Google

Translate blog

Visar inlägg med etikett galaxer. Visa alla inlägg
Visar inlägg med etikett galaxer. Visa alla inlägg

tisdag 8 oktober 2024

Mer än en million galaxers position

 


Bild PAUcam-kameran som är installerad på William Herschel-teleskopet (WHT) i La Palma, Spanien. Upphovsman: PAUS-teamet.

Physics of the Accelerating Universe Survey (PAUS), ett internationellt samarbete mellan 14 institutioner, täckte med PAUcam-kameran en yta av 50 kvadratgrader, ungefär lika med  250 fullmånar. Genom detta kunde man då bestämma avståndet till galaxer med oöverträffad precision med hjälp av den specialdesignade PAUCam-kameran på 4,2-metersteleskopet William Herschel Telescope (WHT) i La Palma, Spanien. Detta inkluderade galaxer som finns mer än 10 miljarder ljusår bort. Professor Benjamin Joachimi vid UCL Department of Physics & Astronomy, förklarade att PAUS "kombinerar fördelarna med fotometriska och spektroskopiska kartläggningar".

Joachimi beskriver det som: "att vi vi tar bilder på alla  synliga objekt på himlen genom att sätta smala våglängdsfilter på kameran så vi vet att ljuset vi samlar in kommer från en viss del av spektrumet. Genom att använda 40 sådana filter kan vi rekonstruera en lågupplöst version av en galax spektrum.

Kartläggningen gör det möjligt  att utforska hur galaxer är kopplade till sin omgivning vilken till största delen består av mörk materia (enligt nuvarande paradigm) och att förstå hur långt bort galaxer av en viss typ och ljusstyrka finns vilket hjälper till att göra mer exakta kartläggningar är hittills gjorts.

Den nya galaxkatalogen visar mer exakta kartor för att förstå hur strukturer bildas i universum och för att studera universums expansion under påverkan av (det man kallar) mörk materia och mörk energi.

Mörk energi (enligt nuvarande paradigm) tros utgöra cirka 70 % av universum och är ansvarig för universums accelererande expansion men dess natur är fortfarande ett mysterium.

Samarbetet var under ledning från  Institute of Space Sciences (ICE-CSIC), med stöd av Spaniens ministerium för vetenskap, innovation och universitet. Data samlades in under 200 nätter mellan 2015 och 2019. Katalogen finns nu tillgänglig på PAUS:s webbplats och på webbportalen CosmoHub.

Professor Enrique Gaztañaga, chef för PAU Survey vid University of Portsmouth, ICE-CSIC och Institute of Space Studies of Catalonia (IEEC), beskriver: "PAU Survey erbjuder ett banbrytande tillvägagångssätt för att skapa kosmiska kartor vilket möjliggjorts genom design och utveckling av ett nytt instrument och en dedikerad kartläggning av att samla in och analysera data på ett sätt som aldrig gjorts tidigare. Det har varit ett privilegium att samarbeta med en så begåvad och pålitlig grupp."

Katalogen beskrivs i detalj i två artiklar som publicerats i Monthly Notices of the Royal Astronomical Society (MNRAS): en om mätning av avstånd och en annan om kalibrering av PAUS-data.

David Navarro-Gironés, doktorand vid ICE-CSIC och huvudförfattare till en av de nya artiklarna, beskriver: "Den stora fördelen med PAUS är att det möjliggör mycket exakta avståndsmätningar. Denna nivå av precision är avgörande för att studera universums struktur vilket i sin tur kräver data av ett stort antal galaxer.

Nio år efter sitt första igångsättande 2015 kan PAUS nu mäta avstånden till ett stort antal avlägsna galaxer med en relativ precisionavikelse på 0,3 procent. Teamet använder för närvarande dessa data för att förbättra kalibreringen av tidigare kosmologiska undersökningar.


fredag 4 oktober 2024

Den felande länken till de första stjärnorna

 


Bild ESA  på Galaxen GS-NDG-9422

Genom att se in i det tidiga universum med NASA:s James Webb Space Telescope har astronomer hittat en galax med en udda ljussignatur som lyser starkare än galaxens stjärnor tillsammans skulle göra. Galaxen GS-NDG-9422 finns ungefär en miljard år efter bigbang och kan vara en felande länk i galaxers utveckling. Tiden mellan universums första stjärnor och galaxers bildande med stjärnor som dagens.

"Min första tanke när jag tittade på galaxens spektrum var 'något är konstigt', vilket är precis vad Webb-teleskopet var designat för att hitta: okända fenomen i det tidiga universum som ska hjälpa oss att förstå hur den kosmiska historien började", beskriver forskaren Alex Cameron vid University of Oxford.

Cameron tog kontakt med kollegan Harley Katz, som är teoretiker för att diskutera det märkliga fyndet. Genom att arbeta tillsammans fann  teamet  datormodeller av kosmiska gasmoln som värms upp av mycket heta massiva stjärnor i en sådan utsträckning att gasen lyste starkare än stjärnorna i en galax. Datamodellen blev nästan en perfekt matchning med Webbs observation.

"Det ser ut som att dessa stjärnor måste vara mycket varmare och mer massiva änr stjärnor är i det nutida universum, vilket är logiskt eftersom det tidiga universum var en mycket annorlunda miljö", beskriver Katz, vid Oxford och University of Chicago.

I dagens universum har typiska heta, massiva stjärnor en temperatur som sträcker sig mellan 40 000 till 50 000 grader Celsius. Enligt teamet har galax GS-NDG -9422 stjärnor som är varmare än 80 000 grader Celsius.

Forskargruppen misstänker att galaxen befinner sig mitt i en kort fas av intensiv stjärnbildning inuti ett moln av tät gas där det produceras ett stort antal massiva, heta stjärnor. Gasmolnet träffas av så många fotoner av ljus från stjärnorna så det lyser extremt starkt.

Förutom att det är nytt är det spännande med nebulosor (gasmoln) som lyser så starkt är det förutspått att miljön för universums första generation av stjärnor, som astronomer klassificerar som population III-stjärnor (bestående av nästan enbart väte och helium).

– Vi vet att den här galaxen inte har Population III-stjärnor, eftersom Webbs data visar för mer kemisk komplexitet. Dessa stjärnor är annorlunda än vad vi är bekanta med (från denna tid) de exotiska stjärnorna i den här galaxen kan vara en guide för att förstå hur galaxer övergick från urstjärnor till de typer av galaxer med stjärnor vi känner till av idag, beskriver Katz.

Vid det här laget är denna galax ett exempel på denna fas av galaxers utveckling, men det finns fortfarande många frågor att besvara. Är dessa förhållanden vanliga i galaxer vid den här tidsperioden, eller är de sällsynta? Vad mer kan de visa om ännu tidigare faser av galaxers utveckling? Cameron, Katz och deras forskarkollegor arbetar aktivt med att identifiera fler galaxer att lägga till denna population för att bättre förstå vad som hände i universum under den första miljarden år efter big bang.

Mycket verkar bekräfta att denna galax är en felande länk mellan de allra första stjärnorna som bestod av nästan enbart väte och helium och dagens stjärnor som uppkom efter supernovor och består av järn mfl metaller .

söndag 22 september 2024

Den första mörka energin kan lösa de två gåtfullaste frågorna inom kosmologi

 


Bild wikipedia Universums storskaliga sammansättning enligt en analys av data från WMAP (Wilkinson Microwave Anisotropy Probe (WMAP) (Explorer 80) ett NASA-rymdteleskop som hade som uppgift att mäta den kosmiska bakgrundsstrålning som har sitt ursprung av Big Bang.

En gåta är "Hubbles lag", som hänvisar till en obalans i mätningsresultat av hur snabbt universum expanderar. Den andra handlar om observationer av många tidiga, ljusstarka galaxer som existerade vid en tidpunkt då det  inte borde funnits galaxer och som visar sig äldre än universum.

Nu har MIT-teamet (Massachusetts Institute of Technology) funnit att båda gåtorna skulle kunna lösas om det tidiga universum innehöll mörk energi. En okänd form av energi som fysiker misstänker får universum att expandera och ge en fortsatt ökning av denna än idag. Tidig mörk energi är ett liknande, hypotetiskt fenomen som bara kan ha gjort ett kort framträdande och påverkat universums expansion i dess första ögonblick innan det försvann helt. Inte att förväxla med mörk energi som senare dök upp (kanske omvandlades den tidiga mörka energin till den som sedan finns, om nu denna energi  existerat eller existerar)

Vissa fysiker har misstänkt att tidig mörk energi kan vara nyckeln till att lösa Hubbles lag eftersom denna mystiska kraft skulle kunna påskynda universums tidiga expansion och förklara de två nämnda gåtorna ovan.

Forskarna har nu funnit att tidig mörk energi också kan förklara det förbryllande antalet ljusstarka galaxer som astronomer har observerat i det unga universum. I sin nya studie, som publicerats i dagarna i Monthly Notices of the Royal Astronomical Society har forskarna genom datormodellering visat hur galaxer bildades under universums första hundra miljoner år. Och hur de inkorporerade en mörk energikomponent bara under den tidigaste tidremsan, de fann  att antalet galaxer som uppstod ur den ursprungliga miljön blommade ut och passa in i astronomernas observationer.

"Du har de här öppna pusslen, beskriver Rohan Naidu, postdoktor vid MIT:s Kavliinstitut för astrofysik och rymdforskning och en av studiens författare. "Vi finner att tidig mörk energi faktiskt är en mycket elegant lösning på två av  gåtorna inom kosmologi som är mest intressanta."

Baserat på vanliga kosmologiska modeller och galaxbildningsmodeller borde det tagit tid för universum att bilda de första galaxerna. Det borde tagit miljarder år för urgasen att bilda stjärnor till ett antal galaxer lika stora och ljusstarka som Vintergatan. Men likväl fanns de bara några 100tal miljoner efter BigBang.

2023 gjorde NASA:s James Webb Space Telescope (JWST) en häpnadsväckande observation. Teleskopet som har förmågan att blicka längre tillbaka i tiden än något annat observatorium kan upptäckte då ett överraskande antal ljusstarka galaxer lika stora som Vintergatan under de första 500 miljoner åren efter BigBang då universum bara var 3 procent av sin nuvarande ålder.

För fysiker innebär observationerna att det antingen är något fundamentalt fel med fysiken som ligger till grund för kosmologin eller att det saknas en ingrediens i det tidiga universum som forskarna inte har tagit hänsyn till. MIT-teamet undersökte möjligheten av det senare och kom fram till att den saknade ingrediensen kan vara tidig mörk energi.

Fysiker har föreslagit att tidig mörk energi är en sorts antigravitationskraft som aktiveras vid universums första tid. Denna kraft skulle motverka gravitationens dragning inåt och påskynda universums tidiga expansion, på ett sätt som skulle lösa obalansen i mätningarna. Tidig mörk energi anses därför vara den mest sannolika lösningen på Hubblespänningen.

MIT-teamet undersökte om tidig mörk energi också kan vara nyckeln till att förklara den oväntade populationen av stora, ljusstarka galaxer som upptäckts av JWST i det tidiga universum. I studien har fysikerna undersökt hur tidig mörk energi kan påverka den tidiga strukturen i universum som gav upphov till de första galaxerna. De fokuserade på bildandet av halos av mörk materia – områden i rymden där gravitationen råkar vara starkare och där materia börjar ackumuleras.

"Vi tror att halos av mörk materia är universums osynliga skelett", förklarar Shen. – Strukturer av mörk materia bildas först och sedan bildas galaxer inuti dessa strukturer. Så vi förväntar oss att antalet ljusstarka galaxer borde vara proportionellt mot antalet stora halos av mörk materia.

Fysiker har fastställt att det finns minst sex huvudsakliga kosmologiska parametrar, varav en är Hubblekonstanten - en term som beskriver universums expansionshastighet. Andra parametrar beskriver densitetsfluktuationer i den ursprungliga soppan, omedelbart efter Big Bang ur vilken halos av mörk materia så småningom bildades.

MIT-teamet resonerade att om tidig mörk energi påverkar universums tidiga expansionshastighet på ett sätt som löser upp Hubblespänningen kan det påverka balansen mellan de andra kosmologiska parametrarna på ett sätt som kan öka antalet ljusstarka galaxer som dyker upp i tidigt skede. För att testa sin teori inkorporerade de en modell av tidig mörk energi (samma som råkar lösa upp Hubblespänningen) i ett empiriskt ramverk för galaxbildning för att se hur de tidigaste strukturerna av mörk materia utvecklas och ger upphov till de första galaxerna.

– Vad vi visar är att skelettstrukturen i det tidiga universum förändras på ett subtilt sätt där amplituden av fluktuationer ökar och man får stora halos och ljusstarkare galaxer som är på plats vid tidigare tidpunkter än man tidigare ansett,  beskriver Naidu. "Det betyder att saker och ting var rikligare och mer samlade i det tidiga universum."

– A priori hade jag inte förväntat mig att förekomsten av JWST:s tidiga ljusstarka galaxer skulle ha något att göra med tidig mörk energi. Men observationen visar kosmologiska parametrar i en riktning som ökar förekomsten av tidiga galaxer är intressant, beskriver Marc Kamionkowski, professor i teoretisk fysik vid Johns Hopkins University. Jag tror att mer arbete kommer att behöva göras för att etablera en koppling mellan tidiga galaxer och tidig mörk energi men oavsett hur det går är det en intressant och förhoppningsvis i slutändan fruktbar sak att testa, beskriver Kamionkowski, vilken dock ej själv var med i studien.

"Vi demonstrerade potentialen hos tidig mörk energi som en enhetlig lösning på de två stora frågorna som kosmologin står inför. Detta kan vara ett bevis för dess existens om resultaten från JWST konsolideras ytterligare, avslutar Vogelsberger. I framtiden kan vi införliva detta i stora kosmologiska simuleringar för att se vilka detaljerade förutsägelser vi får.

Studiens medförfattare inkluderade huvudförfattaren och Kavli-postdoktorn Xuejian (Jacob) Shen, och MIT-professorn i fysik Mark Vogelsberger, tillsammans med Michael Boylan-Kolchin vid University of Texas i Austin och Sandro Tacchella vid University of Cambridge.

Om det finns mörk materia och mörk energi måste det enligt mig bildats vid BigBang likt vanlig energi och vanlig materia. Men jag anser att all form av energi och materia är av samma slag men olika former vi ännu ej förstår. Men för att förklara varför det anses finnas två slags energi och materia måste vi börja att på allvar tänka utifrån strängteorins fysik. Jag tror att strängteorin är svaret på hur allt hänger samman. 

fredag 3 maj 2024

Galaxer utvecklades snabbare än man tidigare ansett.

 


Under ledning av Forskare vid Durham University för Extragalactic Astronomy har ett internationellt forskarlag hittat bevis på att stjärnor i stavformation  bildades i galaxer när universum endast var några miljarder år gammalt. Vi lever själva i en en sådan stavformation i vår Vintergatan.

Stavar är långsträckta remsor av stjärnor som finns i skiv- eller spiralgalaxer som vår Vintergata.

När stjärnstaplar utvecklas reglerar de stjärnbildningen i en galax och trycker in gas i galaxens centrala region. Deras närvaro visar forskarna att galaxerna har gått in i en stadgad, mogen lugnare fas.

Forskargruppen använde i studien James Webb Space Telescope (JWST) för sin upptäckt.

Tidigare studier som gjorts med det mindre kraftfulla rymdteleskopet Hubble har kunnat upptäcka stavbildande galaxer i en ålder av åtta - nio miljarder år (efter BigBang) medan Webbteleskopet kan se betydligt längre ut (och bak i tiden mer än 10 miljarder ljusår  bort till tiden då universum var endast några miljarder år gammalt. Universums ålder beräknas till ca 14 miljarder år.)  i rymden och därmed äldre galaxer. 

Av 357 observerade skivgalaxer såg forskarna att 20 procent av dessa hade stavformationer bestående av stjärnor – tre till fyra gånger fler hittades än vad Hubble observerat. Forskarna beskriver att det faktum att galaxer i det unga universum mognade mycket snabbare (blev till större galaxer) än man trott överraskar.

I det skedet skulle man kunna förvänta sig att universum skulle vara mycket turbulent med många kollisioner mellan galaxer och mycket gas som ännu inte omvandlats till stjärnor, men den senaste forskning tyder på att så inte var fallet.

Detta innebär att forskare kan behöva ompröva sina teorier om galaxernas utveckling i de tidiga stadierna av universums bildande.

Bild https://www.rawpixel.com/ Utsikt över Vintergatan över Cathedral Rock, sett från Cathedral Rock Trailhead på Back O' Beyond Road, Coconino National Park, Sedona, Arizona, 30 april 2017.

onsdag 1 maj 2024

Galaktiska föroreningar från en explosion

 


En grupp av internationella forskare har studerat galaxen NGC 4383 (som finns i riktning mot stjärnbilden Jungfrun 74 miljoner ljusår bort) i den närliggande Virgohopen och avslöjat ett gasutflöde som är så stort att det skulle ta 20 000 år för ljuset att färdas från den ena sidan till den andra.

Detta gasutflöde är resultatet av extremt kraftiga stjärnexplosioner (supernovor) i galaxens centrala delar som kastat ut enorma mängder väte och tyngre grundämnen. Massan av utslungad gas motsvarar över 50 miljoner solar beräknat på  vår sols massa. Studiens huvudförfattare Dr Adam Watts, från University of Western Australia-noden vid International Centre for Radio Astronomy Research (ICRAR), beskriver att mycket lite är känt om utflödenas fysik och egenskaper eftersom utflöden var mycket svåra att upptäcka och därmed är svåra att analysera.

– Den utkastade gasen är ganska rik på tunga grundämnen vilket ger oss en unik bild av den komplexa processen av en blandning av väte och metaller i den utströmmande gasen. I det här fallet kan vi hittills detektera syre, kväve, svavel mfl kemiska grundämnen.

Gasutflöden är avgörande för att reglera hur snabbt och hur länge det i galaxer kan bildas stjärnor. Gasen som kastas ur dessa explosioner (supernovor) förorenar utrymmet mellan stjärnorna i en galax och även mellan galaxer och kan sväva i det intergalaktiska mediet för evigt. ICRAR-forskarna (International Centre for Radio Astronomy Research) professorerna Barbara Catinella och Luca Cortese, medförfattare till studien och en av ledarna för MAUVE-instrumenet, beskriver: "Vi designade MAUVE för att undersöka hur fysiska processer som gasutflöden kan stoppa stjärnbildningen i galaxer."

 ICRAR är ett samarbete mellan Curtin University och University of Western Australia, med finansieringsstöd från delstatsregeringen i Western Australia. Centrets huvudkontor lfinns vid UWA och har forskningsnoder vid både UWA och Curtin University.

Upptäckten av gasflödet ovan publiceras i dagarna i tidskriften Monthly Notices of the Royal Astronomical Society.

Bild https://www.icrar.org/outflows/ Gas (i rött, upptill och nedtill) kastas ut från den närbelägna galaxen NGC 4383. Upphovsman: Watts et al, 2024

fredag 12 april 2024

Varför stjärnorna i galaxer av hög ålder rör sig kaotiskt

 


Ett internationellt forskarlag under ledning från det australiska forskningscentret ASTRO 3D rapporterar att galaxers ålder förändrar hur stjärnorna rör sig i dessa.

Unga galaxer kännetecknas av att stjärnorna i dessa roterar i ett ordnat mönster. Med undantag av att en mindre del av dem som rör sig mer slumpmässigt. Medan stjärnor i äldre galaxer rör sig mer kaotiskt. Fram tills nu har forskare varit osäkra på vad som orsakar rörelse och åldersförändring i galaxer. De har diskuterat om det kan vara den omgivande miljön eller galaxens massa som är anledningen.

"När vi gjorde analysen fann vi att ålder  hur vi än undersöker med skilda parametrar är den viktigaste anledningen", beskriver huvudförfattaren till studien Prof Scott Croom, en ASTRO 3D-forskare vid University of Sydney och tillägger. ”När man tar hänsyn till ålder finns det i princip ingen miljötrend, och det är likadant för massa (som påverkar lika mycket). Om du hittar en ung galax kommer den att rotera, oavsett vilken miljö den befinner sig i och om du hittar en gammal galax kommer den att ha fler slumpmässiga banor, oavsett om den finns i en tät miljö av damm och gas eller i ett tomrum."

I unga galaxer sker stor stjärnbildning (här finns mycket råmaterial för detta i form av gas och damm) medan stjärnbildningen upphör i de äldre galaxerna (här finns mindre av damm och gas men många stjärnor).

– Vi vet att åldern påverkar miljön. Om en galax faller in i en tät miljö (av stjärnor) tenderar den att stänga av stjärnbildningen (här finns många stjärnor men inte så mycket gas och damm för stjärnbildning). Galaxer i stjärnrika miljöer är i genomsnitt äldre, beskriver van de Sande.

Vintergatan, har fortfarande en tunn stjärnbildande skiva, så den anses fortfarande vara en rotationsgalax med högt spinn.

– Men när vi ser på Vintergatan i detalj ser vi något som kallas Vintergatans tjocka skiva. Den är inte dominerande när det gäller ljus men den finns där och det ser ut att vara äldre stjärnor här som mycket väl kan ha värmts upp i den tunna stjärnrika skivan vid tidigare tidpunkter eller uppstått av hög turbulent rörelse i det tidiga universum, beskriver professor Croom.

Studien publicerades i dagarna i MNRAS (Monthly Notices of the Royal Astronomical Society). I studien beskrivs att stjärnornas tendens att ha slumpmässiga rörelser främst beror på galaxens ålder vilket ger slumpartade stjärnrörelser (vanligare i äldre  galaxer ).

 I forskargruppen ingick även forskare från Macquarie University, Swinburne University of Technology, University of Western Australia, Australian National University, University of New South Wales, University of Cambridge, University of Queensland och Yonsei University i Sydkorea.

Forskarna använde data från observationer som gjorts inom ramen för SAMI Galaxy Survey. SAMI-instrumentet vilket byggdes 2012 av University of Sydney och Anglo-Australian Observatory (numera Astralis). SAMI använder Anglo-Australian Telescope vid Siding Spring Observatory, nära Coonabarabran, New South Wales. Den har kartlagt 3000 galaxer i ett stort antal miljöer.

(Förslagsvis kanske man skulle undersöka om rörelseökningen av stjärnor i äldre galaxer kan bero på att här inte finns så mycket materia för stjärnbildning och detta tomrum accelererar stjärnors rörelse i tomrummet. Ingen gravitation från detta material bromsar längre stjärnors rörelser. Istället får det stjärnrika men mellan dessa stjärnor tomrummet och bristen på gas och damm gravitationen från skilda stjärnor stjärnor att röra sig kaosartat)

Bild https://astro3d.org.au/ som visar jämförelse mellan en ung (överst) och gammal (nederst) galax som observerats som en del av SAMI Galaxy Survey. Subaru-källa: Bild från Hyper Suprime-Cam Subaru Strategic Program

torsdag 4 april 2024

49 tidigare okända galaxer upptäckta under tre timmar.

 


Ett internationellt team astronomer har upptäckt 49 tidigare okända gasrika galaxer med hjälp av radioteleskopet MeerKAT i Sydafrika.

Dr Marcin Glowacki vid Curtin University-noden vid International Centre for Radio Astronomy Research (ICRAR) i västra Australien var forskningsledare i projektet vars mål var att studera den stjärnbildande gasen i en radiogalax. Även om teamet inte hittade någon stjärnbildande gas i just den galax de studerade, upptäckte Dr Glowacki istället 49 andra gasrika galaxer när de senare analyserade den insamlade datan.

Dr Glowacki säger att detta är ett bra exempel på hur fantastiskt ett instrument som MeerKAT är på att hitta stjärnbildande gas i galaxer.

Observationerna varade i mindre än tre timmar ochinkluderade IDIA (Inter-University Institute for Data Intensive Astronomy).

"Jag förväntade mig inte att hitta nästan femtio nya galaxer på så kort tid", beskriver Dr Glowacki. Genom att använda olika tekniker för att leta efter galaxer som används i andra kartläggningar av MeerKAT  upptäcktes dessa galaxer och avslöjade dess gasinnehåll.

Galaxerna har informellt fått gruppnamnet 49ers, en referens till guldrushens gruvarbetare i Kalifornien 1849. Dr Glowacki anser att de 49 galaxernas upptäckt är lika värdefulla som guldklimpar på vår natthimmel. Många av galaxerna ligger nära varandra och bildar galaxgrupper och  har identifierats under en enda observation.

Forskningsresultatet publicerades i Monthly Notices of the Royal Astronomical Society: serendipitous discovery of H i-rich galaxy groups with MeerKAT | Månatliga meddelanden från Royal Astronomical Society | Oxford Academic

Bild https://www.curtin.edu.au/ på radioteleskopet MeerKAT som finns i Sydafrika vilket möjliggjorde upptäckten av dessa 49 tidigare okända galaxer. Källa: South African Radio Astronomy Observatory (SARAO)

onsdag 21 februari 2024

Svarta hål fanns innan galaxer och stjärnor

 


Svarta hål existerade i tidernas begynnelse och gav upphov till nya stjärnor och galaxbildning visar en ny analys av data från James Webb Space Telescope. Analysen vänder upp och ner på teorin om hur svarta hål format kosmos och utmanar den klassiska förståelsen av att de bildades efter att de första stjärnorna och galaxerna uppstått.

I stället verkar svarta hål dramatiskt ha påskyndat uppkomsten av nya stjärnor under universums första 50 miljoner år. Vi vet att ett stort svart hål finns i mitten av troligen alla galaxer. Överraskningen nu är att de fanns i universums begynnelse och var kanske byggstenar eller frön till de  tidiga galaxerna med dess stjärnor", beskriver huvudförfattaren till en ny studie (publicerad i tidskriften Astrophysical Journal Letters) Joseph Silk, professor vid institutionen för fysik och astronomi vid Johns Hopkins University och Institute of Astrophysics, Paris, Sorbonne University. "Det är en helomvändning jämfört med vad vi ansåg var möjligt tidigare – så mycket att detta nya rön helt kan skaka om vår förståelse av hur galaxer bildas."

"Vi argumenterar nu för att svarta hål strömmar ut krossade gasmoln, förvandlar dem till stjärnor och kraftigt påskyndar stjärnbildningshastigheten", beskriver Silk. – Annars är det väldigt svårt att förstå var dessa ljusstarka galaxer kom från så fort efter BigBang eftersom de vanligtvis är mindre i det tidiga universum. Varför och hur i hela friden skulle annars stjärnor bildats så snabbt?"

Svarta hål är områden i rymden där gravitationen är så stark att ingenting kan undkomma deras dragningskraft, inte ens ljus. På grund av denna kraft genererar de kraftfulla magnetfält som skapar våldsamma stormar, kastar ut turbulent plasma och i slutändan fungerar som enorma partikelacceleratorer, beskriver Silk. Denna process, säger han, är sannolikt anledningen till att Webbs detektorer har upptäckt fler av dessa svarta hål och ljusstarka galaxer än vad forskarna förväntat sig.

"Vi kan inte riktigt se dessa våldsamma vindar eller jetstrålar långt bort i tid och rum, men vi vet att de måste finnas eftersom vi ser många svarta hål redan tidigt i universum", förklarar Silk. – De enorma vindarna som kommer ur de svarta hålen krossar närliggande gasmoln och då uppkommer stjärnor. Det är den felande länken som förklarar varför dessa första galaxer lyser så mycket ljusare än vi förväntat oss. 

Silks team förutspår att det unga universum hade två faser. Under den första fasen påskyndade utflöden från svarta hål stjärnbildningen och i en andra fas avtog utflödena. Några hundra miljoner år efter big bang kollapsade gasmoln på grund av magnetiska stormar från svarta hål och nya stjärnor bildades i en takt som vida översteg den som observeras miljarder år senare i dagens galaxer, beskriver Silk. Skapandet av stjärnor saktades ner eftersom dess kraftfulla utflöden övergick till ett tillstånd av energibesparing, beskriver han, vilket minskar gasen som är tillgänglig för att bilda stjärnor i galaxer.

"Den stora frågan är, vad  vår början var? Solen är en stjärna på 100 miljarder i Vintergatan, och det finns också ett massivt svart hål i mitten av Vintergatan. Vad är kopplingen mellan de två?" undrar han. "Inom ett år kommer vi att ha så mycket bättre data och många av våra frågor kommer att börja få svar."

Uppstod de  första svarta hålen direkt efter BigBang eller var de ursprunget till BigBang? Varifrån kom dessa  utflöden av gas från de svarta hålen i tidens början som bildade de första stjärnorna? Misstanken enligt mig är att de drog in och släppte ut gas genom en koppling mellan ett universum som kollapsat samtidigt som vårt universum uppstod. Tid och rum är relativt.

Bland författarna till studien finns Colin Norman och Rosemary F. G. Wyse från Johns Hopkins; Mitchell C. Begelman of University of Colorado and National Institute of Standards and Technology; och Adi Nusser från Israel Institute of Technology. Teamet stöds av Israel Science Foundation och Asher Space Research Institute, samt Eric och Wendy Schmidt på rekommendation av Schmidt Futures-programmet.

Bild vikipedia NGC 2207 och IC 2163 är två spiralgalaxer på ungefär 80 miljoner ljusårs avstånd från oss som kolliderar med varandra, bilden tagen av Hubbleteleskopet.

lördag 10 februari 2024

Ljusstarka galaxer och mörk materia

 


De första galaxerna tros ha bildats när gravitationen från mörk materia långsamt drog samman tillräckligt med väte och helium för att stjärnor skulle kunna bildas och antändas.

Men nu har ny forskning under ledning av astrofysiker vid UCLA (University of California, Los Angeles) visat att väte- och heliumgasen efter Big Bang studsade i överljudsfart mot täta, långsamt rörliga klumpar av kall mörk materia. När gasen därefter avstannade sin rörelse årtusenden senare bildades stjärnor och som i sin tur bildade små, exceptionellt ljusstarka galaxer.

Om denna modell av kall mörk materia är korrekt borde James Webb Space Telescope kunna hitta fläckar av ljusstarka galaxer i det tidiga universum, vilket skulle kunna möjliggöra det första effektiva testet av dagens teori om mörk materia. Om Webb finner fläckarna måste forskarna utarbeta nya teorier om mörk materia.

Den nya forskningen som resulterat i ovan teori publiceras nyligen i The Astrophysical Journal Letters och den tidigare teorin om mörk materia förbättras genom datasimuleringar genom att lägga till växelverkan mellan mörk materia och gas och finner att det som man ansett första ljussvaga galaxerna kan ha varit mycket ljusare än väntat i början av universums historia i dess bildande. Författarna till studien föreslår att man nu bör försöka hitta små galaxer som är mycket ljusstarkare än förväntat med hjälp av teleskop som Webb-teleskopet. Om de däremot endast hittar ljussvaga galaxer kan en del av deras idéer om mörk materia vara felaktiga.

Mörk materia är en typ av hypotetisk materia som inte växelverkar med elektromagnetism eller ljus. Således är det omöjligt att observera med hjälp av optik, elektricitet eller magnetism. Men mörk materia växelverkar med gravitationen och dess närvaro har härletts från de gravitationella effekter den har på vanlig materia. Vanlig materia utgör hela det observerbara universum. Men tots att 84 procent av all materia i universum tros bestå av mörk materia (ej synlig materia) har den aldrig upptäckts direkt.

Bild https://newsroom.ucla.edu/ En sammansättning av Stephans kvintett, en visuell gruppering av fem galaxer, konstruerad av nästan 1 000 separata bildfiler från James Webb Space Telescope. Astrofysiker vid UCLA tror att om teorierna om kall mörk materia är korrekta, borde Webb-teleskopet hitta små, ljusstarka galaxer i det tidiga universum.

tisdag 6 februari 2024

19 närliggande galaxers struktur fotograferade av Webbteleskopet

 


Dessa Webb-bilder ingår i en del av ett stort långvarigt projekt, projektet Physics at High Angular resolution in Nearby GalaxieS (PHANGS). Ett projekt som stöds av mer än 150 astronomer över hela världen. Innan Webbteleskopet tog dessa bilder var PHANGS redan full av data från NASA:s rymdteleskop Hubble, Europeiska sydobservatoriets Very Large Telescope's Multi-Unit Spectroscopic Explorer och Atacama Large Millimeter/submillimeter Array, inklusive observationer i ultraviolett, synligt och radiovågor. Webbs bidrag i kort- och mellaninfrarött ljus har gett än mer.

"Webbs nya bilder är extraordinära", beskriver Janice Lee, projektforskare för strategiska initiativ vid Space Telescope Science Institute i Baltimore.

 – De är häpnadsväckande även för forskare som har studerat samma galaxer i årtionden. Bubblor och filament är upplösta ner till den minsta skalan som någonsin observerats och visar mer av stjärnbildningscykeln.

Spänningen spred sig snabbt i hela teamet när Webb-bilderna strömmade in. "Det känns som om vårt team lever i ett konstant tillstånd av att bli överväldigade – på ett positivt sätt – av mängden detaljer i dessa bilder", tillade Thomas Williams, postdoktoral forskare vid University of Oxford i Storbritannien. 

Se mer och läs mer om dessa bilder ovan här från https://webbtelescope.org

fredag 26 januari 2024

De första galaxernas form

 


Forskare som analyserade Webbs data fann att de långsmala (surfbrädeliknande) och nålformade galaxerna var mycket vanligare när universum var 600 miljoner till 6 miljarder år gammalt. Närliggande galaxer i tid och rum är ofta tydligt definierade som spiral eller klotformade.

Det är ännu inte klart om de för oss nya galaxformerna har utvecklats vidare under hela den kosmiska tiden till de spiral och klotformer vi ser i vår tid . Framtida forskning krävs för att ta reda på hur galaxernas 3D-geometrier förändrats under mer än 13 miljarder år.

Forskare som analyserat bilder från NASA:s James Webb Space Telescope beskriver att ungefär 50 till 80 procent av galaxerna de studerat verkar vara tillplattade i två dimensioner enligt uttalande av huvudförfattaren Viraj Pandya, NASA Hubble Fellow vid Columbia University i New York.

Vilken kategori skulle vår galax Vintergatan hamna i om vi kunde vrida tillbaka klockan miljarder år? "Vår bästa gissning är att den kan ha sett mer ut som en surfbräda", beskriver medförfattaren Haowen Zhang, doktorand vid University of Arizona i Tucson. Denna hypotes är delvis baserad på nya bevis från Webb – teoretiker som har "vridit tillbaka klockan" för att uppskatta Vintergatans massa för miljarder år sedan, vilket korrelerar med formen vid den tiden.

Dessa avlägsna galaxer är också mycket mindre massiva än närliggande spiral och elliptiska galaxer – de är föregångare till mer massiva galaxer som vår egen. "I det tidiga universum hade galaxer mycket mindre tid på sig att växa", säger Kartheik Iyer, medförfattare och NASA Hubble Fellow vid Columbia University. – Att identifiera ytterligare kategorier för tidiga galaxer är spännande – det finns mycket mer att analysera nu. Vi kan nu studera hur galaxernas former relaterar till hur de ser ut och bättre projicera hur de bildades mycket mer detaljerat.

"Det här är tidiga resultat", säger medförfattaren Elizabeth McGrath, docent vid Colby College i Waterville, Maine. "Vi måste gräva djupare i data för att ta reda på vad som händer över tid, men vi är mycket nöjda över dessa tidiga trender."

Bild vikipedia NGC 1427A är ett exempel på irreguljär galax.

Bild vikipedia NGC 1427A är ett exempel på irreguljär galax.

måndag 18 december 2023

Galaktisk vind upptäckt i mycket gamla stjärnbildande galaxer

 


I en banbrytande upptäckt har ett internationellt forskarlag under ledning av en CNRS-forskare avslöjat den roll som galaktiska vindar spelar för att reglera tillväxten av galaxer upp till  de som är över 7 miljarder år gamla  och där det aktivt bildas stjärnor. Upptäckten har möjliggjorts genom att instrumentet MUSE integrerats i Europeiska sydobservatoriets Very Large Telescope och det då avslöjats en universell process som har stor betydelse i galaxers utveckling. 

Galaktiska vindar, som genereras av massiva stjärnors explosiva död (supernovor), har länge varit teoretiskt kända. Deras upptäckt var däremot svårfångad på grund av dess diffusa och låga densitet. För att övervinna denna utmaning inledde teamet ett ambitiöst projekt där de kombinerade bilder av mer än hundra galaxer med förlängda exponeringstider.

Nyckeln till upptäckten låg i att studera emissionssignalerna från magnesiumatomer något som  gjorde det möjligt att kartlägga morfologin hos dessa vindar. Resultatet blev  häpnadsväckande. Dessa galaktiska vindar visar sig som koner av materia som kastas ut vinkelrätt från båda sidor av ett galaxplan något som ger viktiga insikter om dess struktur och beteende.

Betydelsen av denna upptäckt kan inte överskattas. Tidigare har galaktiska vindars roll i att begränsa stjärnbildningshastigheten i galaxer endast observerats i Vintergatan. Den nya forskningen utvidgar dock fenomenets räckvidd till galaxer som sträcker sig över mer än 7 miljarder år i ålder, vilket effektivt kategoriserar det som en universell process som styr galaktisk utveckling. Nästa mål är att bestämma omfattningen av dessa galaktiska vindar och kvantifiera mängden materia de transporterar.

Bild https://www.eso.org på ESO:s Very Large Telescope (VLT) vid Panamalobservatoriet. MUSE är ett av de större instrumenten på VLT och är monterat på ett av de fyra 8,2 meter stora huvudteleskopen.

söndag 3 december 2023

En ung galax innehållande en mängd av metaller.

 


Astrofysiker som arbetat med JWST(James Webb teleskopet) har hittat en överraskande mängd metall i en ung galax bara 350 miljoner år efter Big Bang.

Ursprunget till universums första metaller är en grundläggande fråga inom astrofysiken. Strax efter Big Bang bestod universum nästan helt av väte det enklaste av grundämnena. Det fanns även lite helium, något litium och möjligen en oändligt liten mängd beryllium. I grundämnenas periodiska system är dessa de fyra första.

Inom astronofysiken kallas alla grundämnen tyngre än väte och helium för metaller. Metaller produceras i stjärnor och ingen annanstans (förutom den lilla mängd som producerades vid Big Bang). Att spåra bildandet av universums metaller från Big Bang till idag är ett av astrofysikens grundläggande strävanden.

Ett forskarlag som arbetar med JADES-observationer (Advanced Deep Extragalactic Survey) upptäckte att galaxen innehåller kol. Eventuellt även syre och neon alla klassade som metaller inom astrofysiken. Resultaten presenterades i en  artikel med titeln "JADES: Carbon enrichment 350 Myr after the Big Bang in a gas-rich galaxy". Huvudförfattare är Francesco D'Eugenio, postdoktoral astrofysiker vid Kavliinstitutet för kosmologi i Cambridge.

De första stjärnorna som bildades i universum kallas Population III-stjärnor (stjärnor uppbyggda helt utan metaller) . De är de äldsta stjärnorna och de var massiva, lysande och heta, och innehöll nästan ingen metall. Den lilla mängd metaller de innehöll kom från de första supernovorna.

Mycket av vår kunskap om Population III-stjärnor är teoretisk eftersom dessa uråldriga stjärnor, i sina uråldriga galaxer, är extremt svåra att observera. Men JWST (Webbteleskopet) är dock kapabel till det. Teleskopet kan inte urskilja enskilda stjärnor, men dess kraftfulla instrument NIRSpec kan upptäcka olika grundämnen i galaxer med hjälp av dess avslöjande ljussignaturer.

Är det verkligen kol i stjärnorna i denna avlägsna, uråldriga galax eller kan det vara något annat som upptäckts? Den uråldriga galaxen har mer än bara stjärnor. Här finns även ett supermassivt svart hål (SMBH). När en SMBH livnär sig på materia kan den blossa upp starkt som en aktiv galaxkärna (AGN. (Asymptotic Giant Branch)) Den ljussignalen kan vara vad JWST ser.

Det finns en annan potentiell källa till kol i galaxer. De är AGB-stjärnor – asymptotiska jättestjärnor. AGB-stjärnor är inte stora explosiva stjärnor som supernovornas föregångare är utan stora stjärnor som har lämnat huvudserien. Jämfört med supernovor som producerar mycket tunga metaller producerar AGB-stjärnor bara lite metaller.

Men det tar lång tid för en stjärna att utvecklas till en AGB-stjärna. När universum bara var 350 miljoner år gammalt hade inga stjärnor funnits tillräckligt länge för att bli AGB stjärnor. AGB-stjärnor kan inte bidra till kolanrikning under dessa tidiga epoker, skriver författarna.

Forskarna rapporterar att kol har upptäckts men kan inte säga exakt var det kommer ifrån. De kan vara arvet från den första generationen supernovor från Population III:s förfäder", skriver de.  Trots all observationstid kan forskarna bara komma fram till preliminära förklaringar till de metaller de upptäckt. Det är inte särskilt praktiskt att använda hela 65 timmars JWST-tid för att studera galaxspektroskopi, men det är vad JWST behöver göra för att få en exakt spektroskopi. Vi får se om denna tid ges i Webbteleskopets agenda där lång tid framåt är fulltecknat.

Bild pxhere.com

måndag 20 november 2023

Universums tidiga galaxer är ljusstarkare än de teoretiskt borde vara.

 


Med hjälp av James Webb Space Telescope (JWST) har upptäckts att nästan alla universums tidigaste galaxer var fyllda med bländande gasmoln som lyste starkare än de framväxande stjärnorna i molnet. Fenomenet som kan hjälpa till att lösa ett mysterium som hotar nuvarande teori om kosmos.

Galaxer bildades så tidigt som ca 500 miljoner år efter Big Bang, då som oregelbundna mindre stjärnhopar med en ljusstyrka som är svår att förklara: Ljusstyrka av denna storlek borde bara komma kunna komma från massiva galaxer med lika många stjärnor som Vintergatan. Men tidiga galaxer tog form på en bråkdel av den tid en det tog för vår galax att bildas och var lika ljusstarka.

Upptäckten hotar att vända upp och ner på fysikernas förståelse av hur galaxer bildas och  den vanligaste kosmologiska modellen som säger att några miljoner år efter Big Bang (för 13,8 miljarder år sedan) kondenserades energi till materia från vilken de första stjärnorna långsamt bildades.

Men då JWST kom i drift upptäcktes alldeles för många stjärnor i denna tid. Nu har astronomer hittat ett möjligt svar (en ny teori): en stor grupp av 12 miljarder år gamla galaxer, varav nästan 90 procent av dessa var insvepta i ljusstark gas som kan ha antänts av ljuset och hettan från de omgivande stjärnorna vilket utlöste intensiva utbrott av stjärnbildning då gasen svalnade. Den nya forskningsteorin har godkänts för publicering i The Astrophysical Journal.

Vår artikel bevisar att växelverkan med granngalaxerna är orsaken till den ovanliga ljusstyrkan hos tidiga galaxer, beskriver huvudförfattaren Anshu Gupta, astrofysiker vid Curtin University i Australien, till Live Science. Den explosionsartade stjärnbildning som utlöstes av växelverkan kan också förklara de tidiga galaxernas massiva natur, påtalar han.

Växelverkan mellan stjärnor och gas vilket då kan förklara ljusstyrkan.

Astronomer upptäckte de ljusstarka gasmolnen i data som samlats in som en del av JWST:s Advanced Deep Extragalactic Survey, där tre av teleskopets instrument användes för att samla in infraröda bilder av galaxer för spektral analys.

Jag anser att ovan nya teori om växelverkan  är mycket trovärdig.

En bild från https://www.livescience.com   tagen av James Webb Space Telescope av galaxen MACS0647-JD enbart 400 miljoner år efter Big Bang. (Bildkredit: NASA, ESA, CSA, & STScI, APagan (STScI)/ Alamy Live News via Digitaleye)

torsdag 22 juni 2023

Galaxers viktiga betydelse under det tidiga universum

 


I det unga universum var gasen mellan stjärnor och galaxer ogenomskinlig. Stjärnljus kunde inte ses från en stjärna till nästa. Vi kan inte se in i denna tid. Men 1 miljard år efter bigbang hade gasen blivit helt genomskinlig.  Det gick att se universums stjärnor likt vi kan se dem i dag.

Nya data från NASA: s James Webb Space Telescope har identifierat orsaken: Galaxernas stjärnor hade då emitterat tillräckligt med ljus för att värma och jonisera gasen runt dem vilket rensade upp joniseringens täta skymning under en tidsrymd av hundratals miljoner år.

Citerar från vikipedia för att förklara hur Webbtelekopet ser. "Teleskopet är ett IR-teleskop vilket innebär att det registrerar infraröd strålning. Det har även förmåga att uppfatta delar av det synliga ljuset. Fördelar med observationer i infrarött är att det är lättare att tränga genom regioner fyllda av rymdstoft samt att kalla objekt som bruna dvärgar och exoplaneter primärt utsänder sin strålning i infrarött. Dessutom blir det betydligt lättare att observera det unga universum eftersom de tidigaste objekten är rödförskjutna på grund av universums expansion". Slut citat.

Studien från en forskargrupp ledd av Simon Lilly från ETH Zürich i Schweiz, är de senaste insikterna om en tidsperiod som kallas återjoniseringstiden 

Forskare har länge sökt definitiva bevis för att förklara omvandlingen. De nya resultaten visar  återjoniseringsperioden. Webbteleskopet visar inte bara tydligt att dessa transparenta regioner fanns runt galaxer, vi har också mätt hur stora de var, beskriver Daichi Kashino från Nagoya University i Japan, huvudförfattaren till lagets första studier. I Webbs data ser vi då hur galaxer återjoniserar gasen runt dem.

Webbs data visar att dessa tidiga relativt små galaxer drev återjoniseringen och rensade massiva områden i rymden runt dem. Under de kommande hundra miljoner åren fortsatte dessa transparenta "bubblor" att växa sig större och större och så småningom smälta samman och få hela universum att bli transparent (och universum möjligt att se). Lillys team riktade avsiktligt in på en tid strax före slutet av återjoniseringeran då  universum inte var helt ljusgenomsläppligt och inte riktigt ogenomskinligt då det innehöll ett lapptäcke av gas i olika tillstånd.

Forskare riktade Webb i riktning mot en kvasar - ett extremt lysande aktivt supermassivt svart hål. 

Denna kvasars ljus färdades mot oss genom skilda gasfält absorberades det antingen av gas som var ogenomskinlig eller rörde sig fritt genom transparent gas. Teamets banbrytande resultat var endast möjliga genom att para ihop Webbs data med observationer från den centrala kvasaren med hjälp av  W. M. Keck-observatoriet på Hawaii och Europeiska sydobservatoriets Very Large Telescope och Magellan-teleskopet vid Las Campanas-observatoriet, sistnämnda i Chile. "Genom att belysa gas längs denna siktlinje ger kvasaren oss omfattande information om gasens sammansättning och tillstånd, beskrev Anna-Christina Eilers från MIT i Cambridge, Massachusetts.

Forskarna använde sedan Webb för att identifiera galaxer nära denna siktlinje och visade att galaxerna i allmänhet är omgivna av transparenta områden med cirka 2 miljoner ljusårs radie. Med andra ord bevittnade Webb galaxer i färd med att rensa utrymmet runt dem i slutet av återjoniseringstiden (och då ses i optiska telekop). För att sätta detta i perspektiv är området som dessa galaxer har rensat ungefär som utrymmet mellan Vintergatan och vår närmaste granne, Andromedagalaxen.

Fram till nu hade forskare inte hittat definitiva bevis på vad som orsakade återjoniseringen först med data från Webbteleskopet förstod man.

Det mest massiva svarta hål som är känt i det tidiga universum väger 10 miljarder gånger mer än solens massa. Vi kan fortfarande inte förklara hur kvasarer kunde växa sig så stora så tidigt i universums historia, skriver Eilers.

Teamets första publikationer inkluderar "EIGER I. ett stort urval av emitterande galaxer vid 5,3 < z < 6,9 och direkta bevis för lokal återjonisering av galaxer", ledd av Kashino, "EIGER II. första spektroskopiska karakteriseringen av unga stjärnor och joniserad gas associerad med stark Hβ- och [OIII]-linjeemission i galaxer vid z = 5 - 7 med JWST", ledd av Matthee, och "EIGER III. JWST/NIRCam observationer av den ultralysande högrödförskjutningskvasaren J0100+2802", ledd av Eilers och som att publicerades i The Astrophysical Journal den 12 juni 2023.

Bild från https://hmn.wiki/sv/Reionization av en Schematisk tidslinje för universum som visar återjoniseringens plats i den kosmiska historien

torsdag 9 mars 2023

Inte långt efter BigBang fanns mystiskt nog stora galaxer eller vad är det?

 


James WebbTeleskopet (JWST) fann redan en vecka efter sin lansering den I  juli 2022 en liten röd prick långt därute i tid och rum som kom att skaka om förståelsen av hur och när de första galaxerna bildades efter Big Bang. Efter månader av analys publicerades nyligen en studie av upptäckten i Nature av biträdande professor Erica Nelson vid University of Colorado och Professor Ivo Labbe.

Webbteleskopet upptäckte ultraröda platta objekt i det infrarödfältet vilket är det fält Webbteleskopet arbetar med.

Ultraviolett och synligt ljus från de första stjärnorna och galaxerna som bildades efter Big Bang sträcks ut av universums expansion när det färdas mot oss, så när ljuset når oss ser vi det som infrarött ljus. Beroende på rödförskjutning något som sker med ljus från ett objekt då det är på väg bort från oss genom universums pågående expansion.

De upptäckta galaxerna ser ut som UFO utom en. Efter det att Ivo Labbe sett på denna lilla röda prick på skärmen använde han ett analysprogram på denna galax vilket gav ett avstånd från oss på 13,1 miljarder ljusår och en massa av 100 miljarder stjärnor. Enligt den kunskap vi har om universum är detta omöjligt massiva galaxer så tidigt efter  universums tillblivelse.

Men kan det ha ett samband med de otroligt stora stjärnor som upptäckts under universums tidigaste existens? Se mitt inlägg den 4 mars. Kan galaxerna bestå av ett mindre antal av dessa som bestod av väte och helium stjärnor som var ca 10000 gånger större än vår sol?

Galaxen som undersöktes visade att den fanns redan när universums ålder enbart var 5 % av den nuvarande eller för 13, 8 miljarder år sedan.

Några dagar efter detta fynd hade Ivo Labbe hittat ytterligare sex stycken.

Ivo Labbe begrundar över (säkert även Erica Nelson) över att när vi ser ut i rymden och tillbaka i tiden ser vi "resterna" av fullbildade, mogna galaxer dyka upp till synes från ingenstans cirka 1,5 miljarder år efter Big Bang.

Galaxer där inga stjärnor längre bildas. Stjärnåldrarna i dessa döda galaxer tyder på att de måste ha bildats mycket tidigare i universum, men Hubble har aldrig kunnat upptäcka deras tidigare och aktiva stadier. Nu först med Webbteleskopet är det möjligt..

Tidiga så kallade döda galaxer är galaxer som innehöll lika många stjärnor som Vintergatan, men de var mycket närmre varandra så den galax de fanns i var ca 30 gånger mindre än Vintergatan. De ser ut som extremt krympta versioner av galaxer men med likartad massa.

Det finns dock något man kan fundera över. Dessa små röda prickar har för många stjärnor i ett läge då universum var ungt de borde inte redan då ha uppkommit.

För att producera dessa galaxer så snabbt behöver du nästan all gas i universum för att stjärnor av denna mängd skulle kunna bildas. Något som forskarvärlden ser som omöjligt. Men likväl har upptäckt ha skett.

Det första steget för att lösa detta mysterium är att bekräfta avstånden med spektroskopi, där vi åter undersöker ljuset från var och en av dessa galaxer genom ett prisma och delar upp det i sitt regnbågsliknande fingeravtryck. Detta kommer att berätta avståndet till 0,1 procents noggrannhet. En misstanke finns att avståndsbedömningen blivit missvisande i tid och rum.

Det kommer också då att visa vad ljuskällan är, om det är stjärnor i en galax eller något annat mer exotiskt. Man tänker då på kvasarer.

För ungefär en månad sedan, riktade Webbteleskopet in sig på en av de sex galaxerna och det visade sig då vara en avlägsen babykvasar. En kvasar är ett fenomen som uppstår när gas faller in i ett supermassivt svart hål i mitten av en galax och börjar lysa starkt. Så kanske det inte är galaxer utan kvasarer. https://sv.wikipedia.org/wiki/Kvasar

Om det istället är kvasarer allihop än galaxer är frågan. Kvasarer tror jag är rimligt. Men om det är snabbt samlade stjärnor till galaxer då bör det vara de första jättestjärnorna de innehåller se mitt inlägg från 4 mars om jättestjärnor.

Bild från https://astronomy.com/ som visar de sex galaxerna i sin omgivning

onsdag 25 januari 2023

Tre avlägsna grönskimrande galaxer kan lösa ett olöst mysterium

 


Astronomer har med hjälp av James Webb Space Telescope (JWST) upptäckt tre små galaxer som (tillsammans med flera ännu ej upptäckta) kan ha haft betydelse för att utlösa en av de största händelserna i kosmisk historia det som kallas återjoniseringen.

Resultaten, presenterades vid ett möte med American Astronomical Society (AAS) i Seattle, Washington. Studien publicerades nyligen och i dess konklusion finns en troilg förklaring till universums återjonisering. Den period i kosmos då hård strålning slet sönder en "dimma" av väteatomer som en gång fyllde universum i universums tidigaste tid och resulterade i att stjärnor och galaxer blev synliga. Detta skedde i efterdyningarna av Big Bang när universum var bländande ljust.

Restvärmen var då så stor att elektroner inte kunde sammanslås med protoner och bilda atomer. Istället var universum i ett plasmatillstånd - en tät glödande gas av elektriskt laddade (eller joniserade) partiklar som spred sitt ljus ungefär som en fluorescerande glödlampa. Efter cirka 380000 år hade det expanderande universum svalnat tillräckligt så väteatomer kunde bildas. Några av dessa atomer samlades så småningom och bildade de första stjärnorna och galaxerna.

Därefter efter en längre tid bröt energirik strålning isär de intergalaktiska väteatomerna och de blev protoner och elektroner  igen en process som kallas återjoniseringen. Men att jonisera all materia mellan galaxerna innebar en stor energiåtgång och astronomer har länge argumenterat vad denna drivkraft var. Teorier finns att det var stjärnljus från de tidigaste galaxerna eller supermassiva svarta hål med en stark gravitation som drog i materia in mot dem och resulterade i värme.

"En av de stora kosmologiska frågorna är vad var orsaken till återjoniseringen var?" säger Trinh Thuan, astronom vid University of Virginia i Charlottesville.

Den 11 juli 2022  ungefär sex månader efter att JWST lanserades - tog JWST den djupaste och skarpaste bilden av det tidigaste universum som hittills gjorts. Bilden visar en galaxhop kallad SMACS 0723 som finns bland tusentals galaxer som lyser svagt därute. JWST kunde fånga ljuset i infrarött och man såg då hur  universum expanderar bland avlägsna galaxer i tid och rum.  Av de tusentals galaxerna i SMACS 0723-bilden bestämde sig forskare för att göra uppföljande spektroskopiska observationer av tre galaxer som såg ut som om de skulle befinna sig särskilt långt bort. De tre grönskimrande nämnda i rubriken.

När James Rhoads, astronom vid NASA Goddard Space Flight Center i Greenbelt, Maryland, och hans kollegor först såg trions spektra insåg de att galaxerna såg ut som objekt som normalt finns betydligt närmre oss. Galaxerna såg ut som gröna ärter något som först upptäcktes genom ett medborgarvetenskapligt projekt som heter Galaxy Zoo

Gröna ärtgalaxer namnges så på grund av sin färg och  storlek. De är bara 5 % av Vintergatans storlek och innehåller 1 % av massan. Men där  spottas ut stjärnor i en enorm takt - ungefär 100 gånger så snabbt som astronomer skulle förvänta sig med tanke på galaxernas massa. De verkar även  innehålla relativt få tunga element. Deras grönaktiga sken kommer från skenet av joniserat syre (ett relativt ljust element) uppvärmt av nya stjärnor. Tiden är då återjoniseringen skett.

Bild flickr.com NASA: s Webbteleskopet visar på universums tidiga galaxer (märkta här).