Google

Translate blog

lördag 13 november 2021

NASA ska nu noggrant studera stjärnan Procyon A

 


En NASA-raket kommer snart att med sitt nya instrument observera en stjärna i närheten för att lära sig mer om hur stjärnljus påverkar exoplaneters atmosfärer vilket är viktigt att förstå mer om när vi söker efter  liv utanför vårt solsystem.

 

Med hjälp av ett uppdaterat instrument som först lanserades 2019 har uppdraget nu ett nytt mål: Procyon A, den ljusaste stjärnan i stjärnbilden Canis Minor (Lilla Hunden). 

 

Det man önskar förstå är; Hur påverkar en stjärnas ljus potentiella livstecken från planeter som kretsar runt den? Suborbital Imaging Spectrograph for Transition region Irradiance from Nearby Exoplanet host stars, eller SISTINE-2, uppdraget startade från White Sands Missile Range i New Mexico den 8 november 2021 med syftet att arbeta utefter ovan frågeställning.

 

Frågan om livet existerar någon annanstans i universum än på jorden är kantat av tekniska utmaningar. Vi kan inte resa till planeter runt andra stjärnor  för att undersöka på plats. Våra teleskop är inte heller tillräckligt kraftfulla för att se ner på dess ytor. Istället ser astronomer på exoplaneters atmosfärer och söker efter spår av kemikalier som vi vet behövs för liv som vi förstår det. Vatten, metan, syre, ozon och andra så kallade biomarkörer producerar unika ljusmönster som teleskop kan upptäcka på avstånd. Men för att tolka dem korrekt måste astronomer även se på hur planeten påverkas av sin  stjärnas sken (sol).

 

"Samspelet mellan planetens atmosfär och ultraviolett ljus från dess sol avgör vilka gaser som fungerar som de bästa biomarkörerna", säger Kevin France, astrofysiker vid University of Colorado Boulder och huvudutredare vid uppdraget.

Vissa ultravioletta (UV) våglängder kan till exempel bryta ner koldioxid, frigöra en enda syreatom för att kombinera den med andra och bilda molekylärt syre (tillverkat av två syreatomer) eller ozon (tillverkat av tre). Stjärnor som sprider  detta ljus kan skapa falska biomarkörer och lura astronomer att söka liv på fel exoplaneter.

 

SISTINE-teamet strävar efter att undvika detta dilemma genom att skapa en guide till de våglängder som varje typ av stjärna avger. Det finns många olika typer av stjärnor och vi har ännu inte en fullständig bild av all deras ljusutsläpp eller hur detta varierar över tid. Med en katalog över stjärnljus kan forskare uppskatta om en upptäckt biomarkör antingen är ett potentiellt tecken på liv eller en falsk signal från stjärnljus. På den nu påbörjade flygningen kommer SISTINE-2 att observera Procyon A. En stjärna som finns cirka 11,5 ljusår bort. Procyon A är en stjärna av F-typ, vilket är gulvita solar något större, varmare och ljusare än vår sol. Även om det här inte upptäckts någon exoplanet kan studier av Procyon A hjälpa oss att förstå F-stjärnor och deras eventuella exoplaneters påverkan av sin sol.

"Att känna till dessa stjärnors ultravioletta spektra hjälper oss att hitta de mest lovande miljöerna på exoplaneter med framtida NASA-observatorier", säger France. SIXTIN-2 består av ett teleskop och ett instrument som kallas spektrograf (en typ av spektroskop)  som bryter ner ljus i sina separata färger. SIXTIN-2 kommer att fokusera på ultraviolett ljus från 100 till 160 nanometer ett intervall som inkluderar våglängder som är kända för att producera falska positiva biomarkörer. Genom att kombinera sina insamlade data med befintliga observationer av röntgen, extremt ultraviolett och synligt ljus från stjärnor av F-typ hoppas teamet kunna sätta ihop ett referensspektrum som hjälper astronomer att tolka biomarkörer på exoplaneter som kretsar kring F-stjärnor.

Bild från vikipedia på raketen Black Brants uppskjutning 2019 för test av Sistine spektrografen vilken är 100 tals effektivare än Hubble då det gäller spektrografstudier av främmande planeter och stjärnor. Den slutliga uppskjutningen med det färdigutvecklade instrumentet kallat Sistine II sändes upp den 8 nov 2021.

fredag 12 november 2021

Upptäckten hur grundämnet fluor kommer till därute i universum

 


En ny upptäckt därute har gjorts som kan förklara hur grundämnet fluor uppstår. Med hjälp av Atacama Large Millimeter/submillimeter Array (ALMA i Chile) där ESO (European Southern Observatory) är en av partnerna har ett forskarlag detekterat grundämnet i en galax vars ljus har tagit 12 miljarder år att nå oss (12 miljarder ljusår bort). Det är första gången fluor har upptäckts i en så avlägsen galax. Galaxen har beteckningen NGP-190387.

Likt många ämnen omkring oss skapas fluor i stjärnor men tills nu har vi inte känt till exakt hur fluor bildas. “Vi visste inte ens vilken typ av stjärnor som producerade huvuddelen av universums fluor”. Framtida studier av NGP-190387 med Extremely Large Telescope (ELT) – ESO:s nya flaggskeppsprojekt som är under konstruktion i Chile  med planerad driftstart längre fram under detta årtionde – kan komma att avslöja fler hemligheter i denna galax.

 “ALMA är känslig för strålning som sänds ut av kall interstellär gas och stoft” säger Chentao Yang, ESO Fellow i Chile. “Men med ELT kommer vi kunna observera NGP–190387 genom att direkt observera strålning från stjärnor vilket ger oss mer information om stjärnpopulationerna i denna galax.

En av astronomerna Franco och hans kollegor upptäckte fluoret (i form av vätefluorid) i stora gasmoln i  NGP–190387. Galaxen ses som den såg ut för 1,4 miljarder år gammal eller under 10 procent av universums nuvarande ålder. Eftersom stjärnor gör sig av med de grundämnen de producerat i slutet av sina liv måste fluoren ha bildats i stjärnor som existerat under en mycket kort tid. 

 

Forskarna tror därför att Wolf–Rayet-stjärnor ett slag av mycket massiva stjärnor som bara existerar några miljoner år  är den mest troliga utgångsplatsen för fluor i denna galax. Dessa bör förklara de höga halter av fluor som upptäcktes. Wolf–Rayet-stjärnor har föreslagits i andra sammanhang tidigare men man har inte känt till deras eventuella betydelse för bildningen av fluor.

 

Bild från vikipedia på en Wolf–Rayet-stjärna WR 136 tillhör gruppen WN-stjärnor. Den har skapat nebulosan NGC 6888.  Visar lite av hur en sådan stjärna därute agerat. Obs inte att förväxla med den nämnda galaxen ovan.

torsdag 11 november 2021

ÄR universum modellerat för att liv ska kunna existera.

 


Kan ovanstående vara riktigt i så fall måste man undra av vem eller vad. Kan det inte istället vara så att liv modellerats fram för att passa i vårt universum eller på Jorden och då inte av något eller någon utan genom evolution över tid. När väl första livets tråd uppstått av slump eller sig själv genom evolution kunde sedan  alla former börja utvecklas. Tankar av mig.

Men nu vidare diskussion oberoende av ovan tanke: I årtionden har olika fysiker diskuterat  att även de minsta förändringarna i naturens grundläggande lagar skulle göra det omöjligt för livet att existera. Denna idé, även känd som argumentet "finjusterat universum", antyder att förekomsten av liv i universum är mycket känsligt för värdena i grundläggande fysik. Ändra något av dessa värden (som logiken säger) och livet skulle inte kunna existera. Men kan detta verkligen vara fallet, eller är det möjligt att livet kan dyka upp under olika fysiska konstanter men att vi vill se oss som unika?

Denna fråga tacklades nyligen av Luke A. Barnes, postdoktor vid Sidney Institute for Astronomy (SIA) i Australien. I sin bok , "A Fortunate Universe: Life in a Finely Tuned Cosmos", här hävdade han och astrofysikprofessor Geraint F. Lewis vid SIA att ett finjusterat universum är meningsfullt ur fysikens synpunkt. Ett universum med tre rumsliga dimensioner och en fjärde dimension tiden (som det beskrivs i den allmänna relativitetsteorin) är viktigt. För ytterliga diskussion i frågan följ länken här. 

Detta då det finns för mycket i artikeln inlägget utgår från för att tas upp här. Det viktigaste (andemeningen) anser jag dock jag tagit upp ovan.

Bild pixabay.com

onsdag 10 november 2021

En galax där metaller är ovanligt förekommande.

 


Ett team av astronomer med ledning av Raffaele Pascale vid astronomiska observatoriet i Bologna, Italien har utfört hydrodynamiska simuleringar på DDO 68 en extremt metallfattig galax.

Resultaten av studien presenterades i en artikel  den 25 oktober på arXiv pre-print server. Studien  visar ny kunskap om ursprunget och naturen av denna galax. Galaxen finns på ett avstånd från oss på cirka 41,2 miljoner ljusår och har även beteckningen UGC 5340. Det är en mindre galax med oregelbunden form. Här finns mycket lite syre och den är en av de  metallfattigaste dvärggalaxer vi känner till. Dess  låga metallinnehåll är märklig mot bakgrund av dess relativt stora  stjärnmassa  och ljusstyrka.

 

DDO 68 har  en ovanlig form. Galaxen visar upp en stor, ljus och förvrängd stjärnkomponent, kallad "kometsvansen", som utgår från den sydöstra kanten av dess huvudkropp. Dessutom har den en rund struktur i norr som kallas "komethuvudet". Astronomer har upptäckt att DDO 68 i själva verket består av två distinkta system: huvudkroppen DDO 68 A (inklusive komethuvudet) och en konstellation stjärnor svävande runt detta som kallas DDO 68 B som för närvarande ackrediteras av DDO 68 A  vilken producerat kometsvansen. Baserat på datasimuleringarna dom gjordes fann astronomerna att galaxen sannolikt är ett resultat av interaktionen mellan tre system nämligen en dominerande galax DDO 68, med en dynamisk massa av 10 miljarder solmassor och två mindre satellitgalaxer - med massor på cirka 0,05 och 0,0067 gånger massan av DDO 68.

Forskarna drar slutsatsen att den udda form som observerats av hela DDO 68 inte beror på en interaktion med en mindre följeslagare utan sannolikt är resultatet av flera galaxers uppbyggnad till en sammanhängande galax.

 

I undersökning ges dock inga ledtrådar till varför galaxen eller vissa galaxer är eller har blivit metallfattiga medan andra inte är eller blivit det.(min anm.) Men så är det därute. Observera att Vintergatan inte tillhör de metallfattiga galaxerna. Jorden ex innehåller ju en järnrik kärna. Min tanke går till BigBang där kan lösningen finnas på att vissa galaxers framtid blev metallfattiga då där samlades metallfattiga stjärnor. Men varför och hur är en gåta. 

Bild på dvärggalaxen DDO 68 från Hubble publicerad på ESA (european space agency).

tisdag 9 november 2021

Stenar upptäckta av ett slag som inte finns i vårt solsystem

 


Astronomer har upptäckt tusentals planeter som kretsar runt stjärnor i vintergatan. Planeter som kretsar runt andra solar än vår sol som benämns exoplaneter. Det är dock svårt att veta exakt vad dessa planeter innehåller eller om de liknar jorden (på grund av avståndet dit).

För att försöka ta reda på mer om det samarbetade astronomen Siyi Xu från NSF:s NOIRLab med geologen Keith Putirka vid California State University, Fresno, med syftet  att studera atmosfären i vad som kallas förorenade vita dvärgar. Vita dvärgar  är de täta, kollapsade kärnorna av en gång vanliga stjärnor som solen vilka nu innehåller material från planeter, asteroider eller andra steniga kroppar som en gång kretsade runt stjärnan men så småningom föll in i den vita dvärgen och "förorenade" dess atmosfär.

Genom att leta efter element som inte naturligt skulle existera i en vit dvärgs atmosfär (allt annat än väte och helium som naturligt finns i en sol) kan forskare ta reda på vad de steniga planetariska föremålen som föll in i stjärnan (eller slukades av denna vid den röda fasens uppsvällande) bestod av.

Putirka och Xu såg på 23 förorenade vita dvärgar alla inom cirka 650 ljusår bort från oss där mättes halter av kalcium, kisel, magnesium och järn noggrant upp med WM Keck Observatory i Hawai'i, Hubble Space Telescope och andra observatorier runt om i världen (spektralanalys). Forskarna analyserade därefter de uppmätta överflödena av dessa element för att rekonstruera de mineral och stenar som skulle kunna bildas ur detta. De fann att dessa vita dvärgar har ett mycket bredare utbud av kompositioner än någon av de inre planeterna i vårt eget solsystem vilket tyder på att planeterna som slukats där hade haft ett bredare utbud av bergtyper. Faktum är att vissa kompositioner är så ovanliga att Putirka och Xu var tvungna att konstruera  nya namn (som "kvartspyroxeniter" och "periclase duniter") för att kunna klassificera de nya stenarna som måste ha funnits på dessa planeter.

 

"Medan vissa exoplaneter som en gång kretsade runt förorenade vita dvärgar liknat jorden var merparten stenar som exotiska i jämförelse med vad som finns i vårt solsystem", säger Xu. "De har inga direkta motsvarigheter i vårt solsystem."Putirka beskriver vad dessa nya stenslag kan ha inneburit för de steniga världar där de fanns och de där de kanske finns i dag därute vid en gul sol. "Några av de stenar vi ser har existerat utifrån data från de vita dvärgarna skulle lösas upp mer i vatten än stenar på jorden gör vilket är något som skulle kunna påverka havsutveckling", förklarade han. "Vissa stenar visar sig smälta vid mycket lägre temperaturer och producera en tjockare skorpa än jordens stenar gör och vissa stenar kan vara mindre fasta vilket kan underlätta utvecklingen av kontinentaldrift.

Intressanta antaganden (min anm.). Men kan likväl inte låta bli att fundera över om dessa för oss nya stenslag är naturligt bildade i händelseschemat då en sol sväller upp och sedan dras ihop till en vit dvärg. I så fall har dessa stenslag kanske aldrig existerat utanför en vit dvärg och kan så inte heller.

Bild från depositphotos.com en bild på temat mystiskt universum.

måndag 8 november 2021

Komet 29P rör sig svårförklarligt

 


Komet 29P får i genomsnitt 7,3 utbrott om året enligt historiskt uppsamlad data. Vid dessa utbrott blir kometen mycket ljusstarkare. Dess Omloppsbana är nästan cirkulär runt solen och går nära Jupiter.  Omloppsbanan har flera gånger ändrats på grund av dess nära kontakt med Jupiters gravitation. När den upptäcktes var omloppstiden lite mer än 16 år mot dagens 14,65 år. Vid en ny närkontakt till Jorden 2037 kommer omloppstiden att ha ökat till nästan 16 år igen. Den kommer dock inte i farlig närhet till Jorden.

Sedan  slutet av september 2021  har det skett en serie av oförutsägbara utbrott från kometen som det ännu inte finns en förklaring till. En internationell observationskampanj bestående av både amatör- och professionella astronomer försöker nu få hjälp av rymdteleskopet Hubbles datainsamling för att få mer data om händelserna. Tyvärr krånglade Hubble just i de mest aktiva perioderna från kometen i höstas.

Comet 29P är i sig ett häpnadsväckande objekt. Mer än 60 kilometer tvärs över är det en av de största kometerna därute. Det är en av endast en handfull kometer som kallas Centaurs (kometer i bana vid Jupiter) som kretsar runt solen efter att ha hälsat på mellan Saturnus och Jupiter. Något som får dem i framtiden att en dag kastas ur Jupiters bana på grund av planetens gravitation och närma sig solen eller få en kurs bort från vårt solsystem.

Komet29P lyser upp regelbundet med kraftfulla utbrott som gör den till den näst mest aktiva kroppen i solsystemet efter Jupiters måne Io

Men varför dessa ljusutbrott sker som innebär utkast av materia vet ingen (och att de ökade i september i år). – Man kan inte förutsäga när utbrotten ska ske, säger Richard Miles, amatörastronom och tidigare forskare inom kolvätekemi men för närvarande  chef för Asteroids and Remote Planets Section of the British Astronomical Association. Kometen finns för den intresserade att söka i riktning mot stjärnbilden Auriga (Kusken) men är mycket svagt lysande för små teleskop men fem astronomer, baserade i Utah, Skottland, Frankrike och på den spanska ön Teneriffa såg skeendet i september då den befann sig när månen (riktningsmässigt).

 

"Vi såg flera sekventiella utbrott", säger Miles. – Det var fyra i snabb följd följda därefter av ytterliga ett avslutande. Efter mindre än två dagar efter denna händelse blev kometens ljusstyrka ungefär 250 gånger ljusare än den var innan aktiviteten."

Astronomer förstår väldigt lite om komet 29P och dess beteende. Teorier finns men ingen av dessa är bevisad. Forskare förstår inte heller varför den plötsliga ökningen av aktivitet skedde. Kometers aktivitet bestäms vanligtvis av värmen från solen när kometen närmar sig denna. Ju närmare stjärnan kommer solen desto mer material från den isiga kometen förångas och ljusstyrkan ökar. Men omloppsbanan för Komet 29P är cirkulär så avståndet från solen förändras knappast på dess färd. Det bör därför inte uppvisa  några variationer i aktivitet, säger Noonan.

 

Richard Miles tror att de kraftiga utbrott som observerats nyligen kan vara ett resultat av komplexa geologiska processer som äger rum inuti kometen såväl som på dess yta.

Det tycker jag låter som en rimlig förklaring (min anm.) nu gäller det bara att förstå vad som sker och kanske Hubble kan ta reda på detta genom sin övervakning och datainsamling. Tips Jupiters gravitation stör kometens inre.

Bild från vikipedia på Komet 28P Bild tagen av Spitzerteleskopet, NASA.

söndag 7 november 2021

Den heliumrikaste stjärnan som hittats.

 


Så kallade extrema heliumstjärnor är en mycket sällsynt klass av stjärnor som innehåller en låg halt av väte men en hög halt av helium.

Dessa stjärnor är slutprodukten av en sammanslagning mellan vita dvärgar vilka innehöll en heliumkärna och en kolsyrekärna. Astronomer från Österrike och Nordirland har inspekterat en märklig extremt stor heliumrik stjärna som kallas HD 144941. Resultaten av studien publicerades 21 oktober på arXiv pre-print server. En studie som indikerar att HD 144941 är den  heliumrikaste jättestjärnan som upptäckts hittills. Den finns cirka 5100 ljusår från oss och upptäcktes för första gången för nära 50 år sedan.

 Stjärnan har en radie på cirka 3,8 solradier och är ungefär åtta gånger mer massiv än solen. Den har en rotationsperiod på 13,9 dagar och en medeltemperatur av ca 21700C.

Studien baseras huvudsakligen på de data som förvärvats med FOcal Reducer och low dispersion Spectrograph 2 (FORS2) en lågupplöst spektropolarimeter kopplad till European Southern Observatory (ESO) Very Large Telescope (VLT) Unit Telescope 1 (UT1) vid Cerro Paranal i Chile.

Det finns mycket att upptäcka där ute  och säkert kommer fler upptäckter som förvånar oss och förundrar oss i framtiden (min anm.)

Bild flickr.com med tanken vad mer kan finnas eller inte finnas därute i det okända.