Google

Translate blog

Visar inlägg med etikett sammanslås. Visa alla inlägg
Visar inlägg med etikett sammanslås. Visa alla inlägg

fredag 14 november 2025

Fenomenet när två svarta hål upptäcktes slås samman förklarat

 


Bild https://www.simonsfoundation.org  Infografik som visar stegen då en massiv stjärna kollapsar in i ett svart hål. Lucy Reading-Ikkanda/Simons stiftelse

År 2023 upptäckte astronomer en enorm kollision. Två massiva svarta hål kraschade ca 7 miljarder ljusår bort från oss. De svarta hålens enorma massor och extrema spinn förbryllade astronomerna. Svarta hål som dessa var inte tänkta att existera.

Nu har astronomer vid Flatiron Institute's Center for Computational Astrophysics (CCA) och deras kollegor listat ut hur dessa svarta hål kan ha bildats och kolliderat. Astronomernas omfattande simuleringar  som följde systemet från stjärnornas existens till deras slutliga slut avslöjade den saknade pusselbiten som tidigare studier hade förbisett, magnetfält.

– Ingen har tänkt på de här systemen på det sätt som vi gjorde. Tidigare tog astronomer bara en genväg och försummade magnetfälten, beskriver Ore Gottlieb, astrofysiker vid CCA och huvudförfattare till studien om arbetet som publicerats i The Astrophysical Journal Letters. Men när man väl tar hänsyn till magnetfält kan man  förklara ursprunget till denna unika händelse.

Kollisionen som upptäcktes 2023,  känd som GW231123, observerades av LIGO-Virgo-KAGRA-samarbetet med hjälp av dessa detektorer som mäter gravitationsvågor, krusningarna i rumtiden som orsakas av massiva föremåls rörelser.

På den tiden kunde astronomer inte förstå hur så stora snabbt snurrande svarta hål kunde uppstå. När massiva stjärnor når slutet av sin tid kollapsar många av dem och exploderar som en supernova och lämnar efter sig ett svart hål. Men om stjärnan faller inom ett visst massintervall uppstår en speciell typ av supernova. Denna explosion, som kallas en parinstabil supernova, är så våldsam att stjärnan förintas och inte lämnar något efter sig.

– Som ett resultat av dessa supernovor förväntar vi oss inte att svarta hål ska bildas med en massa som är mellan 70 och 140 gånger solens, beskriver Gottlieb. Så det var förbryllande att se svarta hål med stor  massa inuti det här gapet, beskriver han.

Svarta hål i detta massgap kan bildas indirekt, när två svarta hål smälter samman och bildar ett större svart hål, men i fallet med GW231123 trodde forskarna att detta var osannolikt. Sammansmältningen av svarta hål är en oerhört kaotisk händelse som ofta stör spinnet hos det först aktiva svarta hålet. De svarta hålen i GW231123 var de snabbast snurrande hålen som LIGO observatoriet upptäckt och händelsen drog med sig rumtiden med nästan ljusets hastighet. Två svarta hål av deras storlek och spinn är otroligt osannolika, så astronomerna trodde att något annat måste vara i görningen.

Gottlieb och hans medarbetare undersökte detta genom att genomföra två steg av beräkningssimuleringar. De simulerade först en jättestjärna med en massa som är 250 gånger solens genom huvudstadiet av dess existens från det att den börjar förbrännas väte till den tar slut och kollapsar i en supernova. När en så massiv stjärna hade nått supernovastadiet hade den bränt  upp tillräckligt med bränsle för att minska till bara 150 gånger vår sols massa, vilket gjorde dess storlek precis över massgapet och  stor nog för att lämna ett svart hål efter sig. Efter att en icke-roterande stjärna kollapsar och bildar ett svart hål, faller molnet av överblivet lös materia snabbt in i det svarta hålet. Men om den ursprungliga stjärnan snurrade snabbt, bildar detta moln en snurrande skiva som får det svarta hålet att snurra snabbare och snabbare när material faller ner i dess avgrund. Om det finns ett magnetfält utövar detta tryck på skräpskivan. Detta tryck är tillräckligt starkt för att kasta ut en del av materialet från det svarta hålet med nästan ljusets hastighet.

Dessa utflöden minskar i slutändan huvuddelen av materialet i den omgivande skivan som så småningom matas in i det svarta hålet. Ju starkare magnetfältet är desto större blir denna effekt. I extrema fall med mycket starkt magnetfält kan upp till hälften av stjärnans ursprungliga massa kastas ut genom det svarta hålets skiva. 

I fallet med simuleringarna skapade magnetfälten till slut ett sista svart hål i massgapet. Resultatet tyder enligt Gottlieb på ett samband mellan massan av ett svart hål och hur snabbt detta snurrar. Starka magnetfält kan bromsa ett svart håls snurrande och föra med sig en del av stjärnans massa, vilket skapar lättare och långsammare snurrande svarta hål. Svagare fält tillåter tyngre och snabbare snurrande svarta hål. Detta tyder på att svarta hål kan följa ett mönster som binder samman deras massa och snurrar samman. Även om astronomer inte känner till några andra system av svarta hål där detta samband kan testas genom observationer, hoppas de att framtida observationer kan hitta fler sådana system som kan bekräfta detta samband

söndag 19 oktober 2025

Filaments strukturer sammanslås i molekylmolnet G34

 


Bild https://english.cas.cn/ Det molekylära molnet G34. Trefärgad sammansatt bild av WISE 3.4 (blå), 12 (grön) och 22 μm (röd) band (bakgrund). De vita konturerna representerar den integrerade intensiteten hos 13CO. De cyan och grönfärgade cirklarna indikerar H II-områden. (Bild av SUN Mingke)

Med hjälp av CO (J=1-0) molekyllinjedata erhållna från 13,7-metersmillimetervågsteleskopet vid Purple Mountain Observatory's Delingha Observatory, genomförde SUN Mingke, doktorand vid Xinjiang Astronomical Observatory of the Chinese Academy of Sciences och hans medarbetare en systematisk studie av det galaktiska molekylmolnet G34. De avslöjade här kollisionssignaturer och dynamiska mekanismer av trådliknande strukturer i denna region. G34 finns i riktning mot stjärnbilden Aquila, ungefär 10 000 ljusår från oss.

I studien identifierade forskarna två gigantiska filament, betecknade F1 och F2, i G34-regionen. Genom att analysera deras rumsliga fördelning och hastighetsrörelse fann forskarna tydliga bevis för pågående kollisioner mellan filamenten.

Fraktionerna av gas med hög kolonndensitet (N(H2)>1,0×1022 cm-2) inom F1 och F2 är relativt låga, endast 4,16 % respektive 8,33 %. I hela regionen är endast en tät klump rumsligt associerad med en WISE 22 μm infraröd stoftkärna. Fynden tyder på att F1 och F2 befinner sig i ett tidigt utvecklingsstadium och att här för närvarande bildas stjärnor med låg massa.

Dessutom ökar både hastigheten och linjemassan hos filamenten gradvis från sina ändar in mot centrum, i en antikorrelation med gravitationspotentialen. Detta indikerar att gravitationell potentiell energi omvandlas till kinetisk (rörelse) energi vilket belyser gravitationens betydelse för filamentutvecklingen.

Dessutom fann man inga H II-regioner associerade med F1 och F2, vilket tyder på att dessa storskaliga strukturer ännu inte påverkas av stjärnåterkoppling (påverkan från andra stjärnor) i joniserade regioner. Istället styrs deras dynamik främst av självgravitation. Vilket ger ytterligare stöd för scenariot att filamentkollision är en nyckelmekanism som driver utvecklingen av detta system.

Studien ger inte bara nya observationsbevis för bildandet och utvecklingen av filamentära strukturer utan belyser också den viktiga roll som gravitations drivna processer spelar för att forma dynamiken här. Resultaten bidrar till en djupare förståelse av de tidiga evolutionära mekanismerna i jättelika trådliknande strukturer i Vintergatan

Resultatet av studien har publicerats i tidskriften Astronomy & Astrophysics.