Google

Translate blog

Visar inlägg med etikett mörk materia. Visa alla inlägg
Visar inlägg med etikett mörk materia. Visa alla inlägg

söndag 13 juli 2025

Bruna dvärgstjärnor kan avslöja hemligheten med mörk materia

 


Bild https://www.iflscience.com  En konstnärs stiliserade intryck av en brun dvärgstjärna som för våra ögon skulle vara svår att skilja från en vanligt förekommande röd dvärgstjärna. Bild Sissa Medialab personal med Adobe Illustrator

Stjärnors och galaxers rörelser avslöjar gravitationskrafter som är alldeles för stora för att komma från vanlig materia. Att bestämma karaktären hos den "mörka materian" (osynlig materia) kan ses som WIMPS (Weakly Interacting Massive Particles)  innebärande svagt växelverkande massiva partiklar” av materia, som vi inte kan se eller enkelt mäta och som bara ger sig till känna genom sin gravitation och svaga växelverkan med vanlig materia. WIMPS är en möjlig förklaring till mörk materia.

Just på grund av dess svaga växelverkan med vanlig materia skulle WIMPS vara mycket svåra att upptäcka, så trots att de är en av de tidigaste förklaringarna som föreslagits har de ännu inte hittats (om det finns).

Mörk materia tros vara hopad nära galaxers centrum där den utsätts för gravitationskrafter. Om WIMPS utgör en stor andel av mörk materia betyder det att  koncentreras där till en plats där de beter sig annorlunda än på platser där den är mer utspridd. Ett sådant distinkt beteende kan vara att få så kallade bruna dvärgar att skina upp. 

– Mörk materia växelverkar genom gravitation så den kan fångas in av stjärnor och ackumuleras inuti dem. Om det händer kan den också interagera med sig själv och förintas vilket frigör energi som värmer upp stjärnan, beskriver Dr Jeremy Sakstein vid University of Hawaii. Mörk materia som överladdar en stjärna är dock svår att upptäcka. Stjärnan är redan ljusstark, så det är svårt att säga om den är varmare och ljusare på grund av mörk materia.

 Å andra sidan har bruna dvärgar, objekt med 1,2-8 procent av solens massa, inte tillräckligt med gravitationskraft för att initiera fusion i vanligt väte. De lyser svagt genom en kombination av värme från deras bildning och sammansmältningen av sällsynt deuterium, som kan inträffa vid lägre tryck än vanligt väte. "Ju mer mörk materia du har omkring dig, desto mer kan du fånga in", beskriver Sakstein.

Det som skulle vara en brun dvärg blir vad teamet kallar en "mörk dvärg", som ironiskt nog inte är mörk, eftersom  energin kommer ut som ljus.

Teorin fungerar bara om mörk materia består av WIMPS, eller något liknande, snarare än förklaringar som sterila neutriner, axioner och en mängd andra förslag.

Så om vi hittar en mörk dvärg har vi omedelbart minskat sökandet efter mörk materia dramatiskt.

"Det fanns några markörer, men vi föreslår litium-7 eftersom det skulle vara en unik effekt." Beskriver Sakstein. Litium-7 smälter lätt samman i vanliga stjärnor. Följaktligen är det bara de yngsta stjärnorna som har märkbara mängder. Det är dock bara de tyngre mörka dvärgarna som skulle förbränna litium-7, förutsatt att de fungerar som vi förväntar oss. Det betyder att även om de tyngre mörka dvärgarna skulle se ut som märkligt ljusröda dvärgar, borde det finnas en lägre masspopulation som kan särskiljas genom närvaron av litium-7.

Därför, om litium-7 upptäcktes i vad som verkar vara stjärnor nära Vintergatans centrum, är den mest troliga förklaringen att dessa skulle vara mörka dvärgar och att området är översvämmat av WIMPS.

Studien är publicerad i Journal of Cosmology and Astroparticle Physics och ett preprint finns tillgängligt på arXiv. 

onsdag 25 juni 2025

Nu har forskare börjat söka efter hur mörk materia rör sig i vintergatan

 


Bild  https://today.usc.edu  Detta konstnärskoncept illustrerar den nya synen på Vintergatan. Galaxens två stora armar kan ses fästa i ändarna av en tjock central stav medan de två nu degraderade mindre armarna är mindre distinkta och placerade mellan de stora armarna. (Med tillstånd /NASA/JPL-Caltech)

Ett forskarlag under ledning från USC (University of Southern California) har skapat en serie stordatorsimulerade tvillingar till Vintergatan. Något som kan hjälpa forskare att finna nya svar på ett av universums största mysterier. Den osynliga mörka materia man anser finns och vilken utgör cirka 85 procent av all materia som existerar.

Forskningen leddes av kosmolog Vera Gluscevic docent vid USC Dornsife College of Letters, Arts and Sciences; och Ethan Nadler, tidigare postdoktor vid USC och Carnegie Observatories numera biträdande professor vid University of California, San Diego och Andrew Benson, forskare vid Carnegie Observatories.

De kallade sitt simuleringsprojekt "COZMIC", en förkortning för "Cosmological Zoom-in Simulations with Initial Conditions beyond Cold Dark Matter". Till sviten av studier tog forskargruppen steget att använda ny fysik. Inte bara vanlig partikelfysik och relativitetsteori och programmerade en superdator för att skapa mycket detaljerade kosmologiska simuleringar genom COZMIC för att testa olika idéer om vad mörk materia kan göra, rörelser och är.

"Vi vill mäta massorna och andra kvantegenskaper hos dessa partiklar och mäta hur de interagerar med allt annat", beskriver Gluscevic. Med COZMIC kan vi för första gången simulera galaxer som vår egen under radikalt annorlunda fysikaliska lagar för att testa dessa lagar mot verkliga astronomiska observationer. Förutom Gluscevic, Nadler och Benson inkluderar teamet bakom COZMIC Hai-Bo Yu från UC Riverside, Daneng Yang, tidigare vid UC Riverside nu vid Purple Mountain Observatory CAS; Xiaolong Du från UCLA; och Rui An, tidigare från USC.

– Våra simuleringar visar att observationer av de minsta galaxerna kan användas för att urskilja modeller av mörk materia, beskriver Nadler.

I studierna med COZMIC redogjorde forskarna för följande beteendescenarier för mörk materia:

Biljardbollsmodellen: I denna första studie kolliderar varje partikel av mörk materia med protoner tidigt i universum likt biljardbollar när de först sätts i rörelse. Denna interaktion jämnar ut småskaliga strukturer och eliminerar satellitgalaxer i Vintergatan. Denna studie inkluderar också scenarier där mörk materia rör sig i hög hastighet och andra där den består av partiklar med extremt låg massa.

Mixed-sector modellen: Denna andra studie var ett hybridscenario där vissa partiklar av mörk materia interagerar med normal materia medan andra passerar genom den.

Självinteragerande modellen: I denna tredje studie simulerade forskarna ett scenario där mörk materia interagerar med sig själv både i tidernas begynnelse och idag vilket förändrar hur galaxer bildats under den kosmiska historien.

Medan de körde dessa simuleringar matade forskarna in ny fysik i superdatorn för att skapa en galax vars struktur bär signaturer av dessa interaktioner mellan normal och mörk materia, beskriver Benson.

Gluscevic tillägger: "Även om många tidigare simuleringsprogram har utforskat effekterna av mörk materias massa eller självinteraktioner har ingen hittills simulerat växelverkan mellan mörk materia och vanlig materia. Sådana interaktioner är inte exotiska eller osannolika. Det är faktiskt troligt att de existerar."

Forskningen fortsätter ännu har den inte givet ett svar.

måndag 28 april 2025

Det okända objekt som kolliderade med Perseushopen är hittat

 


Bild https://subarutelescope.org  visar trolig mörk materia i Perseushopen. Fördelningen av mörk materia (i blått) visas på bilden ovan som tagits av Hyper Sprime-Cam med Subaruteleskopet. Den nyligen funna stjärnhopen finns nära galaxen NGC 1264 cirka 1,4 miljoner ljusår bort (till höger i bilden) om Perseushopens centrala galaxer. En svag bro förbinder de två strukturerna. (Källa: HyeongHan et al.)

Perseushopen  finns cirka 240 miljoner ljusår från jorden och innehåller ca 600 miljarder solar. I årtionden trodde astronomer att stjärnorna här för länge sedan hade ett stabilt tillstånd. Dess uppenbara brist på tydliga fusionssignaturer gav antydan om att det var ett "skolboksexempel" på ett lugnt stjärnkluster  (ett kluster av stjärnor där inga eller nästan nya stjärnor bildades).

Framsteg inom observationsteknik har gjort det möjligt för astronomer att se djupare in i dess struktur och då avslöjades subtila men övertygande bevis på tidigare störningar. Detta gav upphov till ett grundläggande mysterium: då det finns tecken på en kollision var finns eller vad var det som kolliderat med strukturen?

För att lösa mysteriet analyserade teamet arkivdata från Hyper Suprime-Cam på Subaruteleskopet. Gravitationslinsing användes ett fenomen där massiva objekt böjer ljuset från bakgrundsgalaxer och ses som mycket närmre än de är. Det fungerar även som ett kraftfullt verktyg för att kartlägga den osynliga mystiska mörka materian. Med hjälp av denna teknik har forskarna identifierat en massiv klump av det som kallas mörk materia med en vikt av cirka 200 miljarder solmassor och som ligger cirka 1,4 miljoner ljusår väster om hopens kärna (bilden ovan ses till höger).

Anmärkningsvärt nog är denna struktur av mörk materia kopplad till kärnan i Perseushopen genom en svag men statistiskt signifikant "bro av mörk materia", vilket ger direkta bevis på tidigare gravitations interaktion mellan dem. 

Numeriska simuleringar som utförts av teamet tyder på att denna struktur av mörk materia kolliderade med Perseushopen för ungefär fem miljarder år sedan. Resterna från denna kollision formar fortfarande den nuvarande strukturen i hopen.

– Det här är den saknade pusselbiten som vi har letat efter, beskriver James Jee, korresponderande författare till studien. "Alla de udda former och virvlande gas som observeras i Perseushopen är nu meningsfulla i samband förklaringen att en större sammanslagning skett."

 Resultatet av analysen publicerades som HyeongHan et al. "Direct Evidence of a Major Merger in the Perseus Cluster" i Nature Astronomy den 16 april 2025. 

Vi ska komma ihåg att ingen vet vad det vi kallar mörk materia är. Jag misstänker att det egentligen är gravitation eller en form av vanlig materia vi inte förstår eller både ock.

onsdag 16 april 2025

Att förklara universum utan mörk materia och mörk energi

 


Bild https://www.pexels.com/

Dr. Richard Lieu, professor i fysik vid University of Alabama i Huntsville (UAH), har publicerat en artikel i tidskriften Classical and Quantum Gravity med en ny förklaring av universum utan hjälp av mörk energi och mörk materia. 

Förklaringen bygger på att universum är byggt på steg av multipla singulariteter snarare än att BigBang ensam förklarar expansionen av kosmos. Den nya modellen avstår från behovet av mörk materia eller mörk energi som förklaring till universums acceleration och hur strukturer som galaxer genereras.

Forskarens arbete bygger på en tidigare modell som bygger på hypotesen att gravitationen kan existera utan massa och som har fått 41 000 läsningar och många citeringar sedan det publicerades 2024. 

  Den nya modellen  tar hänsyn till både strukturbildning och stabilitet och de viktigaste egenskaperna som observerats för universums expansion i stort genom att använda densitetssingulariteter i tiden som enhetligt påverkar hela rymden för att ersätta teorin om konventionell mörk materia och mörk energi.

Lieus förbättrade modell förlitar sig inte på exotiska fenomen som "negativ massa" eller "negativ densitet" för att fungera. Teorin erbjuder istället uppfattningen att universum expanderar på grund av en serie stegliknande utbrott som kallas "transienta temporala singulariteter" som översvämmar hela kosmos med materia och energi, men som ändå sker så snabbt att de inte kan observeras eftersom dessa singulariteter blinkar in och ut ur existensen.

Jag är helt enig med denna nya teori då jag aldrig tagit till mig tron på existensen av mörk materia och mörk energi utan anser att det antingen är ett fenomen av ej förstådd vanlig energi eller materia eller helt enkelt är ett gravitationsfenomen.

måndag 17 mars 2025

Mystiskt fenomen tros vara ett okänt slag av mörk materia

 


Bild wikimedia Bild av natthimlen ovanför Paranal i Chile den 21 juli 2007, tagen av ESO-astronomen Yuri Beletsky. Ett brett band av stjärnor och stoftmoln sträcker sig över mer än 100 grader av skyn. Det är Vintergatan som ses. I mitten av bilden ses två ljusa objekt. Den ljusaste är planeten Jupiter, medan den andra är stjärnan Antares. Tre av de fyra 8,2-metersteleskop som utgör ESO:s VLT (very large teleskop) syns med en laserstråle som strålar ut från Yepun, enhetsteleskop nummer 4. Laserstrålen pekar direkt mot Vintergatans centrum. På bilden syns även tre av de 1,8 m stora hjälpteleskop som används för interferometri. De visas som små ljusstrålar som är dioder placerade på kupolerna. Exponeringstiden är 5 minuter och då spårningen gjordes på stjärnorna är teleskopen något suddiga.

Dr Shyam Balaji, postdoktor forskare vid King's College London och en av huvudförfattarna till studien, förklarar: "I centrum av Vintergatan finns enorma moln av positivt laddat väte vilket varit ett mysterium för forskare i årtionden eftersom väte normalt sett är neutral. Frågan är vad är det som ger tillräckligt med energi för att slå ut de negativt laddade elektronerna ur vätet?

"Energisignaturerna som strålar ut från den här delen av vår galax tyder på att det finns en konstant, roterande energikälla som gör just det och våra data säger att den kan komma från en mycket ljusare form av mörk materia än vad nuvarande modeller tar hänsyn till." (min fundering är om kan det vara ett fenomen från det svarta hålet och är fenomenet likartat i andra galaxer?)

Den mest etablerade teorin för mörk materia är att det sannolikt är en grupp partiklar som kallas "Weakly Interacting Massive Particles" (WIMPs), som passerar genom vanlig materia utan mycket interaktion vilket gör dem extremt svåra att upptäcka.

Forskarna tror att dessa små partiklar av mörk materia kraschar in i varandra och producerar nya laddade partiklar i en process som kallas " annihilation". Dessa laddade partiklar kan sedan jonisera vätgasen.

Tidigare försök att förklara denna joniseringsprocess har förlitat sig på kosmisk strålning som är snabba och energirika partiklar som färdas genom universum. Denna förklaring har dock stött på vissa svårigheter då energisignaturer som registrerats från observationer av den centrala molekylära zonen (CMZ) där detta sker (att väte blir positivt laddat)  inte verkar vara tillräckligt stor för att tillskrivas kosmisk strålning. En sådan process verkar inte heller vara möjlig med WIMPs.

Forskargruppen förklarar att energikällan som ger resultatet av  kraschen (vilket ger positivt laddat väte) resulterar i längre våglängder än kosmisk strålning ger och mindre partiklar än en WIMP.

– Sökandet efter mörk materia är vetenskapens största jaktbyte sedan länge men många experiment är baserade på jorden. Genom att använda gas vid CMZ för en annan typ av observation kan vi komma direkt till källan. Data visar att mörk materia potentiellt kan vara mycket ljusare än vi trott (och kanske något enklare att hitta med rätt slags instrument än vi förstår. Men vilket?).

– Sökandet efter mörk materia är ett av grundvetenskapens viktigaste mål, men många experiment är baserade på jorden och härifrån söker man efter vad den mörka materian är. Genom att kika in i mitten av vår Vintergata antyder vätgasen i CMZ att vi kan vara närmare att identifiera bevis för den mörka materians möjliga natur om vi söker här istället.

Upptäckten ovan kan samtidigt förklara än större mysterier i vår galax som till exempel en specifik typ av röntgenstrålningsobservationer som hittats i Vintergatans centrum känt som "511-keV-emissionslinjen". Denna specifika energisignatur kan också bero på att samma mörka materia som med låg massa kolliderar och producerar laddade partiklar.

Studien  publicerades nyligen i Physical Review Letters och har potentiellt återupplivat en annan typ av mörk materia med mycket lägre massa än en WIMP.

Jag anser däremot att mörk materia är en form av gravitation vi ännu inte förstår och inget annat. 

tisdag 11 mars 2025

Nya gränser för egenskaper hos mörk materia


 Bild https://www.eurekalert.org  Spektrografisk teknik för att separera ljus i sönderfallande mörk materia och bakgrundsljus användes. WINERED använder de bredare spektrala egenskaperna hos bakgrundsljus för att skilja det från ljus från sönderfallshändelser. Fotograf: Wen Yin, Tokyo Metropolitan University.

Forskare har börjat använda en kombination av datamodeller och toppmoderna observationer för att sätta gräns för vilka egenskaper mörk materia kan ha. Nyligen har ett team av forskare från Japan under ledning av docent Wen Yin från Tokyo Metropolitan University använt en ny spektrografisk teknik för att observera ljus från två galaxer, Leo V och Tucana II. De använde det 6,5 meter breda Magellan Clay Telescope i Chile för att samla in ljuset från dessa på det infraröda området i spektrumet.

Forskarlaget fokuserade på en lovande kandidat för mörk materia, den axionliknande alpha particlen (ALPoch undersökte hur den "sönderfaller" och spontant avger ljus. Ledande teoretiska modeller i den nära infraröda delen av spektrum till en lovande plats att se på. Men det infraröda är en trång och förvirrande del av det elektromagnetiska spektrumet. Det beror på det stora utbudet av ljud med flera störningar från andra källor. Exempel på detta är zodiakalljus, den svaga spridningen av solljus,  interstellärt stoft och ljus som sänds ut av atmosfären när den värms upp av solen. För att komma runt detta har de i sitt tidigare arbete föreslagit en ny teknik som utnyttjar det faktum att bakgrundsstrålning tenderar att omfatta ett bredare spektrum av våglängder medan ljus från en specifik sönderfallsprocess är mer och starkt inriktat till ett smalt område inom det elektromagnetiska fältet.

Likt ljus från ett prisma blir svagare när olika färger sprids tunnare och tunnare blir sönderfallshändelser som är begränsade till ett smalt område skarpare och skarpare. Olika toppmoderna infraröda spektrografer ex NIRSpec på James Webb Space Telescope, WINERED på Magellan Clay Telescope med flera kan användas för att implementera denna teknik vilket effektivt gör dessa instrument till utmärkta detektorer för mörk materia.

Tack vare precisionen i teamets teknik (WINERED) kunde man förklara allt ljus de upptäckte i det nära infraröda fältet med betydande statistisk noggrannhet. Det faktum att inget sönderfall hittades användes sedan för att sätta en övre gräns för frekvensen av dessa sönderfallshändelser, eller en nedre gräns för livslängden för ALP-partiklar. Deras nya nedre gräns i sekunder är 10 med 25 till 26 nollor efter sig, eller tio till hundra miljoner gånger universums ålder.

Upptäckten är inte bara betydelsefull eftersom detta är den skarpaste gränsen hittills för mörk materias livstid. I arbetet användes den senaste tekniken av infraröd kosmologi för att ta itu med problem inom grundläggande partikelfysik. Och även om deras slutsatser är baserade på noggrann analys av data finns det antydningar om anomalier eller "överdrifter" som erbjuder den lockande utsikten till faktisk upptäckt av mörk materia med mer insamlad data och analys. Sökandet fortsätter efter den saknade biten i vårt universum (den mörka materien vilken jag inte tror finns utan är en form av vanlig materias påverkan av gravitation).

Arbetet stöddes av JSPS KAKENHI Grant Numbers 22K14029, 20H05851, 21K20364 och 22H01215 och Incentive Research Fund for Young Researchers från Tokyo Metropolitan University. Data från WINERED samlades in med det 6,5 meter stora Magellan Clay Telescope vid Las Campanas-observatoriet i Chile under projektet "eV-Dark Matter search with WINERED". WINERED utvecklades av University of Tokyo och Laboratory of Infrared High-resolution Spectroscopy, Kyoto Sangyo University, under ekonomiskt stöd från JSPS KAKENHI Grant Numbers 16684001, 20340042 och 21840052, och MEXT Supported Program for the Strategic Research Foundation vid privata universitet (nr S0801061 och S1411028). Observationerna i juni 2023 och november 2023 stöddes delvis av JSPS KAKENHI Grant Number 19KK0080, JSPS Bilateral Program Number JPJSBP120239909 och Project Research Number AB0518 från Astrobiology Center, NINS, Japan.


fredag 7 februari 2025

Kanske en ny partikel (om den hittas och finns) kan förklara mörk energi

 


Bild https://www.southampton.ac. Den föreslagna partikeln med mörk materia.

Forskare vid University of Southampton har föreslagit existensen av en ny fundamental partikel som skulle kunna förklara varför ingen har lyckats upptäcka mörk materia. 

Trots övertygande indirekta bevis och betydande experimentella ansträngningar har ingen lyckats finna mörk materia direkt. Partikelfysik ger oss ledtrådar till vad mörk materia kan vara och den allmänna uppfattningen är att partiklar av mörk materia har en mycket stor utbredning medan dess storlek är diskuterad men troligen jämförbar med den hos tunga atomer. Partiklar av synligare mörk materia anses vara mindre sannolika av astro fysikaliska skäl även om det inte är helt omöjligt att det finns. Partikelfysiken kan ha svaret på mörk materia.

Den föreslagna partikeln har en massa på 100eV/c^2, vilket är bara cirka 0,02 procent av en elektrons (om nu en elektron är en partikel eller bara en våg eller både ock). Även om den inte växelverkar med ljus vilket krävs för mörk materia, växelverkar den förvånansvärt starkt med normal materia (kan det vara en form av vanlig materia som vi inte förstår?). Faktum är att den i skarp kontrast till andra kandidater, kanske inte ens tränger igenom jordens atmosfär. Att upptäcka den på jorden är därför inte troligt, så forskarna planerar att göra sökningar i ett rymdexperiment som planeras av konsortiet Macroscopic quantum resonators (MAQRO), som de redan är involverade i. En nanopartikel, svävande i rymden och exponerad direkt för flödet av mörk materia kommer att skjutas nedströms och noggrann övervakning av denna partikels position kommer att avslöja information om vilken typ av mörk materia-partikel det rör sig om, om den nu hittas och existerar.

Dr James Bateman vid institutionen fysik och astronomi vid University of Southampton och medförfattare till studien, beskriver: "Detta arbete sammanför några mycket olika områden inom fysiken: teoretisk partikelfysik, observation inom röntgenastronomi och experimentell kvantoptik. Vår kandidatpartikel låter galen, men för närvarande verkar det inte finnas några experiment eller observationer som skulle kunna utesluta den. Mörk materia är ett av de viktigaste olösta problemen inom modern fysik och vi hoppas att vårt förslag kommer att inspirera andra att utveckla detaljerad partikelteori och till  experimentella tester.

Dr Alexander Merle, medförfattare från Max Planck-institutet i München, Tyskland, tillägger: "För närvarande pekar experiment om mörk materia inte i en tydlig riktning åt något håll och med tanke på att inte heller Large Hadron Collider vid CERN har hittat några tecken på ny fysik  kan det vara dags att vi skiftar vårt paradigm mot alternativa kandidater för mörk materia. Fler och fler partikelfysiker verkar tänka på det sättet och vårt förslag verkar vara en allvarlig konkurrent på marknaden.

Mörk materia kan vara ett problem som man kan lösa genom att korsa fält och leta efter dolda möjligheter.

Dr Bateman tillägger: "Även ur denna synvinkel utgör artikeln en milstolpe i vår institutions historia: för första gången har det funnits en publikation som involverar författare från alla tre grupperna inom fysik och astronomi, vilket visar hur värdefullt det kan vara att korsa gränser och se bortom sitt eget område."

Forskningen är publicerad i Scientific Reports.

Jag är själv tveksam till att mörk materia existerar misstänker att den effekt som gett upphov till mörk materia och mörk energi istället är effekter av gravitation.

måndag 22 juli 2024

Astronomer använder pulsarer för att söka tecken på mörk materia

 


Nu söks objekt som kan innehålla mörk materia med hjälp av regelbundna pulseringar från pulsarer

Dessa pulsarer – neutronstjärnor som roterar och sänder ut fyrliknande strålar av radiovågor som sveper genom rymden – används för att identifiera okända dolda objekt.

Pulsarer fick sitt smeknamn eftersom de skickar ut elektromagnetisk strålning av mycket jämnt intervall i tid, allt från millisekunder till sekunder, vilket gör dem till  exakta tidtagare.

"Vetenskapen har utvecklat mycket exakta metoder för att mäta tid, på jorden har vi atomklockor och i rymden har vi pulsarer ", beskriver astronomen bakom studien professor John LoSecco vid University of Notre Dame, som presenterar sina resultat vid veckans National Astronomy Meeting vid University of Hull.

"Även om gravitation har varit känd för att bromsa ljus i mer än ett sekel har det hittills funnits väldigt få tillämpningar." – Vi drar numera nytta av det faktum att jorden rör sig, solen rör sig, pulsaren rör sig och till och den mörka materian rör sig.

En massa av solens storlek kan ge en fördröjning på cirka 10 mikrosekunder av strålningen från en pulsar. Observationerna som professor LoSecco gjorde har en upplösning i storleksordningen nanosekunder vilket är 10 000 gånger mindre.

"Ett av fynden tyder på en förvrängning på cirka 20 procent av solens massa", beskriver professor LoSecco. "Det här objektet skulle kunna vara  mörk materia."

Han bekräftade också att en bieffekt av denna forskning är att den förbättrar pulsarers tidsdataurval. Detta precisionsprov har samlats in för att leta efter bevis på lågfrekvent gravitationsstrålning.

Objekt med mörk materia lägger till "brus" till dessa data, så att identifiera och ta bort dem kommer att rensa proverna från viss variabilitet vilket eliminerar sådant brus under andra sökningar efter gravitationsstrålning.

"Den mörka materiens sanna natur är ett mysterium", beskriver professor LoSecco. "Forskningsprojektet kastar nytt ljus över den mörka materians natur och dess fördelning i Vintergatan och kan också förbättra noggrannheten i precisionspulsardata."

Forskningen fortsätter inom området inga färdiga resultat finns ännu publicerade.

Bild https://ras.ac.uk  Den här bilden visar en konstnärs bild av en neutronstjärna, omgiven av dess starka magnetfält (blått). Den sänder ut en smal stråle av radiovågor (magenta) ovanför sina magnetiska poler. När stjärnans rotation sveper dessa strålar över jorden kan neutronstjärnan detekteras som en radiopulsar.

NASA Goddard/Walt Feimer Typ av licens (CC BY 4.0)

måndag 8 juli 2024

Formen på Vintergatans halo av det som kallas mörk materia

 


I det närliggande universum är nästan en tredjedel av skivgalaxerna (spiralgalaxerna) inte perfekta skivor utan uppvisar en skev form som liknar ett potatischips. Astronomer kallar detta fenomen för en skivförvrängning. Vintergatan, som är en typisk skivgalax har denna form.

Denna lutande, roterande galaktiska skiva liknar en snurra och genomgår denna procession på grund av vridmomentet som utövas av den omgivande halon av det vi kallar mörk materia. Mätningen av denna viktiga dynamiska parameter, både i riktning och hastighet har varit mycket omdiskuterad. Detta beror på att tidigare mätningar förlitade sig på indirekta kinematiska metoder, där de spårämnen som används utsätts för dynamiska störningar eller uppvärmningseffekter vilket kraftigt begränsar deras noggrannhet och precision.

I den nya studien användes 2 600 klassiska cepheidvariabla stjärnor (stjärnor som varierar i ljusstyrkasom upptäckts av Gaia som spårämnen tillsammans med exakta avstånds- och åldersdata från både Gaia och LAMOST. 

 Med hjälp av detta tillämpade forskarna vid University of Chinese Academy of Sciences, Peking University "motion pictureför att konstruera den tredimensionella strukturen hos Vintergatans skiva över populationer i olika åldrar. Genom att "se" hur skivvarpen utvecklas över tid fann man att varpen precessonerar i retrograd riktning med en hastighet av 2 km/s/kpc (eller 0,12 grader per miljon år). Ytterligare detaljerade mätningar visar att precessionshastigheten minskar med radiellt avstånd vilket indikerar att nuvarande halo av mörk materia som omsluter varpen är något oblat, med ett tillplattningsvärde q mellan 0,84 och 0,96.

Denna mätning utgör en viktig ankarpunkt för att studera utvecklingen av Vintergatans halo av mörk materia.

Men som vanligt vill jag lägga in att jag tvekar över existensen av mörk materia. Istället anser jag strängteorin är mer tillförlitlig. 

Nyligen publicerades studien i den internationella vetenskapliga tidskriften Nature Astronomy artikeln "A slightly oblate dark matter halo revealed by a retrograde precessing Galactic disk warp", som leds gemensamt av University of Chinese Academy of Sciences, Peking University, National Astronomical Observatory of the Chinese Academy of Sciences och Shanghai Jiao Tong University.

Bild https://kiaa.pku.edu.cn/ Den galaktiska skivvarpen "dansar graciöst" under vridmomentet från den mörka materians halo (ett konstnärligt intryck skapat av Kaiyuan Hou och Zhanxun Dong från School of Design, Shanghai Jiao Tong University)

onsdag 3 juli 2024

Mystik om Mörk materia.

 


I olika astronomiska observationer tyds det på att vanlig materia som vi kan se eller ta på endast utgör 5 % av universums totala massa. I Vintergatan finns det enligt denna teori för varje  kg vanlig materia i stjärnor 15 kg "mörk materia". Mörk materia som inte avger ljus och växelverkar endast med hjälp av sin gravitationskraft med vanlig materia.

De flesta forskare tror att den mörka energin består av okända elementarpartiklar, beskriver Dr Przemek Mróz från UW:s (university of Warszawa) astronomiska observatorium, huvudförfattare till två artiklar i ämnet. "Tyvärr, trots årtionden av ansträngningar har inget experiment, inklusive experiment som utförts med Large Hadron Collider, hittats partiklar som skulle kunna vara mörk materia." 

Sedan den första upptäckten av gravitationsvågor från ett sammansmältande par av svarta hål 2015 har experiment med LIGO- och Virgo instrumenten har upptäckts mer än 90 sådana händelser. Astronomer har lagt märke till att svarta hål som upptäckts av LIGO och Virgo vanligtvis är betydligt mer massiva (20–100 solmassor) än de som tidigare varit kända i Vintergatan (5–20 solmassor).

"Att förklara varför dessa två populationer av svarta hål är så olika är ett av de största mysterierna inom modern astronomi", betonar Dr Mróz.

En möjlig förklaring är att LIGO- och Virgo-detektorerna har upptäckt en population av ursprungliga svarta hål som  bildats i det mycket tidiga universum. Sedan den första upptäckten av gravitationsvågor har fler och fler forskare spekulerat i att sådana ursprungliga svarta hål kan utgöra en betydande del av, om  inte helt av mörk materia.

I en ny artikel i The Astrophysical Journal Supplement Series presenterar astronomer vid OGLE (Optical GravitationalLensing Experiment) resultaten av en nästan 20 år lång fotometrisk övervakning av nästan 80 miljoner stjärnor i en närliggande galax (Stora Magellanska molnet), av sökandet efter gravitationella mikrolinsningshändelser där. De analyserade uppgifterna samlades in under den tredje och fjärde fasen av OGLE-projektet från 2001 till 2020.

"Mikrolinsning uppstår när tre objekt – en observatör på jorden, en ljuskälla och en lins – praktiskt taget idealiskt är riktad mot ett teleskop", beskriver professor Andrzej Udalski, huvudforskare för OGLE-projektet. "Under en mikrolinsningshändelse kan källans ljus böjas och förstoras och vi observerar en tillfällig ljusökning och förstoring av källans ljus."

I den andra artikeln, publicerad i Nature, diskuteras de astrofysikaliska konsekvenserna av fynden.

– Om all mörk materiai Vintergatan bestod av svarta hål med 10 solmassor borde vi ha upptäckt 258 mikrolinsningar. För 100 svarta hål med solmassa förväntade vi oss 99 mikrolinsningshändelser. För 1000 svarta hål med solmassa – 27 mikrolinsningshändelser, förklarar Dr Mróz.

Men OGLE-astronomerna har bara hittat 13 mikrolinsningshändelser. Deras detaljerade analys visar att de alla kan förklaras av de kända stjärnpopulationerna i Vintergatan eller som undersökts det Stora Magellanska molnet inte beroende av svarta hål.

– Våra observationer tyder på att ursprungliga svarta hål inte kan utgöra en betydande del av den mörka materian men förklarar däremot de observerade svarta hålens fusionshastighet som uppmätts av LIGO och Virgo. De resultat vi fick fram kommer att finnas kvar i läroböcker i astronomi i årtionden framöver, beskriver professor Udalski.

Studien har publicerats i tidskrifterna "Nature" och "Astrophysical Journal Supplement Series

Bild flickr.com NASA:s Webb djupast infraröda bilden av universum hittills.

torsdag 27 juni 2024

Ytterligare en studie som visar på att mörk materia (kanske) inte finns.

 


I en banbrytande upptäckt utmanas den konventionella förståelsen av kosmologi av forskare vid Case Western Reserve University vilkas nya rön  kan förändra vår uppfattning om kosmos.

Tobias Mistele, en postdoktoral forskare inom Institutionen för astronomi vid Case Western Reserve's College of Arts and Sciences har banat väg för en revolutionerande teknik som använder "gravitationslins"  i studiet av den mörka materian. Han fann att galaxers rotationskurvor förblir platta under miljontals ljusår utan något slut av detta tidsmässigt. 

Forskare har tidigare ansett att galaxernas rotationskurvor måste minska ju längre ut man kikar ut i rymden (ju längre ut ju längre bak i tiden).

 Enligt Newtons gravitationsteori borde stjärnor i ytterkanterna av en galax vara långsammare i sin rörelse runt galaxens centrum på grund av minskad gravitationskraft från centrum av galaxen där flest stjärnor och det svarta hålet finns. Detta kan ej bekräftas av forskare.

Misteles analysresultat  motsäger förväntan ger ett häpnadsväckande avslöjande: inflytandet från det vi kallar mörk materia skulle då sträcka sig långt bortom tidigare uppskattningar och minst en miljon ljusår från Vintergatans centrum.

En sådan långdistanseffekt kan tyda på att mörk materia – som vi förstår den – kanske inte existerar alls (eller visar på något annat).

"Detta fynd utmanar befintliga modeller", beskriver han, och föreslår att det antingen finns kraftigt utbredda halos av mörk materia som kan förklara det eller att vi i grunden måste omvärdera vår förståelse av gravitationsteorin.

Stacy McGaugh, professor och chef för Institutionen för astronomi vid College of Arts and Sciences, beskrev Misteles resultat, som planeras att publiceras i Astrophysical Journal Letters som ett arbete som tänjer på traditionella gränser.

"Implikationerna av denna upptäckt är djupgående", beskriver McGaugh. "Det kan inte bara omdefiniera vår förståelse av mörk materia utan lockar oss också att utforska alternativa gravitationsteorier vilket utmanar själva strukturen i modern astrofysik och vänder upp och ner på Einsteins teori.”

Den primära tekniken som Mistele använde i sin forskning, gravitationslinsning, är ett fenomen som förutspåddes av Einsteins allmänna relativitetsteori. En gravitationslins är ett astronomiskt fenomen som har förmåga att bryta ljuset från en ljuskälla på dess väg till observatören och därmed förstorar ljuskällan.

Som en del av forskningen ritade Mistele upp vad som kallas Tully-Fisher-relationen på ett diagram (se bild ovan och text nedan) för att belysa det empiriska förhållandet mellan den synliga massan av en galax och dess rotationshastighet. "Vi visste att den här relationen fanns", beskriver Mistele. – Men det var inte självklart att relationen skulle hålla i sig ju långt ut från centrum av galaxen och vidare ut i rymden. Hur långt kvarstår det här beteendet? Det är frågan,  det kan inte vara gränslöst."

Mistele beskriver att hans upptäckt understryker nödvändigheten av ytterligare forskning och samarbete inom det vetenskapliga samfundet – och möjligheter att analysera andra slag av data.

McGaugh noterade de herkuliska – men hittills misslyckade – ansträngningarna inom det internationella partikelfysiksamfundet i att upptäcka och identifiera partiklar av mörk materia.

"Antingen är halos av mörk materia mycket större än vi förväntat oss eller så är hela paradigmet fel", beskriver McGaugh. – Teorin som förutspådde detta beteende i förväg är den modifierade gravitationsteorin som Moti Milgrom lade fram som ett alternativ till mörk materia 1983. Så den uppenbara och oundvikligen kontroversiella tolkningen av detta resultat är att mörk materia är en chimär; kanske pekar det på en ny gravitationsteori bortom vad Einstein lärde oss är förklaringen."

Mitt förslag är däremot att undersöka med hjälp av strängteorin

Bild https://thedaily.case.edu/ Den primära tekniken som Mistele använde i sin forskning, gravitationslinsning, ett fenomen som förutspåddes i Einsteins allmänna relativitetsteori. Som en del av forskningen ritade Mistele upp vad som kallas Tully-Fisher-relationen på ett diagram för att belysa det empiriska förhållandet mellan den synliga massan i en galax och dess rotationshastighet.

söndag 16 juni 2024

Det finns gravitation utan massa - mörk materiateorin blir förfalskad

 


Mörk materia är en hypotetisk form av materia som implicerats av gravitationseffekter som inte kan förklaras av den allmänna relativitetsteorin. Den är fortfarande praktiskt taget lika mystisk och sökandet efter den fortsätter, Enligt teorin om denna  är den nödvändig för att förklara den så kallade "saknade massan" som är nödvändig för att ex galaxer ska klumpa ihop sig något som bevisningsvis görs.

Dr. Richard Lieu vid University of Alabama i Huntsville (UAH) har nyligen publicerat en artikel i Monthly Notices of the Royal Astronomical Society i vilket det första gången beskrivs hur gravitation kan existera utan en mystisk massa vilket ger en alternativ teori som potentiellt skulle minska behovet av mörk materiateorin  som förklaring till det vi ser.

"Min egen inspiration kom från min strävan efter en annan lösning på gravitationsfältekvationerna i den allmänna relativitetsteorin - vars förenklade version som är tillämplig på förhållandena i galaxer och galaxhopar, är känd som  Poisson-ekvationen vilken ger en ändlig gravitationskraft i frånvaron av någon detekterbar massa", beskriver Lieu en framstående professor i fysik och astronomi vid UAH. en del av University of Alabama System. 

Lieu hävdar att den "överdrivna" gravitation som krävs för att binda samman en galax eller stjärnhop istället kan bero på koncentriska uppsättningar av skalliknande topologiska defekter i strukturer som är vanliga i hela kosmos och som troligen skapades i det tidiga universum när en fasövergång inträffade. En kosmologisk fasövergång är en fysikalisk process där materiens övergripande tillstånd förändras över hela universum.

Lieu fortsätter -Det är för närvarande oklart vilken exakt form av fasövergång i universum som skulle kunna ge upphov till topologiska defekter av det här slaget. – Topologiska effekter är mycket kompakta områden i rymden med en mycket hög densitet av materia, vanligtvis i form av linjära strukturer som kallas kosmiska strängar, även om 2D-strukturer som sfäriska skal också är möjliga. Skalen som beskrivs i min uppsats beskrivs som ett tunt inre lager av positiv massa och ett tunt yttre lager av negativ massa.

Misstänker som alltid att strängteorin är den rätta för att förklara allt.

 Då gravitation i grunden innebär en förvrängning av själva rumtiden gör den det möjligt för alla objekt att interagera med varandra oavsett om de har massa eller inte. Masslösa fotoner har till exempel bekräftats uppleva gravitationseffekter från astronomiska objekt.

– Både ljusets avböjning och stjärnornas omloppshastigheter är det enda sättet att mäta gravitationsfältets styrka i en storskalig struktur vare sig det är en galax eller en galaxhop. Påståendet i min uppsats är att åtminstone de skal som det förutsätter är masslösa. Det finns då ingen anledning att vidmakthålla detta till synes ändlösa sökande efter mörk materia beskriver Lieu.

Frågor för framtida forskning kommer sannolikt att fokusera på hur en galax eller stjärnhop kan bildas genom att dessa skal är i linje, samt hur utvecklingen av strukturerna sker.

I den här uppsatsen försöker Lieu inte ta itu med problemet med strukturbildning. En omtvistad fråga är om skalen ursprungligen fanns i början av kosmos eller till och med som raka strängar och rörelsemängdsmomentet lindade upp dem. Det finns också en fråga om hur man kan bekräfta eller motbevisa de föreslagna skalen genom särskilda observationer. Tillgången till en andra lösning, även om den är mycket suggestiv, är naturligtvis inte i sig tillräcklig för att misskreditera hypotesen om mörk materia – det kan i bästa fall vara en intressant matematisk övning, beskriver Lieu. "Men det är det första beviset på att gravitation kan existera utan massa.".

Kanske ytterligare ett steg som visar att strängteorin är den rätta för att ge en förklaring till allt som existerar. 

Bild https://el.se/n%C3%A4tavgift 

söndag 14 april 2024

För att söka efter mörk materia kan neutronstjärnor vara till hjälp

 


Fritt citerat från vikipedia; ”En neutronstjärna är resultatet av ett av flera möjliga slut för en stjärna. När en stjärna i slutet av sin existens  stöter bort sina yttre lager inträffar en gravitationskollaps genom att  stjärnans kvarvarande inre delar imploderar. Om stjärnan är så stor att den kvarvarande massan motsvarar 1,4–3 solmassor sker en supernova. Återstoden blir en neutronstjärna som består av tätt packade neutroner, och övrigt material från supernovan”. slut citat. En massa jämförbar med solens – komprimeras  till en radie på 10 km och en tesked neutronstjärnematerial av detta väger ca en miljard ton!

Hittills har forskare  dragit slutsatsen att något som fått beteckningen mörk materia existerar men aldrig observerat den utan endast kunnat söka vidare efter bevis på vad det är. Att bevisat detektera partiklar av mörk materia i experiment på jorden verkar som en omöjlig uppgift då växelverkan mellan partiklar av mörk materia och vanlig materia är ytterst sällsynt (teoretiskt).

För att söka efter dessa otroligt sällsynta signaler behövs en mycket stor detektor – kanske så stor att det är ogörligt att bygga en tillräckligt stor sådan på jorden. Naturen erbjuder dock ett alternativ i form av neutronstjärnor – en neutronstjärna kan fungera som den ultimata detektorn till att finna mörk materia (om den finns och kan finnas).

I en neutronstjärna som är en kollapsad kärna av en stjärna är gravitationen så hårt hoppressad att protoner och elektroner kombineras och bildar neutroner. Neutronstjärnor är "kosmiska laboratorier" som kanske kan göra det möjligt att studera hur mörk materia beter sig under extrema förhållanden som inte kan replikeras på jorden.

Mörk materia växelverkar (teoretiskt) endast mycket svagt med vanlig materia. Till exempel kan den passera genom ett ljusår av bly (cirka 10 biljoner kilometer) utan att stoppas på vägen. Otroligt nog är dock neutronstjärnor så täta att de kan fånga upp alla partiklar av mörk materia som passerar genom dem (teoretiskt). Teoretiskt sett ska partiklarna av mörk materia kollidera med neutroner i stjärnan, förlora energi och fastna i gravitationen där. Med tiden skulle partiklar av mörk materia ackumuleras i stjärnans kärna. Detta förväntas då värma upp gamla, kalla neutronstjärnor till en nivå som kan vara inom räckhåll för framtida observationer. I extrema fall kan ansamlingen av mörk materia leda till att stjärnan kollapsar till ett svart hål.

Det innebär att neutronstjärnor kan göra det möjligt att undersöka vissa typer av mörk materia (den ansamlade och värmealstringen av detta) som skulle vara svåra eller omöjliga att observera i experiment från jorden. För mer om denna intressanta teori se denna länk från university of Melbourne 

Forskargruppen bestod av forskare från ARC Centre of Excellence for Dark Matter Particle Physics, inklusive Dr Sandra Robles, Michael Virgato och professor Nicole Bell från University of Melbourne, Dr Giorgio Busoni från Max Planck-institutet för kärnfysik i Tyskland och Theo Motta och professor Anthony Thomas AC från University of Adelaide.

Bild vikipedia teoretisk modell av en neutronstjärna.

torsdag 11 april 2024

BREAD-experimentet ett nytt sätt att söka efter mörk materia

 


I ett nytt experiment och samarbete under ledning från University of Chicago och Fermi National Accelerator Laboratory, med beteckningen Broadband Reflector Experiment for Axion Detection (BREAD) har det nyligen släppts ett första resultat i sökandet efter mörk materia. Studien publicerades i Physical Review Letters.

Även om det inte hittades mörk materia begränsades var den kan finnas och demonstrerades ett unikt tillvägagångssätt för att påskynda sökandet efter den till ett relativt litet antal platser och kostnader. Men eftersom ingen någonsin har sett mörk materia utan bara tecken på att den bör finnas eller något vi inte förstår vet vi inte var vi ska leta efter den.

"Vi är väldigt säkra på att något finns, men det finns många, många former som den kan ha", beskriver UChicago Assoc. Prof. David Miller, medledare för experimentet tillsammans med Fermilabs Andrew Sonnenschein, vilken var den som ursprungligen utvecklade konceptet för experimentet.

Forskare har tidigare kartlagt flera av de mest sannolika alternativen för platser och former att söka med och i. Vanligtvis har tillvägagångssättet varit att bygga detektorer för att med dessa noggrant söka av ett specifikt område (i det här fallet en uppsättning frekvenser) för att sedan  kunna utesluta dessa.

Ovan team av forskare utforskade med ett nytt tillvägagångssätt. Deras design kallas "bredband", vilket innebär att de kan söka efter en större uppsättning möjligheter om än med något mindre precision.

"Om man tänker på det som en radio, är sökandet efter mörk materia som att ställa in frekvensratten och söka efter en viss radiostation, förutom att det i detta experiment fanns en miljon frekvenser att kolla igenom", beskriver Miller. "Vår metod är som att göra en skanning av 100 000 radiostationer istället för några få mycket noggrant." För att få en mer utförlig redovisning av hur instrumentet är uppbyggt mm se denna sida. från University of Chicago.

BREAD-instrumentet byggdes vid Fermilab som en del av laboratoriets detektor-FoU-program och användes sedan vid UChicago, där data för denna studie samlades in. UChicago Ph.D-doktoranden Gabe Hoshino ledde driften av detektorn  tillsammans med studenterna Alex Lapuente och Mira Littmann.

Argonne National Laboratory ett tvärvetenskapligt forskningscenter för vetenskap och teknik som finns i Illinois USA. som kommer att användas i nästa steg i fysikprogrammet BREAD. Andra institutioner är SLAC National Accelerator Laboratory, Lawrence Livermore National Laboratory, Illinois Institute of Technology, MIT, Jet Propulsion Laboratory, University of Washington, Caltech och University of Illinois i Urbana-Champaign, vilka alla arbetar med UChicago och Fermilab på FoU för framtida versioner av experimentet.

Bild https://news.uchicago.edu/ En rendering av BREAD-designen. Den "Hershey's Kiss"-formade strukturen leder potentiella signaler om mörk materia till den kopparfärgade detektorn till vänster. Detektorn är tillräckligt kompakt för att få plats på en bordsskiva. Bild med tillstånd av BREAD Collabora

fredag 29 mars 2024

Nytt forskningsobjekt kan ge ledtrådar om mörk materia

 


Teorier finns i överflöd om vad mörk materia är och i ett nytt forskningsobjekt beskriver Alex McDaniel, postdoktor vid Clemson University, ytterligare ett exempel genom att beskriva några av strängaste restriktionerna för den mörka materians natur hittills.

Studien visar även en liten antydan att den är verklig och kanske kan bekräftas någon gång under det kommande decenniet. En antydan om att mörk materia  kan bevisas existera  och hur den är.

"Med datainsamling och nya upptäckter i framtiden kan denna lilla ledtråd potentiellt förvandlas till en mycket konkret upptäckt och en modell för mörk materia", beskriver McDaniel. I arbetet letade McDaniel och hans medarbetare i dvärggalaxer efter mörk materia som förvandlats till vanlig materia och gammastrålning (genom en form av ljus vid de högsta energinivåerna).

Dvärggalaxer är idealiska att studera eftersom de är små anses rika på mörk materia och för det mesta saknar andra astrofysikaliska fenomen som gas, stoft och supernovor som kan förorena resultaten och datainsamling.

"Vi letar efter dessa dvärggalaxer eftersom de i bästa fall ger oss en säker antydan eller låter oss utesluta vissa partikelteorier", beskriver McDaniel.

Vissa modeller förutsäger att mörk materia har en viss massa eller tvärsnitt av detta vid växelverkan till materia på grund av partiklarnas växelverkan (enligt denna teori). Det skulle vara vad forskarna förväntar sig att se i gammastrålning. Om de inte ser det kan de utesluta denna masa och tvärsnitt (i omvandling), beskriver han.

Resultatet från dvärggalaxernas upptäckt som ingår i studien   publicerades nyligen i tidskriften Physical Review D i en artikel med titeln "Legacy Analysis of Dark Matter Annihilation from the Milky Way Dwarf Spheroidal Galaxies with 14 Years of Fermi-LAT Data".

Bild vikipedia (franska) Fördelning av universums energitäthet efter data från Planck-satelliten. Mörk materia är en av huvudkomponenterna.

måndag 25 mars 2024

Det är möjligt att universum inte innehåller mörk materia

 


En ny studie från University of Ottawa har publicerats i dagarna under titeln Testing CCC+TL Cosmology with Observed Baryon Acoustic Oscillation Featuresnorth_eastexternal link, i the peer-reviewed  tidskriften Astrophysical Journal. I studien utmanas den nuvarande modellen av universum genom att visa att det i själva verket inte finns plats för det vi kallar mörk materia.

Inom kosmologin beskriver termen "mörk materia" allt som inte verkar interagera med ljus, det elektromagnetiska fältet eller som bara kan förklaras genom påverkan på gravitation. Vi kan inte se den och vi vet inte heller vad den består av, men den hjälper oss att förstå hur galaxer, planeter och stjärnor beter sig.

Rajendra Gupta, professor i fysik vid Naturvetenskapliga fakulteten, använde en kombination av ”combination of the covarying coupling constantsnorth_eastexternal link (CCC) and “tired lightnorth_eastexternal link” (TL) theories (the CCC+TL model) to reach this conclusion”.

Modellen kombinerar två idéer  om hur naturens krafter minskar över  tid och hur ljus förlorar energi när det färdas en lång sträcka. Modellen har testats och visat sig stämma överens med flera observationer till exempel om hur galaxer är utspridda och hur ljuset från det tidiga universum har förändrats över tid.

Upptäckten utmanar den rådande förståelsen av universum som säger att ungefär 27 % av universum består av mörk materia och mindre än 5 % av vanlig materia medan resten är mörk energi.

Gupta beskriver hur "Studiens resultat bekräftar ett tidigare arbete ("James Webbs teleskopets tidiga observationer av universum och CDM-kosmologinorth_eastExtern länk") som visar att universum är 26,7 miljarder år och att universum inte kräver mörk materia för att existera, förklarar Gupta. "I standardkosmologin beskrivs universums accelererande expansion orsakad av mörk energi men i själva verket beror expansionen på naturens försvagade krafter då universum inte på grund av en mystisk mörk energi."Genom att utmana behovet av mörk materia i universum för att förstå detta och istället ge bevis för en ny kosmologisk modell, öppnar denna studie upp nya vägar för att utforska universums grundläggande egenskaper.

Själv har jag aldrig varit en vän av att det måste finnas eller finns något vi  kallar mörk materia eller mörk energi. Begreppen visar bara på något okänt fenomen och innebär egentligen något vi ännu inte förstår om verkligheten och universums  materia och energi.

Bild vikipedia (franska) Universums utveckling efter Big Bang (Temps = tid)

lördag 10 februari 2024

Ljusstarka galaxer och mörk materia

 


De första galaxerna tros ha bildats när gravitationen från mörk materia långsamt drog samman tillräckligt med väte och helium för att stjärnor skulle kunna bildas och antändas.

Men nu har ny forskning under ledning av astrofysiker vid UCLA (University of California, Los Angeles) visat att väte- och heliumgasen efter Big Bang studsade i överljudsfart mot täta, långsamt rörliga klumpar av kall mörk materia. När gasen därefter avstannade sin rörelse årtusenden senare bildades stjärnor och som i sin tur bildade små, exceptionellt ljusstarka galaxer.

Om denna modell av kall mörk materia är korrekt borde James Webb Space Telescope kunna hitta fläckar av ljusstarka galaxer i det tidiga universum, vilket skulle kunna möjliggöra det första effektiva testet av dagens teori om mörk materia. Om Webb finner fläckarna måste forskarna utarbeta nya teorier om mörk materia.

Den nya forskningen som resulterat i ovan teori publiceras nyligen i The Astrophysical Journal Letters och den tidigare teorin om mörk materia förbättras genom datasimuleringar genom att lägga till växelverkan mellan mörk materia och gas och finner att det som man ansett första ljussvaga galaxerna kan ha varit mycket ljusare än väntat i början av universums historia i dess bildande. Författarna till studien föreslår att man nu bör försöka hitta små galaxer som är mycket ljusstarkare än förväntat med hjälp av teleskop som Webb-teleskopet. Om de däremot endast hittar ljussvaga galaxer kan en del av deras idéer om mörk materia vara felaktiga.

Mörk materia är en typ av hypotetisk materia som inte växelverkar med elektromagnetism eller ljus. Således är det omöjligt att observera med hjälp av optik, elektricitet eller magnetism. Men mörk materia växelverkar med gravitationen och dess närvaro har härletts från de gravitationella effekter den har på vanlig materia. Vanlig materia utgör hela det observerbara universum. Men tots att 84 procent av all materia i universum tros bestå av mörk materia (ej synlig materia) har den aldrig upptäckts direkt.

Bild https://newsroom.ucla.edu/ En sammansättning av Stephans kvintett, en visuell gruppering av fem galaxer, konstruerad av nästan 1 000 separata bildfiler från James Webb Space Telescope. Astrofysiker vid UCLA tror att om teorierna om kall mörk materia är korrekta, borde Webb-teleskopet hitta små, ljusstarka galaxer i det tidiga universum.