Google

Translate blog

tisdag 3 januari 2023

Regolitfyndigheter på Uranus måne, Miranda

 


Regolit ät ordet för ett lager av lös jord som ligger ovan berggrund. Regoliten på jorden består dels av berggrund som vittrat och av växtavlagringar. Regolit finns även på andra planeter, asteroider, månar och andra objekt därute. På Mirandabestår regoliten av en blandning av månens krossade ytlager och meteoriter som krossats på ytan.

Miranda är den minsta och innersta av Uranus fem största månar och har en diameter som är ungefär en sjundedel av vår månes. Den kretsar på ett avstånd av cirka 129850 km från Uranus.

I en studie nyligen publicerad i The Planetary Science Journal beskriver  några  forskare under ledning från Carl Sagan Center vid SETI Institute i Kalifornien det potentiella ursprunget för regolitfyndigheterna på  Miranda. Syftet med studien var att bestämma Mirandas inre struktur framför allt dess inre av värme vilket kan hjälpa till att avgöra om Miranda någonsin hyste  ett inre hav. "Det är osannolikt att Miranda skulle kunnat behålla ett underjordiskt hav till våra dagar på grund av dess lilla storlek", säger Dr. Chloe Beddingfield, forskare vid NASA Ames Research Center.

"Ett kraftigt regolitlager skulle däremot fungera som en isolerande filt och stänga inne värme i Miranda och förbättra livslängden på ett underjordiskt hav under en period. Denna instängda värme skulle också  främja endogen aktivitet under längre period på Miranda.

För studien analyserade forskarna kratrar för att bestämma tjockleken på Mirandas ytregolit. Analyser inkluderade mätning av kraterdjupsdiameterförhållanden, kraterstorleksfrekvensfördelning och den centrala storleken i en specifik krater i detta fall Alonso-kratern. Studiens resultat visade tre potentiella källor för Mirandas kraftiga regolit inkluderat jättestötutkast från dess inre, plymavlagringar (vulkanaktivitet) och ringavlagringar från Uranus. Forskarna säger att de föredrar ringhypotesen grundat på förklaringen till Mirandas blå färg och dess regolits stora rumsliga utsträckning och tjocklek över ytan.

"Om material från Uranus ringar är den primära källan till Mirandas regolit, kan det tyda på att Miranda bildades av ringmaterial och/eller att Miranda migrerade genom ringarna i sin tidiga historia", säger Dr. Beddingfield.

– I de här scenarierna kan Uranus ringar ha varit än tjockare tidigare innan en del av dettas materia hamnade på ex Miranda. Framtida data modelleringsarbete behövs dock för att undersöka denna möjlighet ytterligare. Eftersom Mirandas tjocka isolerande regolit skulle minska värmeförlust och eventuellt förbättra geologisk aktivitet kan regoliten då stödja teorin om den blå koronabildningen", säger Dr. Beddingfield.

" Koronan kan även ha bildats av uppvällande diapirer (uppträngande materia) som bröt Mirandas yta. Kanske ärvde koronan sin polygonala form när dessa diapirer bildades längs redan existerande svaghetsområden i litosfären (yttersta fasta lagret på stenplaneter och månar). Även om förekomsten av Mirandas regolit inte säger oss mycket om de specifika processer som är involverade i koronabildning (energiutstrålning) ger det en känsla av den relativa tidpunkten för händelser och visar att geologisk aktivitet sannolikt inträffat under långa tidsperioder.

I artikeln betonas att det krävs uppföljningsstudier för att bättre förstå de potentiella möjligheterna och inte bara dra slutsatsen att koncentrera på Uranus ringfyndigheter som förklaring på Mirandas tjocka regolit.

Mirandas regolit kan förklaras även av andra processer än ansamling av ringmaterial inklusive materialavsättning på grund av plymaktivitet i tidig historia eller avsättning av utkast av inre matera så kallat jättepåverkan, förklarade Dr. Beddingfield.

Bild vikipedia. Voyager 2 bild av Mirandas trasiga terräng. Verona Rupes, som tros vara de högsta klipporna i vårt solsystem ses längst ner till höger på Miranda och beräknas ha en höjd av ca 20 km.

måndag 2 januari 2023

Manganoxid på Mars kan ha uppkommit utan syre.

 


NASA: s Mars-rover hittade manganoxid i markprov i Gale- och Endeavour-kratrarna på Mars under 2014. En upptäckt som gjorde att  forskare föreslog att Mars en gång kan ha haft mer av syre i sin atmosfär.

De utgick ur sin förförståelse som säger att dessa mineraler krävde rikligt med vatten och starkt oxiderande förhållanden för att bildas. Förförståelsen utgick här från jordens geologiska skeenden vilket överfört till Mars indikerade att Mars hade upplevt periodiska ökningar av atmosfäriskt syre i sitt förflutna  innan nivån över tid  sjönk till dagens låga nivå.

Men en nyligen avslutad experimentell studie från Washington University i St. Louis förstärker inte denna uppfattning. Istället upptäckte forskarna att under Mars-liknande förhållanden kan manganoxider lätt bildas utan atmosfäriskt syre. Med hjälp av kinetisk modellering visade forskarna att manganoxidation inte var möjlig i den koldioxidrika atmosfär som antas funnits på den forntida Mars.

"Länken mellan manganoxider och syre lider av en rad grundläggande geokemiska problem", beskriver Jeffrey Catalano, professor inom earth and planetary sciences in Arts & Sciences och författare i studien som publicerades den 22 december i Nature Geoscience. Catalano är fakultetsstipendiat vid McDonnell Center for the Space Sciences. Huvudförfattaren till studien Kaushik Mitra, numera postdoktoral forskningsassistent vid Stony Brook University slutförde arbetet som en del av sin forskarutbildning vid Washington University.

Mars i sig är en planet rik på halogenelementen klor och brom jämfört med vad jorden är. "Halogener förekommer på Mars i former som skiljer sig från de på jorden och finns i mycket större mängd. Vi gissade att de är viktiga för mangans utveckling", sa Catalano. Forskarna fann att halogener omvandlade mangan upplöst i vatten till manganoxidmineraler tusentals till miljontals gånger snabbare än om det skett med syre. De svagt sura förhållanden som forskare tror fanns på ytan i Mars förflutna producerar bromat manganoxidmineraler snabbare än någon annan tillgänglig oxidant. Under många av dessa förhållanden är syre helt oförmöget att bilda manganoxider.

"Oxidation kräver därför inte inblandning av syre per definition", enligt Mitra. Tidigare föreslogs att livskraftiga oxidanter på Mars behövde syre eller hade uppstått genom UV-fotooxidation. Ett påstående som kunde förklara Mars röda färg. När det gäller mangan hade vi helt enkelt inte ett livskraftigt alternativ till syre som kunde förklara manganoxider inte förrän nu.

De nya resultaten förändrar grundläggande tolkningar av den tidiga Mars livsvänlighet vilket nu blir en viktig källa för pågående forskning från NASA och European Space Agency.

Men bara för att det sannolikt inte fanns något atmosfäriskt syre tidigare finns det ingen särskild anledning att tro att det inte fanns något liv, sa forskarna.

"Det finns flera livsformer även på jorden som inte kräver syre för att överleva", säger Mitra. "Jag tänker inte på detta som ett" bakslag "för livsmöjlig miljö - bara att det förmodligen inte fanns några syrebaserade livsformer."

Däremot kan extremofila organismer  överleva i en halogenrik miljö - som de saltälskande encelliga organismerna och bakterierna som trivs i Great Salt Lake och Döda havet på jorden – skulle också klara sig bra på Mars.

Bild vikipedia på då Curiositys robotarm visar sin borr på Mars i februari 2013

söndag 1 januari 2023

Kommer James Webbteleskopet att avslöja mer om solsystemet TRAPPIST 1 och dess sju planeter.

 


Fritt citerat från vikipedia; TRAPPIST-1 är en röd dvärgstjärna belägen i Vattumannens stjärnbild 40 ljusår från jorden. Här finns sju planeter alla sju ungefär lika stora som jorden. Omloppstiden för de sex innersta planeterna är mellan ett och ett halvt och 13 dygn den sjunde och yttersta planetens egenskaper är än så länge ganska okända. Det är sannolikt att åtminstone tre av planeterna har flytande vatten. Från stjärnan och utåt benämns planeterna Trappist-1b, Trappist-1c, Trappist-1d, Trappist-1e, Trappist-1f, Trappist-1g, och Trappist-1h.

Namnet TRAPPIST-1 kommer av att planetsystemet upptäcktes med teleskopet Transiting Planets and Planetesimals Small Telescope (TRAPPIST) på La Silla-observatoriet i Chile". slut citat.

Astronomer har ägnat mycket tid åt att lära sig så mycket som möjligt om de sju TRAPPIST-1-världarna. 2018 föreslogs i en studie att dessa planeter var stenplaneter och att vissa kunde innehålla mer vatten än jorden. 2021 hävdades i en annan studie att de sannolikt var stenplaneter även om de hade lägre densitet än planeterna i vårt solsystem.

Fyra av de sju planeterna finns i stjärnans beboeliga zon - tillräckligt nära för att ha flytande vatten. Alla sju planeter kretsar närmare sin sol än Merkurius gör vår sol. Dock ska vi ha i minnet av det är två skilda slag av solar. Trappist 1 är en röd dvärgstjärna av storlek som vår Jupiter medan vår sol är mycket hetare och större (min anm.).

Med tanke på att Trappist 1  är mycket svalare än vår sol kanske det inte påverkar temperaturen på planeterna så mycket  att liv och vatten skulle vara omöjligt. Men det påverkar på andra vis.

Till exempel kretsar den närmaste planeten, TRAPPIST-1b, runt sin sol på enbart 1, 9 jorddagar. Det är ett väldigt kort år och visar på ett kort avstånd till solen. På TRAPPIST-1h, den längst bort liggande tar det19 dagar  för en runda om sin sol. Dessutom är alla planeter sannolikt tidvattenlåsta likt vår måne är till jorden, innebärande att samma sida alltid är nattsida och den andra dagsida.

Trots dessa skillnader är TRAPPIST-1 fortfarande det främsta exoplanetmålet för JWST (James Webbteleskopet) på grund av de sju steniga planeterna som ses som intressanta. Och även om detta solsystem har ett av de mest studerade planetsystemenen tror forskare fortfarande att TRAPPIST-1 har mer att avslöja. Man hoppas JWST kan utröna på om det finns atmosfär på planeterna och vad den består av? 

 Webbs NIRSpec-instrument som ingår i teleskopet gör detta till det enda teleskop som kan identifiera signaturen för molekyler som metan, koldioxid och syre på detta avstånd. Gaser som kan vara  tecken på liv på en planet. Efter ett första lovande arbete med att avkoda gaserna i atmosfären i WASP-39b fick astronomer för några veckor  JWT få en tid för en  första titt på TRAPPIST-1-systemet.

Resultatet av detta  har ännu inte granskats eller publicerats. Men vid en konferens vid JWST: s högkvarter - Space Telescope Science Institute i Baltimore - den 13 december diskuterade forskare teleskopets initiala data från dess observationer av TRAPPIST-1g, den näst längst bort liggande planeten från TRAPPIST-1.

Björn Benneke, astronom vid University of Montreal i Kanada, visade att TRAPPIST-1g inte har en väterik atmosfär. Olivia Lim, doktorand vid University of Montreal, presenterade också en studie med liknande resultat för TRAPPIST-1b liksom Alexander Rathcke, astronom vid Harvard Smithsonian Center for Astrophysics, vid observationer av TRAPPIST-1c.

Vidare undersökningsresultat kommer i framtiden. Men jag (min anm.) är inte imponerad över TRAPPIST1 -systemet. Tvivlar starkt på att det finns mycket att hämta här av organiskt liv.

Bild vikipedia på den beboeliga zonen runt TRAPPIST-1 jämfört med den i vårt solsystem.

lördag 31 december 2022

Här finns Vintergatans äldsta stjärnor

 


En grupp MPIA-astronomer (Max Planck Society) har lyckats identifiera Vintergatans äldsta stjärnor. De finns i en population av stjärnor som  kvar från den tidigaste historien av vår hemgalax. Det är metallfattiga stjärnor i centrum av galaxen.  Dessa första stjärnor var annorlunda då de innehöll ingen metall.  Flertalet i universum av de första stjärnorna  har gjort slut på sitt bränsle och exploderat som supernovor för länge sedan och då gett upphov till dagens stjärnor och planeter av hög  metallhalt. 

Forskarnas data kommer från den senaste utgåvan av ESA: s Gaia Mission ett neuralt nätverk för att extrahera metalliciteter i två miljoner  jättestjärnor i den inre regionen av vår galax.

Upptäckten av dessa gamla stjärnor och dess uppbyggnad ger bekräftelse för de kosmologiska datasimuleringar av vår hemgalax tidigaste historia som tidigare gjorts och dragits slutsatser från.

Vintergatan, bildades gradvis under nästan hela universums historia som sträcker sig över 13 miljarder år tillbaks i tiden. Under de senaste decennierna har astronomer genom datamodellering lyckats rekonstruera olika epoker av den galaktiska historien.  Alla stjärnor har genomgått en uppbyggnadsmodell som möjliggör en allmän bedömning av ålder: en stjärnas metallhalt, definierad som mängden kemiska element tyngre än helium i stjärnans atmosfär.

Grundämnen, som astronomer kallar metaller, produceras inuti stjärnor genom kärnfusion och släpps ut nära eller i slutet av en stjärnas liv - då en stjärna med låg massas atmosfär skingras.  Men desto större massa en stjärna innehåller desto mer våldsamt slut får en stjärna den exploderar då som en supernova. På detta sätt förändras varje generation av stjärnor ur den interstellära gasen från vilken nästa generation stjärnor bildas och i allmänhet kommer varje generation av stjärnor att innehålla högre metallhalt än tidigare generationer av stjärnor.

För mer om detta ämne se denna länk https://phys.org/news/2022-12-astronomers-ancient-heart-milky-galaxy.html

Bild  https://phys.org/ Karta över särskilt metallfattiga jättestjärnor identifierade från Gaia DR3-data som visar, som en koncentrerad region (markerad med en circke), de äldsta stjärnorna  i centrala delarna av Vintergatan. Kartan visar hela natthimlen på samma sätt som vissa kartor över världen visar jordens yta. I mitten av kartan är riktningen mot mitten av Vintergatan. Upphovsman: H.-W. Rix / MPIA

fredag 30 december 2022

Mysteriet med Vintergatans satellitgalaxer

 


Det finns 59 små galaxer (dvärggalaxer) bekräftade inom 1,4 miljoner ljusår liggande nära  Vintergatan. Alla befinner sig däremot inte i omloppsbana runt galaxen.  Se denna länk vilka dessa 59 dvärggalaxer är. Några känner de flesta till som ex det lilla och stora Magellanska molnet. 

Detta som man kan se som  arrangemang av galaxer  har förbryllat astronomer i mer än 50 år. Något som fått många att ifrågasätta den kosmologiska standardmodell vi utgår från då det gäller galaxer.

En modell har utarbetats  nu som kan förklara bildandet av universum och hur galaxerna vi ser bildas ännu idag är bildade i klumpar av kall mörk materia. Det mystiskt ämne som utgör cirka 27 procent av universum.  Ett ämne jag tvivlar på finns utan istället är en form av vanlig materia som påverkats till denna form av gravitation och kanske har samband med kvantteorin och kan förklaras med strängteorin men vi inte förstår idag (min anm.).  

Eftersom det inte finns någon känd fysisk mekanism som skulle konstruera långlivade satellitplan (den bana eller de banor dessa dvärggalaxer finns inom) ansåg en del  astronomer att teorin om kall mörk materia för galaxbildning skulle vara fel. Även jag tror det är fel och det ännu idag (min anm.).

Den nya forskningen utförd tillsammans med ett internationellt team av forskare, har nu funnit att satellitplanet i Vintergatan är kosmologiskt möjligt att förklara med påverkan av mörk materia. Det innebär att forskarvärlden inte vill lämna idéen om mörk materia utan på alla vis försöker få den att passa in i de fall det finns motsättningar till den. Anledningen är att i annat fall får kosmologins hörnpelare arbetas om och sökandet efter förklaringar börja om (min anm.). Ett nytt paradigm inom naturvetenskaper berör all kunskap och förfalskar gammal.

Med hjälp av data från Europeiska rymdorganisationens rymdobservatorium GAIA använde forskarna superdatorteknik för att projicera satellitgalaxernas banor i det förflutna och i framtiden.

De upptäckte då att galaxplanet bildas och upplöses på några hundra miljoner år vilket är ett kort ögonblick kosmiskt sett. 

De insåg att tidigare studier baserade på datorsimuleringar hade misslyckats med att ta hänsyn till satelliternas avstånd från Vintergatans centrum något som fick de virtuella satellitsystemen (banorna) att framstå som mycket rundare i formen än de är. 

Med hänsyn till detta hittade de flera virtuella Vintergator (datorsimuleringar av Vintergatan) med ett plan av satellitgalaxer som liknar det som ses genom teleskopen. 

Detta utesluter enligt forskarna en av de viktigaste invändningarna mot kosmologins standardmodell och innebär att begreppet kall mörk materia förblir hörnstenen av vår förståelse av universum. (Något jag anser som feltolkning (min anm.). 

Bild vikipedia på Stora Magellanska molnet är den fjärde största satellitgalaxen i Lokala gruppen.

torsdag 29 december 2022

Så anses galaxer förändras över tid

 


Nu kan forskare ha svaret på en fråga sedan decennier  som handlar om galaxutveckling. De har använt artificiell intelligens (AI)  för att komma framåt i sin forskning och har nu kanske svaret på frågan.

Ända sedan astronomen Edwin Hubble 1926  klassificerade galaxers utvecklingsfaser och gav upphov till  Hubble-sekvensen är galaxmorfologi  ett forskningsområde inom astronomi. Nu har området utvecklats vidare med tillhjälp av AI (artificiell intelligens).

Obs förväxla inte Hubbleteleskopet med den som gett upphov till detta namn och som nämns ovan. Astronomen Edvin Hubble (1889-1953). 

Redan på 1970-talet hade forskare bekräftat att ensamma galaxer tenderar att ha en spiralform och de som finns i galaxhopar var elliptiska eller linsformade. 

I dagarna har i tidskriften Monthly Notices of the Royal Astronomical Society, publicerats en ny forskningsstudie under ledning av astronomer vid International Centre for Radio Astronomy Research (ICRARsom handlar om orsaken till dessa skillnader i form.

Huvudförfattaren till studien är Dr Joel Pfeffer vid University of Western Australia-noden i ICRAR som här diskuterar över "morfologi-densitetsrelationen" – konkret om att galaxer i kluster verkar ha mjukare och mer funktionslös form än de ensamma galaxerna.

"Vi har upptäckt att det händer några unika saker när det finns många  galaxer tillsammans", sa Dr Pfeffer.

– Spiralarmarna på galaxer är ömtåliga och när man går till högre densiteter som i galaxhoparna börjar spiralgalaxer förlora sin gas ( förtydligat då många galaxer samlas förlorar spiralgalaxen sin gas och ombildas till en klot eller linsgalax).

"Denna förlust av gas får dem att" släppa ifrån sig sina spiralarmar och galaxen får en lins (klot)form."

Galaxsammanslagningar där två eller flera spiralgalaxer kraschar ihop bildar en stor elliptisk galax." För studien användes  kraftfulla EAGLE-simuleringar för att analysera en grupp galaxer i detalj, med hjälp av en AI-algoritm för att klassificera galaxer efter deras form. 

Den neurala nätverksbaserade algoritmen baserad på AI-intelligens tränades av ICRAR-doktoranden Mitchell Cavanagh. Algoritmen kan klassificera nästan 20000 galaxer per minut och komprimera vad som annars skulle ta minst en timme till upp till veckor.

Simuleringarna matchar nära nog vad som har observerats i universum vilket ger forskarna självförtroendet till att använda simuleringsresultaten för att tolka observationer av galaxhopars utveckling över tid därute.

Studien identifierade även flera linsformiga galaxer utanför regioner med hög densitet där de annars normalt förväntas. Datamodelleringen tyder på att dessa skapades genom sammanslagning av två galaxer.

Dr Pfeffer sa " Det har kommit många förslag över tid", sa han. "Men det här är det första arbetet som verkligen sätter ihop alla pusselbitar."

Bild En visuell representation av AI som klassificerar galaxer baserat på data från EAGLES-simulering. Upphovsman: ICRAR (The International Centre for Radio Astronomy Research) i Australien.

onsdag 28 december 2022

Hur kan gravitationsvågor verka i ett svart hål?

 


Fritt citerat från vikipedia "Ett svart hål är, enligt den allmänna relativitetsteorin en koncentration av massa med ett så starkt gravitationsfält att ingenting, inte ens ljus, kan övervinna massans gravitation. Materia eller ljus som kommer innanför det svarta hålets händelsehorisont förblir där och kan aldrig komma ut igen förutom eventuellt oerhört långsamt i form av Hawkingstrålning. Man kan inte heller få en reflektion eller spegelbild genom att belysa det med en ljuskälla och inte få någon information om materian som försvinner in i hålet" slut citat.

Ännu förstår vi inte hur kvantteorin fungerar då vi diskuterar gravitation. Det finns  flera teorier att arbeta utefter. Strängteorin som förutsäger att alla partiklar i universum består av extremt små vibrerande strängar är en. Det finns också loopkvantgravitation, som säger att rymdtiden i sig är gjord av små, odelbara bitar som kan liknas vid pixlar på en datorskärm. Båda dessa tillvägagångssätt kan ersätta den traditionella singulariteten i centrum av ett svart hål med något annat. Men när du ersätter singulariteten eliminerar du vanligtvis också händelsehorisonten

Det beror på att händelsehorisonten orsakas av singularitetens oändliga gravitationskraft. Utan singulariteten är gravitationskraften endast otroligt stark men inte oändlig och det innebär att du alltid kan  fly från närområdet av ett svart hål så länge du flyr med tillräcklig hastighet. Med teorin om singulariteten rätt begrepp är gravitationell singularitet är detta omöjligt.

I vissa varianter av strängteorin ersätts singularitets- och händelsehorisonterna av sammanflätade nätverk av trassliga knutar i rumtiden. I loopkvantgravitation blir singulariteten en extremt liten, extremt tät hop av exotisk materia. I andra modeller ersätts det svarta hålet av ett tunt skal av materia, eller av klumpar av ökända typer av spekulativa partiklar.

De närmaste kända svarta hålen finns tusentals ljusår bort och därmed är det svårt att testa modellerna ovan. När svarta hål sammanfogas vilket ibland sker   avger detta gravitationsvågor som krusningar i rumtiden: Dessa kan detekteras med känsliga instrument på jorden som Laser Interferometer Gravitational-Wave Observatory (LIGO) och VIRGO.

Hittills överensstämmer alla observationer av sammanslagning av svarta hål med den  allmänna relativitetsteorin. Men det kan förändras i framtiden när nya gravitationsvågsobservatorier kommer i arbete enligt beskrivningen i en artikel publicerad 30 november i preprint-tidskriften arXiv.

Nyckeln är inte gravitationsvågorna som avges under själva sammanslagningen, utan de som släpps ut direkt efteråt enligt artikeln i tidningen. När sammanslagningen är klar och de två svarta hålen blir ett vibrerar den  sammanslagna massan med en intensiv mängd energi och har en distinkt gravitationsvågsignatur.

Genom att studera dessa signaturer kanske forskare en dag kan förstå vilken teori om svarta hål som håller och vilka som inte gör det. Varje modell av svarta hål förutsäger skillnader i gravitationsvågor som avges efter nedslaget och som härrör från skillnader i det svarta hålets inre struktur. Med olika svarta hålstrukturer sker olika typer av gravitationsvågor.

Astronomer hoppas att nästa generation av gravitationsvågsdetektorer kommer att vara tillräckligt känsliga för att upptäcka dessa små förändringar i gravitationssignatur så vi kan förstå vilken teori som är den riktiga..

Bild vikipedia av en simulering av ett svart hål med stora Magellanska molnet som bakgrund. Gravitationslinsverkan orsakar två förstorade och starkt förvrängda bilder av molnet. I den övre delen bilden ses Vintergatan förvrängd till en båge.