljusa objekt under universums första tid förbryllar.

 


Ett internationellt forskarlag under ledning av forskare från Penn State (Pennsylvania university) har med hjälp av instrumentet NIRSpec som finns ombord på JWST (James Webb teleskopet) identifierat tre mystiska objekt i universums första tid (cirka 600-800 miljoner år efter Big Bang).  Då universum bara var 5 procent av sin nuvarande ålder.

Teamet studerade ur spektralmätningar intensiteten i olika våglängder av ljus från objekten. Analysen visade att det fanns signaturer som visar  "gamla" stjärnor, hundratals miljoner år gamla, mycket äldre än vad man kan förvänta sig i ett ungt universum.

Forskarna blev också förvånade då de upptäckte signaturer av enorma supermassiva svarta hål i samma stjärnsamling (galaxtillväxt) och uppskattar att dessa är 100 till 1 000 gånger mer massiva än det supermassiva svarta hålet i Vintergatan.

– Vi har bekräftat att dessa stjärnsamlingar verkar vara packade med uråldriga stjärnor – hundratals miljoner år gamla – i ett universum som bara är 600-800 miljoner år gammalt. Anmärkningsvärt nog har dessa objekt även rekordet för de tidigaste signaturerna av gammalt stjärnljus, beskriver Bingjie Wang, postdoktor vid Penn State University och huvudförfattare till artikeln (se nedan). – Det var helt oväntat att hitta gamla stjärnor i ett så ungt stadium av universum. Standardmodellerna för kosmologi och galaxbildning har varit framgångsrika, men dessa ljusstarka objekt passar inte  in i nuvarande teorier.

Forskarna upptäckte först de massiva objekten i juli 2022. Vid den tidpunkten misstänkte forskarna att objekten var galaxer, men följde upp sin analys genom att samla in spektra för att bättre förstå objektens verkliga avstånd samt källorna som driver deras enorma ljus.

Forskarna använde sedan insamlad data för att få en tydligare bild av hur galaxbildningen såg ut och vad som fanns i den. Teamet bekräftade inte bara att objekten var galaxer i tidernas begynnelse utan de hittade också bevis för förvånansvärt stora supermassiva svarta hål och en förvånansvärt gammal population av stjärnor.

JWST är utrustad med instrument för infraröd avkänning som kan detektera ljus som sänds ut från de äldsta stjärnorna och galaxerna. I huvudsak gör teleskopet det möjligt för forskare att se tillbaka i tiden ungefär 13,5 miljarder år vilket är tiden nära universums begynnelse som vi känner det, beskriver Leja.

En utmaning med att analysera forntida ljus är att det kan vara svårt att skilja de typer av objekt som kan ha avgett ljuset. När det gäller dessa tidiga objekt har de tydliga egenskaper hos både supermassiva svarta hål och gamla stjärnor. Wang förklarar att det ännu inte är klart hur mycket av det observerade ljuset som kommer från vart och ett av detta – vilket innebär att det kan röra sig om tidiga galaxer som är oväntat gamla och till och med mer massiva än vår egen Vintergata som bildats mycket tidigare än vad modellerna förutspår eller så kan de vara galaxer med mer normal massa men med "övermassiva" svarta hål, ungefär 100 till 1 000 gånger mer massiva än vad en likartad i storlek galax skulle ha idag.

"Att skilja mellan ljus från material som faller in i ett svart hål och ljus som sänds ut från stjärnor i dessa små, avlägsna objekt är utmanande", beskriver Wang. –Bortsett från deras oförklarligt stora massa och unga ålder är frågan om  ljuset kommer från supermassiva svarta hål så är dessa inte supermassiva svarta hål som vi känner sådana. De nu funna innehåller mycket mer ultravioletta fotoner än väntat och  saknar de karakteristiska signaturerna hos supermassiva svarta hål, såsom hett stoft och ljus röntgenstrålning. Men det kanske mest överraskande, enligt forskarna, är hur massiva de verkar vara.

Här ser vi ett fullt utvecklat stort svart hål i en mycket liten nybildande galax. Det är inte riktigt logiskt för galaxer  och svarta hål borde växa i storlek tillsammans enligt nuvarande teori.

Forskarna var också förbryllade över de otroligt små storlekarna på dessa system, bara några hundra ljusår tvärsöver ungefär 1 000 gånger mindre än Vintergatan. Stjärnorna är ungefär lika många som i vår egen galax Vintergatan med någonstans mellan 10 miljarder och 1 biljon stjärnor – men ryms i en volym som är 1 000 gånger mindre än Vintergatan.

Leja förklarade att om man tog Vintergatan och komprimerade den till storleken av de galaxer som hittats där ute skulle den närmaste stjärnan nästan finnas i vårt eget solsystem. Det supermassiva svarta hålet i Vintergatans centrum, cirka 26 000 ljusår bort, skulle bara ligga cirka 26 ljusår från jorden och synas på himlen som en gigantisk ljuspelare.

"Dessa tidiga galaxer är täta med stjärnor – stjärnor som måste ha bildats på ett sätt som vi  inte har kunskap om och under förhållanden som vi aldrig skulle förvänta oss under en period av tid och rum vi aldrig skulle förväntat oss att se dem", beskriver Leja. De är unika för det tidiga universum."

Forskarna hoppas kunna följa upp med fler observationer som  kan hjälpa till att förklara några av objektens mysterier. De planerar att ta djupare spektra genom att rikta teleskopet mot objekten under längre tidsperioder vilket kommer att hjälpa till att undersöka och kanske förstå  stjärnorna och det potentiella supermassiva svarta hålen genom att identifiera de specifika absorptionssignaturer som finns i var och ett av dem.

Jag misstänker att vi inte förstår expansionen från nära noll och som sedan skedde i universums början och  att svaret på gåtan finns i detta.

Wang och Leja fick finansiering från NASA:s General Observers-program. Forskningen stöddes också av International Space Science Institute i Bern. Arbetet är delvis baserat på observationer gjorda med NASA/ESA/CSA James Webb Space Telescope. Beräkningarna för forskningen utfördes på Penn State's Institute for Computational and Data Sciences superdator Roar.

Andra medförfattare till artikeln är Anna de Graaff vid Max-Planck-Institut für Astronomie i Tyskland; Gabriel Brammer från Cosmic Dawn Center och Niels Bohr Institute; Andrea Weibel och Pascal Oesch från universitetet i Genève; Nikko Cleri, Michaela Hirschmann, Pieter van Dokkum och Rohan Naidu från Yale University; Ivo Labbé från Stanford University; Jorryt Matthee och Jenny Greene från Princeton University; Ian McConachie och Rachel Bezanson från University of Pittsburgh; Josephine Baggen från Texas A&M University; Katherine Suess från Observatoire de Sauverny i Schweiz; David Setton of Massachusetts Institute of Technology’s Kavli Institute for Astrophysics and Space Research; Erica Nelson från University of Colorado; Christina Williams från U.S. National Science Foundation's National Optical-Infrared Astronomy Research Laboratory och University of Arizona.

Studien om upptäckten publicerades den 27 juni 2024 i Astrophysical Journal Letters.

Bild https://www.flickr.com/ Grekland (Arkiv: NASA, Internationella rymdstationen, 07/22/11)

torsdag 14 december 2023

Interstellära resor ger stora kommunikationsproblem med Jorden

 


Citerat från vikipedia: Interstellär kommunikation är överföring av signaler mellan planetsystem. Att skicka interstellära meddelanden är potentiellt mycket enklare än interstellära resor, eftersom det är möjligt med teknik och utrustning som för närvarande finns tillgänglig. Avstånden från jorden till andra potentiellt bebodda system medför dock oöverkomliga fördröjningar, förutsatt att ljusets hastighet är begränsad. Till och med ett omedelbart svar på radiokommunikation som skickas till stjärnor tiotusentals ljusår bort skulle ta många generationer för människor att komma fram. Slut citat.

Om vi skulle resa till det solsystem som ligger närmast vårt eget, Alfa Centauri, ca 4 ljusår bort från oss under förutsättning att inte någon avancerad sci-fi-teknologisk revolution sker  skulle det ta lång tid att resa dit.

Ett måste är någon form av framdrivningsmetod som kan ta oss nära, men omäjligt överträffa, ljusets hastighet (enligt nuvarande kunskap kan inget färdas snabbare än ljuset). Men även om vi skulle uppnå detta skulle detta futuristiska transportsätt innebära alla möjliga kommunikationsutmaningar, beskriver forskare från Cornell university i en artikel som nyligen laddades upp på preprint-databasenarXiv. 

Till exempel tar det några minuter för meddelanden att anlända till Mars men timmar  att nå de yttre planeterna. För kommunikation på ännu längre avstånd som en farkost som skickas till något stjärnsystem många ljusår bort skulle det innebära att det skulle ta flera år för ett meddelande att nå farkosten. Men det är inte allt.

Den speciella relativitetsteorin lär oss att klockor inte är synkroniserade över universum. Resenärer ombord på rymdfarkosten skulle uppleva tidsdilatation, innebärande att tiden skulle gå långsammare i farkosten än den skulle göra på jorden. På grund av tidsdilatation skulle passagerarna inte uppleva år och årtionden i restid (om de inte reste  tusentals ljusår bort). För dem, beroende på hur snabbt de åkte, skulle det bara gå veckor eller månader medan årtionden eller århundraden går på jorden. Om de kommer till jorden igen skulle de inte möta sina anhöriga de skulle vara döda sedan kanske många sekler beroende på hur snabbt rymdskeppet gått och tid de rest enligt skeppets klockor.

Denna tidsdilatation skulle även medföra allvarliga problem för att samordna meddelanden. Även om det är irriterande skulle det inte vara den svåraste delen med interstellära resor. Istället är det så att rymdfarkoster som färdas i nära ljusets hastighet skulle drabbas av allvarliga kommunikationsavbrott. I sin artikel beskriver forskarna två hypotetiska interstellära resescenarier.

I det första skulle resenärerna fortsätta att accelerera sin rymdfarkost med en konstant acceleration på 1 g – samma acceleration som naturligt sker av jordens gravitation. Detta skulle skicka deras rymdfarkost allt närmare ljusets hastighet (men enligt fysikens lagar aldrig nå riktigt fram).

Märkligt nog skulle denna typ av konstant acceleration introducera en händelsehorisont. Om människorna på Jorden sände ett meddelande till rymdfarkosten skulle det meddelandet vara begränsat till ljusets hastighet. Det skulle rusa framåt mot rymdskeppet, men under tiden skulle skeppet också röra sig bort från signalen. Om meddelandet skickades tillräckligt snabbt efter avresan skulle det så småningom nå skeppet efter en betydande tidsfördröjning. Men om meddelandet väntar för länge med att sändas skulle budskapet aldrig komma fram. Rymdfarkosten skulle alltid vara ett steg före meddelandet och från rymdskeppets perspektiv skulle signalerna från jorden så småningom tystna helt. Dock skulle de komma fram till slut om skeppet landade på en exoplanet eller saktade ner hastigheten.

Det andra scenariot erbjuder en annan  utmaning. Forskarna övervägde fallet med en rymdfarkost som skickades till en avlägsen destination. Till en början accelererade rymdfarkosten hela tiden men halvvägs genom sin resa vände den sig om och bromsade in så att den inte bara flög förbi sitt mål (för att landa exempelvis). Detta scenario skulle medföra sina egna kommunikationsutmaningar.

För det första skulle rymdfarkosten sluta ta emot meddelanden från jorden efter en viss tid likt ovan. Dessa meddelanden skulle så småningom nå rymdfarkosten, men först efter att skeppet hade nått sin destination och slutat röra sig eller saktat ner farten.

Å andra sidan skulle rymdskeppet hela tiden kunna skicka signaler till jorden dessa signaler skulle alltid nå sitt mål (efter lång tid). Signaler som sändes från destinationen (ex. en koloni som redan etablerats på en avlägsen exoplanet) skulle alltid nå ett rymdskepp medan det färdades i riktning mot kolonin. Men signaler som skickades från rymdfarkosten till destinationen skulle inte anlända förrän strax innan farkosten själv var framme, då alla skickade meddelanden staplades på varandra och tillkännagav farkostens ankomst (hastigheten av farkost och meddelanden skulle vara likartad är förklaringen).

Dessa realiteter innebär att kommunikation med rymdfarkoster med nära ljusets hastighet skulle vara mycket utmanande och resorna mycket ensamma.

Bild flickr.com

söndag 8 januari 2023

Nya rön om mörk materias existens i tid

 


Forskare vid Large High Altitude Air Shower Observatory (LHAASO) i Kina har nyligen presenterat ca 1,5 års observationsdata där nya gränser beräknas för livslängden för tunga partiklar bestående av mörk materia med massor mellan 10^5 och 10^9 giga-elektronvolt.

Studien har titeln "Constraints on heavy decaying dark matter from 570 days of LHAASO observations" och publicerades nyligen i Physics Review Letter.

Hittills har inget säkert kunnat sägas om mörk materia och dess grundläggande egenskaper. Vintergatans gravitationsmodell visar att det finns en mycket hög densitet av det vi kallar mörk materia i dess centrum och att gammastrålarna som produceras genom sönderfall av denna mörka materia kommer att fortsätta stråla ut från galaxens centrum i hundratals eller till och med tusentals ljusår. Men under lång tid har observationen av gammastrålar med ultrahög energi som produceras av tung mörk materia mött stora utmaningar, främst på grund av närvaron av andra slag av bakgrundsstrålning.

Tack vare sin oöverträffade höga detektionskänslighet för gammastrålar med ultrahög energi (>100 TeV) har LHAASO en mycket unik potential att observera gammastrålar som sönderfaller från tung mörk materia kan LHAASO eliminera bakgrundsstrålningen med nästan sex storleksordningar (över 100 TeV) vilket avsevärt minskar störningen från bakgrundsstrålning och förbättrar förmågan att fånga just gammastrålar.

Genom att använda data från KM2A-undergruppen av LHAASO mätte forskare intensiteten hos gammastrålar bestående av ultrahög energi bortom det galaktiska planet och kunde bestämma några av de starkaste gränserna hittills för livslängden av mörk materia. Gränsen är nästan 10 gånger högre än tidigare resultat visat. Studien visar att PeV-massa (mörk materia) har en livstid på minst ca miljarder biljoner år (10 ^ 21 år).

LHAASO: s observationer av gammastrålar kompletterar andra experiment i sökandet efter mörk materia. Detta då LHAASO:s fungerar stabilt och gradvis ackumulerar data vilket gör att denna gräns att ökas ytterligare.

Studien genomfördes av professor. LI Zhe och CHEN Songzhan från Institutet för högenergifysik vid den kinesiska vetenskapsakademin, professor. Kenny C. Y. Ng från Chinese University of Hong Kong och Dr. Marco Chianese från University of Naples Federico II i Italien.

Bild vikipedia på Hästhuvudnebulosan.

torsdag 18 november 2021

Problem med tidsfördröjning vid kommunikation mellan Jorden och Mars

 


Elton John sjöng om att Mars "inte är platsen där man ska uppfostra sina barn", men en dag hoppas likväl rymdbyråer över hela världen att bevisa att han hade fel genom att landa den första människan på den röda planeten som början till en framtida kolonisation av Mars. 

Men de som gör resan till Mars måste inte bara överleva resan fysiskt och mentalt utan även leva på en iskall planet utan andningsbar atmosfär och leva mycket mer isolerat än alla andra upptäcktsresande gjort i mänsklighetens historia. När Mars är som närmst oss är den likväl fortfarande ca 55 miljoner km från jorden vilket gör kommunikationsförseningar och leveransproblem mellan de två världarna stora och oundvikliga.

Detta kräver att besättningsmedlemmarna måste effektivt klara av stressiga förhållanden på egen hand med begränsade autonoma resurser tillgängliga ombord på resan dit eller hem och på ytan av Mars. De måste vara effektiva, initiativrika och iskalla i sina beslut och inte drabbas av panik. Det fodrar att inte vem som helst bör resa dit.

En radiosignal tar ca 30 minuter tur och retur att nå jorden och tillbaks från Mars. En tid då ett problem kan bli än större. För att 30 minutersgränsen ska hållas ska då en lösningshjälp finnas klar att sändas tillbaks omedelbart till Mars. Det fodrar att även Jordens kontaktpersoner är skärpta och kunniga annars kan ett svar ta lång tid och kanske komma försent. Även 30 minuter kan dock vara försent. Det kan vara ett akut nödrop.

 

Med få möjligheter att genomföra en provkörningar i rymden har forskare tillgripit markbundna experiment för att se hur astronauter hanterar sådana utmaningar. Ett tidigare experiment där isolering och tidsförskjutning av kommunikation gjordes  kallat Mars-500 avslöjade att en psykologisk avskildhet från kontrollen på jorden bland dem som deltog väckte rädsla och  kunde leda till motstånd från framtida besättningar i rymden till  kommandon. "Besättningarna på sådana uppdrag tenderar att minska sin kommunikation med kontrollen på jorden under isolering och att dela sina behov och problem mindre och mindre med jorden", säger Dr. Dmitry Shved, vid Ryska vetenskapsakademin och Moskva Aviation Institute,  en författarna till studien.

Det utarbetas numera även AI artificiell intelligens som kan ge förslag på hjälp på plats när något sker däruppe. Risken ser jag även med att isoleringen på Mars kan ge samhällen av typen Flugornas Herre  i isoleringen däruppe.

Bild vikipedia; En konstnärs uppfattning om en bemannad Mars-bas med ett odling.

tisdag 19 januari 2021

Sökning efter en unik gravitationssignal i tid och rum.

 


En unik signal från en gravitationsvåg de kraftfulla krusningar som går genom universum och tid har upptäckts. De nya rönen om denna upptäckt publicerades i The Astrophysical Journal Letters. Forskningen kommer från ett amerikanskt och kanadensiskt projekt som kallas North American Nanohertz Observatory for Gravitational Waves (NANOGrav) vilket existerat i 13 år.

Man söker gravitationssignaler  vilkas effekt kan spåras med hjälp av  dussintals pulsarer spridda över hela Vintergatan. Dessa pulsarer sammanlagt kan ses som ett jättestort teleskop då de används i sökandet.

Det är vad forskarna kallar det stadiga fluxet av gravitationsstrålning som, enligt teorin, sveper över jorden i en konstant basis är den källa man söker. Teamet har ännu inte preciserat målet men det börjar närma, säger Joseph Simon, astrofysiker vid University of Colorado Boulder och huvudförfattare till den nya rapporten."Vi har hittat en stark signal i vår datainsamling," säger Simon.

"Men vi kan inte säga vad som är gravitationsvågens bakgrund." Att upptäcka ett bakgrundsljud (gravitationsvågens riktning eller källa) skulle vara en stor vetenskaplig prestation och öppna ett nytt fönster till universum, tillade han. Dessa vågor skulle exempelvis kunna ge forskarna nya verktyg för att studera hur de supermassiva svarta hålen i centrum av många galaxer dras samman med tiden.

 

"Dessa lockande första antydningar om en gravitationsvågbakgrund tyder på att supermassiva svarta hål sannolikt går samman och att vi guppar i ett hav av gravitationsvågor porlande från supermassiva svarta hålsfusioner i galaxer över hela universum," säger Julie Comerford, docent i astrofysiker och teammedlem vid CU Boulder och NANOGrav. För att hitta den subtila signal som visar på den våg som genomsyrar alltet och visar på detta strävar NANOGrav-teamet efter att observera så många pulsarer som möjligt så länge som möjligt. Hittills har gruppen observerat 45 pulsarer i minst tre år i vissa fall i över ett decennium.

 

Det hårda arbetet verkar löna sig. I sin senaste studie har Simon och hans kollegor rapporterar att de har upptäckt en tydlig signal i sina data: Någon gemensam process verkar påverka gravitationsvågen som kommer från pulsarerna.

 

"Vi gick genom var och en av pulsarerna en efter en. Jag tror att vi alla förväntade oss att hitta några  feldata, " sa Simon. "Men sedan gick vi igenom alla data och vi sa, 'Herregud, det finns faktiskt något här.'"

 

Forskarna kan fortfarande inte säga säkert vad som orsakade signalen. Men pulsarerna kan ses som ett stort rymdteleskop i detta sammanhang då de tillsammans kan ge en bild av vad som gav signalen, riktningen i vilket fall, om den nu inte kom från alla håll samtidigt i en avlägsen tid kanske från BigBang (min anm)

Bild från pxhere.com en undrande blick mot det ofattbara universum.

lördag 4 april 2020

Fysiken visar nu att vi kan glömma att resa tillbaks i tiden.


De flesta grundläggande lagar i fysiken har inga problem med orsak och verkan i tid och rum. En händelse påverkar nästa händelse och gjort är gjort och kan inte göras ogjort. Det som skett har skett.


Vill vi gå tillbaks i tiden och ändra något beslut i vårt tidigare liv är detta omöjligt. Det förflutna är tid som inte kan ändras. Till exempel flyger en kopp som faller i hundra bitar inte tillbaka in i handen spontant och oskadat. (För att göra det måste tiden gå baklänges).  Hittills har forskarna förklarat detta med bristen på tidssymmetri genom den statistiska interaktionen mellan ett stort antal partiklar. 


Men nu har tre astronomer visar att endast tre partiklar räcker för att bryta tidssymmetrin.  Forskarna, som leds av den nederländska astronomen Tjarda Boekholt ska publicera sina resultat i aprilnumret av tidskriften The Monthly Notices of the Royal Astronomical Society. Tjarda Boekholt (Universitetet i Coimbra, Portugal), Simon Portegies Zwart (Leidens universitet) och Mauri Valtonen (Åbo universitet) beräknade banorna för tre svarta hål som påverkar varandra.


Detta gjordes i två simuleringar. I den första simuleringen sågs de svarta hålen i vila. Sedan rör de sig mot varandra och förbi varandra i komplicerade banor. Slutligen lämnar ett svart hål de övriga två. 


Den andra simuleringen började med slutsituationen för de två svarta hål som var kvar efter att det tredje lämnat dem. Nu försökte man vrida tillbaks händelsen med rymlingen till att denna återvände och den ursprungliga situationen enligt ex 1 återuppstod. Det visar sig att tiden (återvändandet till urspungssituationen) inte kan vändas i 5% av beräkningarna även om datorn använder mer än hundra decimaler.


De sista 5 procenten handlar därför inte om bättre datorer eller smartare beräkningsmetoder som man tidigare trott. Forskarna förklarar oåterkalleligheten med hjälp av begreppet Plancklängd  (själv är jag inte matematiker och förstår den inte) . Detta är en princip som är känd inom fysiken och som gäller fenomen på atomär nivå och mindre.


 Forskarledare Boekholt säger : "Rörelsen av de tre svarta hålen kan vara så oerhört kaotisk att något så litet som Plancklängden kommer att påverka rörelserna. Störningarna, storleken på Plancklängden har en exponentiell effekt och bryter inte tidssymmetrin."


Medförfattare Portegies Zwart tillägger: "Så att inte kunna vända tillbaka tiden är inte längre bara ett statistiskt argument. Det är redan dolt i naturens grundläggande lagar. Inte ett enda system med tre rörliga objekt, stora som små, planeter eller svarta hål, kan undkomma tidsriktningen."


Den intressanta frågan är (min anm.) varför är det i 5% av fallen är omöjligt att återgå till ett tidigare läge i tiden. Helt förstår man inte detta. Men analysen visar att det därmed också kan antas att tidsresor bakåt i tiden är omöjliga. Därmed faller alla argument för att framtidens jordbor besöker det förflutna eller oss.

söndag 15 december 2019

Varde ljus och det varde ljus i mörkret efter skapelsen, (BigBang) men hur lång var tiden till detta?


Under hundratals miljoner år efter BigBang var rymden tom inget fanns mer än mörker och en dimma av väteatomer vilka kom till ca 400 000 år efter att BigBang skett. 


Teleskop runt om i världen försöker fånga en glimt av det Primalväte (känt som neutralt väte) som då fanns för att lokalisera det ögonblick då den mörka tiden slutligen var över och de första galaxerna bildas. 


Ett team av forskare i Australien har med hjälp av the Murchison Widefield Array (MWA) radio telescope kommit närmare att hitta dem än någonsin tidigare.  En energi som från det tidiga universum som var så stark att varje atom med sina elektroner slets bort vilket gav en positiv laddning. De första av dessa atomer var positivt laddade vätejoner. Under hundratusentals år svalande universum och expanderade tillräckligt för att dessa vätejoner skulle få sina elektroner och bli neutrala. Dessa neutrala väteatomer tros vara det dominerande inslaget i den kosmiska mörka (tiden efter de första 400 000 åren). 


Så småningom, när tillräckligt många av dem klumpat ihop sig till granulat bildades de första stjärnorna. 


Men då universum har expanderat under de senaste 12000000 00 åren har dessa våglängder sträckts ut och gör att det är svårt att se så långt tillbaks i tiden.

 Författarna till den nya studien uppskattade att neutral vätgas våglängd har sträckt till ca 2 meter och det är den signalen de sökte på himlen när de använde MWA. Tecken tyder på att de kan vara detta på spåren enligt dem själva.


Själv anser jag (min anm) det tveksamt att det går att säkert se så långt tillbaks i tiden och dra säkra slutsatser. Tecken på att de hittat något, men vad, kan man dock tänka sig.


Bild från vikipedia på en bit av universum med stjärnor och galaxer.

måndag 3 september 2018

Gammablixtar från svarta hål verkar gå baklänges i tid.


En hypernova är en extremt energirik variation av en supernova. Varför en hypernova bildas är fortfarande en gåta. Men likt supernovor bildas hypernovor av något händelseförlopp. En möjlig förklaring är att de uppstår när mycket stora stjärnor kollapsar i slutet av sitt existerande eller vid sammansmältning av svarta hål (neutronstjärnors slut) eller mellan ett existerande svart hål och en neutronstjärna.

Tolkningen av orsaken till de långa gammablixtarna vilka inträffar vid bildandet av hypernovor är när en mycket tung och mycket het stjärna blir en supernova genom att den kollapsar och ett svart hål bildas. Detta leder till att resterna av stjärnans material vid kollapsen kastas ut med hög hastighet varvid en enorm mängd gammastrålning alstras.

Man kan se det som att en massiv stjärna kollapsar som ett svart hål och skickar ut en lysande SOS signal i form av mycket starka gammablixtar.

I en ny studie har nu forskare funnit något mycket märkligt angående de mystiska blixtrarna (gammablixtarna). De verkar vända tiden. Det innebär en lysande ljusvåg (gammablixt) skjuts ut från hålet för att i nästa stund plötsligt svårförklarligt uppenbaras från motsatt håll och gå tillbaks igen.

Gammablixtar i sig är några av de högsta energiexplosionerna vilka någonsin upptäckts. De skiner klarare än en miljon miljoner gånger av jordens sols strålning enligt NASA.

"Gammablixtar är de mest lysande källorna i naturen. De producerar mer energi än något annat som avger ljus'' säger författaren till studien ovan baseras på Jon Hakkila astrofysiker vid forskarskolan vid College of Charleston i South Carolina forskning.

När två neutronstjärnor kolliderar skickar de ut korta gammablixtar som bildar ett svart hål. En supernova har bildats och kanske gammablixtrar uppstår om det resulterar i en hypernova. Även när en enstaka stjärna exploderar produceras gammablixtar om den döende stjärnan kollapsar i ett svart hål.

 Under undersökning av sex av de ljusaste gammablixtar som upptäckts av NASAS ComptonGamma Ray Observatory 



Under 1990-talet fann man att skurar av gammablixtrar innehöll tidsomvända ljus signaturer. Med andra ord, signaturer av ljusstyrka som fluktuerade, vänder och går bakåt i tid.  Detta gäller för både kortvariga och långa gammablixtar.
 Denna våg baklänges antas ha sitt ursprung från något slags reflekterande yta som liknar en spegel och återspeglar tryckvågorna. Men för att förstå fenomenet kanske en ny slags fysik behövs säger forskarna. För mer info om studien se medföljande länk.  

torsdag 2 november 2017

Förflyttning blixtsnabbt i tid och rum genom maskhål. Kan bli verklighet.

Ett maskhål är en teoretisk passage genom rymdtid som kan skapa genvägar till långa resor genom universum. Maskhål förutses genom teorin om generell relativitet. Men maskhål innebär även farorna med plötslig kollaps av dessa och vad som då händer med det som just då befinner sig i detta vet vi inte. Maskhålresor innebär hög strålning och farlig kontakt med exotisk materia. Maskhålen kan ses som broar mellan två platser  skilda åt i rymdtid. Men möjliga att nå genom ett maskhål.

Läs gärna mer om maskhål här. Men fast de verkar teoretiskt mycket möjliga har ännu inget hittats. Det anses även att de är mycket små ca 10 -33 cm och enbart existerar i bråkdelar av sekunder.  De uppstår överraskande och försvinner lika överraskande igen (idag, då vi inte förstår varför ett uppstår just där det gör det). 

Men teoretiskt kan en resa ske genom maskhål om vi kan kontrollera det vilket skulle  innebära resor till och mellan galaxer på nära nolltid och även resor fram och tillbaks i tiden.

Kommer då människan att klara av detta en gång i en framtid? Tveksamt då det redan nu i så fall funnits tecken i nutid eller forntid som misstänkts komma från en och annan tidsresenär från framtiden. Men kanske ändå. Då förändring av det förflutna bör ge katastrofala följder i framtiden och förändra denna så vi bör även tänka oss att om människan löser tidsresor bör de även förstå att inte röra något i det förflutna eller visa sig som framtida besökare utan bara iaktta och smälta in i den tid de besöker.


Det bör inte åkas tillbaks till platser utan väldigt stora skäl (kanske som historiker)  och som iakttagare då smälta in i den tiden en kort stund eller helt enkelt finnas där ett tag utan att ses av den tidens folk som udda och främmande.

Bilden ska ge en tanke på hur man kan föreställa sig ett maskhål i en förvrängd rymdtidresa.

söndag 25 juni 2017

Har livsmöjligheter skapats samtidigt på många platser i universum samtidigt tidsmässigt? Men sedan försvunnit på kanske alla utom på Jorden?

Kan det efter BigBang överallt ha blivit möjligt att liv skulle bildas? Tiden för detta är ca 3 miljarder år sedan. Är vatten och atmosfär något som blev till just då på många platser men sedan försvann på kanske alla utom på Jorden. En livsvänlig atmosfär plus rinnande vatten.

Tanken slår en då man tänker på följande.
Mars och Jorden verkar ha haft livsmöjligheter samtidigt Allt verkar ha funnits på plats för ca 3 miljarder år sedan och fungerat.

Mars är hälften så stor som Jorden och dubbelt så stor som vår måne.
Men en gång rann vattnet i floder på Mars samtidigt som det rann här på Jorden. Likt på Jorden fanns även en tät atmosfär.

Tiden för detta var i livets början på Jorden för ca 3 miljarder år sedan.

De byggstenar för liv och bevis på material som fanns här på Jorden fanns som man kan se idag i uttorkade floder och platser på även på Mars.

En gång fanns även atmosfär av betydligt tätare slag än det tunna skikt som idag finns kvar där. Merparten försvann och en tunn atmosfär av mestadels koldioxid finns kvar och vattnet finns i mycket tunna lager vid polerna i djupfryst skick kvar.

Övrigt vatten i de stora floderna och sjöarna på Mars har avdunstat ut i rymden likt atmosfären.

Det intressanta är inte bara varför allt försvann och hur länge det fanns kvar utan varför det en gång fanns. En annan spännande fråga är varför det fanns samtidigt på Jorden och Mars.

Jordens storlek kan vara anledningen till att vatten och atmosfär inte försvann från oss tyngdkraften höll det kvar. Vi fick även skyddande höljen av ex Van Allen-bältena mot den farliga strålningen från rymden för att liv skulle kunna leva här.

Här utvecklades efterhand perfekta förhållanden för liv av alla slag. Mars däremot blev utan allt även det som redan uppkommit. Atmosfär och vatten. Fanns växter eller liv av något slag i början även där? Ännu finns inga bevis på det.

Men varför började allt samtidigt på Mars och Jorden? En fråga av filosofiskt ursprung och mycket spännande att tänka över. Vad hade hänt för ca 3 miljarder år sedan och varför fick Mars o Jorden samma början? Det som skilde var avstånd från solen, storlek och att Mars till skillnad mot Jorden fick två månar.


Kan samma början av möjligt liv och vattenförekomst finnas på andra platser i vårt solsystem vi har ju månar av en rätt stor storlek vilka idag är isvärldar ex Jupiters måne Europa där misstanken att liv kan finnas under dess istäcke i ett underjordiskt hav länge diskuterats. Månen Europa är Jupiters fjärde största måne och något mindre än vår måne vilken är en stenmåne men där mycket mindre mängder av vatten finns, då i frusen form i gruset men inte synligt från Jorden.
Bilden visar storleksförhållandet mellan Mars o Jorden

måndag 17 oktober 2016

Tiden kan göra allt i teorin.

Kvantteorin är svår att förstå. Kanske omöjlig för människan. Partiklar rör sig ofta från uppbyggnad till nedbrytning i en tidens ström. En början och ett slut. Ett slut som kan vara början på något nytt osv.

Men teoretiskt skulle motsatsen kunna hända. Det nedbrutna börja byggas upp igen likt en tidsskala som plötsligt började gå baklänges.


Inget säger att detta är omöjligt. Men just nu är vi inne i en tid då motsatsen sker. Men inget säger att det en gång vänder eller att så skett i evighet. 

torsdag 13 oktober 2016

Universum är utan riktning. Allt expanderar.

Vi vet att universum expanderar sedan Big bang vilken skedde i ett ingenting där inget var upp och ner, höger eller vänster, tid eller plats.

Allt detta kom senare efter den punkt i ingenting från ingenstans som plötsligt fanns och expanderade i ett ingenting. När väl människan behövde riktingar för att förstå sin verklighet på Jorden.

Ur detta uppkom allt vi vet, ser och upplever. Ur detta kom vi till slut på en stenklump kallad Jorden av oss och uppfann det vi kallar upp och ner, höger och vänster,  tid och rum och allt annat.


Men universum som vi kallar det är fortsatt en händelse som fortskrider sedan Big Bang expansionen fortsätter åt alla håll samtidigt i det som inte har upp  och ner, höger eller vänster, tid och rum.

tisdag 23 augusti 2016

Jordens relativa låga ålder visar på att mycket kan ha hänt innan dess av liv där ute.

4,5 miljarder år är det sedan vårt solsystem bildades. Big Bang inträffade för ca 14 miljarder år sedan och livets byggstenar fanns ca  30 miljoner år senare.

Detta innebär att mycket liv kan ha funnits därute innanvi kom till och att mycket av detta även nu är borta.

Men liv kan självfallet uppstå i cykler därute liv kommer och går.

I teorin. Men livets byggstenar är inte per automatik liv. Något måste starta livsprocesserna och evolutionen.


Kan det likväl behövas en intelligens som startar det. En Gud. I så fall måste Gud funnits alltid inget kan skapa en Gud. 

tisdag 12 januari 2016

100 miljoner år tog det från den första procenten syre till syrehalt vilket möjliggjorde en explosion av liv på Jorden.

100 miljoner år från en mycket låg syrenivå i vår atmosfär tills den nådde en nivå där livet genom en explosion av möjligheter tog fart. En explosion vilken inte kunde stoppas när den väl börjat. Liv överallt i allt fler former av växter och djur.

En skapelse av evolution och i denna skapelse en evolution och förnyelse och experimentlusta vi ännu inte kan se slutet av.

Det var cirka 600 miljoner år sedan denna explosion av liv uppstod. Innan dess fanns enbart bakterier av enklare slag.  De dog ut när  syrets fick större koncentration i atmosfären . Det var ett gift för dem.


För en spännande och kort beskrivning av vad som skedde kan följande vara intressant att läsa.

söndag 13 september 2015

Lite om svarta hål och vad som händer där. Tid, rum och dimension.

Stephen Hawking är experten på dessa objekt vilka tros finnas i centrum av alla galaxer. Allt som dras in i detta hål eller kompakta material blir kvar. Ljuset kan inte lämna hålet allt blir kvar men inte för evigt.

Efter en lång tid avdunstar allt genom värme. Materialet försvinner i rumtiden. Allt finns kvar men kan inte ses eller mätas längre.

Har Hawkings rätt i sin teori. Ingen vet. För min del tror jag man skulle ta hänsyn till inte bara tidsaspekten i rummet utan även dimensionsteorin. Att allt försvinner in i en annan dimension genom tidsrumsfaktorn.


Se även en skiss över svarta hål här från DN.

måndag 7 september 2015

Ann Arbor är en dvärggalax ca 340 ljusår bort. Här finns även annat i universum som kan ses som smått.

I denna lilla i universums mått mätt lilla galax finns som i alla andra galaxers mitt ett svart hål.

Idag tror man att alla galaxers centrum innefattar ett svart hål. Varför det finns och hur det bildats är en gåta. Troligen som jag ser det har dessa hål en mening nu och när galaxen bildades.

Utan ett svart hål ingen galax. Om de svarta hålen är en tidsinställning vilken var viktig för bildandet kan vara lika viktig för en galax framtida utplåning vet ingen.

Kanske alla galaxer har en utmätt tid och en gång försvinner i sitt svarta hål. Kanske sedan alla universums svarta hål närmar sig varandra genom att expansionen av universum då går motsatt väg. För att därefter dras ner till början av Big Bang igen och sluta som en svart punkt vilken en gång åter blir ett nytt Big Bang.


Nå i vilket fall som helst finns i ovanstående dvärggalax ett minisvart hål. Hålen verkar därmed i storlek ha samband med sin galax storlek.

lördag 5 september 2015

Det fanns en sjö på Mars. Den röda fläcken på Jupiter är fortfarande en gåta. Vad utlöste denna mastodontstorm och har den ett slut i tid?

Sedan den upptäcktes har den röda fläcken förundrat människan. Varför existerar den?

Kan den röda fläckens innehåll på gasblandningen Jupiter består av ha betydelse för den storm med vindar på 400m/sek som verkar evig ha med saken att göra? Hur länge har stormen pågått? Finns det ett slut på stormen nu när den en gång uppstått? Varför uppstod den? Kan det varit något som kom in i Jupiters atmosfär eller ner på dess yta som utlöste stormen?

Har den röda fläckens gas betydelse för stormens fortsatta liv? Har fläcken alltid funnits och då även stormen?

Är fläcken en skapelse  senare Jupiters liv och då den uppstått även stormen?

På Mars har nu bevis för en tidigare sjö funnits. Vad som funnits flytande i denna vet vi inte. Det kan ha varit vatten. Men även annan vätska är möjlig. Vätska som lyckats bestå en tid men sedan avdunstat.


Om det varit vatten med förutsättning för liv eller ej vet ingen.