Google

Translate blog

Visar inlägg med etikett atmosfär. Visa alla inlägg
Visar inlägg med etikett atmosfär. Visa alla inlägg

söndag 11 september 2022

James Webbteleskopet upptäckte mer av gasjätten HIP65426b

 


”HIP 65426 b är en exoplanet  365 ljusår bort från oss. En stor gasplanet  exoplanet som kretsar kring stjärnan HIP 65426. Den upptäcktes den 6 juli 2017 av SPHERE-konsortiet med hjälp av instrumentet Spectro-Polarimetric High-Contrast Exoplanet Research (SPHERE) vid Europeiska sydobservatoriet (ESO).  Det är den första planet som upptäckts av ESO:s instrument SPHEREse bild ovan från vikipedia där en stjärnkarta av 7:e magnituden visar HIP 65426 i stjärnbilden Kentauren. 

Under ledning av astronomer från University of Exeter har arbetet med att fånga den första direkta bilden någonsin av en exoplanet med hjälp av James Webb Space Telescope nu lyckats. Bilden visar just denna gasjätte HIP65426b som har cirka fem till 10 gånger större massa än Jupiter och bildades för 15–20 miljoner år sedan.

OBS förstå skillnaden på upptäckten 2017 då man upptäckte planetens existens och den nya bilden som innebär en betydligt klarare bild av denna planet detaljmässigt ex dess atmosfär.

Observationerna leddes av professor Sasha Hinkley vid University of Exeter, i samarbete med ett internationellt forskarlag.

Professor Hinkley säger att "detta är ett genombrytande ögonblick inte bara för Webb teleskopet utan också för astronomi i allmänhet. Med Webb finns det en helt ny uppsättning möjligheter vi kan göra för att se på kemisammansättning av exoplaneters atmosfär.

De tidigare bilderna av planeten producerades med hjälp av korta infraröda våglängder av ljus och täckte endast ett relativt smalt intervall av den totala emissionen från planeten.

Närvaron av de flesta exoplaneter har endast setts med hjälp av indirekta metoder, till exempel transitmetoden där en del av en sols ljus blockeras av en planet som passerar framför denna. Att ta direkta bilder av exoplaneter har  visat sig vara mer utmanande då stjärnorna (solarna) runt vilka planeterna kretsar är så mycket ljusare, i detta fall med HIP65426b flera tusen gånger i vissa solsystem till kanske tiotusen gånger ljusare. Exoplaneter drunknar i sin sols ljus och förblir oupptäckta.

Till den nya bilden använde forskargruppen olika slag av infrarött ljus och då avslöjades nya detaljer som markbaserade teleskop inte skulle kunnat samla in på grund av det inneboende infraröda ljuset i jordens atmosfär. Bilden inkluderar detaljer om den kemiska sammansättningen av planetens atmosfär, vilken verkar röd på grund av mineraler kallade silikater  bildat fint damm i atmosfären.

Teamet tror att bilden är första steget till hur James Webb Telescopes kraftfulla infraröda teleskop kan fånga fler världar bortom vårt solsystem och visa vägen till framtida observationer som kommer att avslöja mer information än någonsin tidigare om exoplaneter

Eftersom ovan planet är cirka 100 gånger längre bort från sin sol än jorden är från vår sol är den tillräckligt avlägsen från sin sol för att Webb kan skilja planeten från solen i bilden med  JWST: s infraröda kamera (NIRCam) och Mid-Infrared Instrument (MIRI) vilka  båda är utrustade med koronagrafer, som är uppsättningar av små masker som blockerar stjärnljus, vilket gör det möjligt för Webb att ta direkta bilder av  exoplaneter som den här.

"Det var verkligen imponerande hur bra JWST-koronagraferna fungerade för att undertrycka värdstjärnans ljus", sa Hinkley.

Det kommer att upptäckas mycket i framtiden med James Webbteleskopet en värdig ersättare till Hubbleteleskopet (min anm.).

måndag 5 september 2022

Koldioxid upptäckt i en exoplanets atmosfär


Koldioxid, vars kemiska formel är CO2 är vid rumstemperatur en färglös gas. Den fyller viktiga biologiska funktioner och spelar en central roll för jordens växtlighet. Koldioxid är även en växthusgas.

NASA:s rymdteleskop James Webb har nu upptäckt det första tydliga beviset av närvaron av  koldioxid i atmosfären på en planet utanför vårt solsystem. Denna observation gjordes i atmosfären av en stor gasplanet som kretsar kring en solliknande stjärna 700 ljusår från oss. Fyndet, som nu godkännts för publicering i Nature, ger bevis på  att Webbteleskopet i framtiden kanske även kan upptäcka och mäta koldioxidnärvaro i  tunnare atmosfärer på mindre och steniga planeter. Planeter lika Jorden där det kan finnas liv av något slag.

WASP-39 b som det handlar om här är en het gasjätte med en massa ungefär som Saturnus med en diameter 1,3 gånger större än Jupiters. Dess extrema låga densitet är delvis relaterad till dess höga temperatur (cirka 900 grader Celsius).

 Till skillnad från de svalare och kompakta gasjättarna i vårt solsystem kretsar WASP-39 b mycket närmre sin stjärna (sol) bara ungefär en åttondel av avståndet som finns mellan solen och Merkurius – och fullbordar ett varv på drygt fyra jorddagar (dock ska vi komma ihåg att WASP -39b kretsar kring en svalare och mindre sol WASP-39, än vår sol).

Planetens upptäckt rapporterades första gången 2011 av markbaserade teleskop vilka upptäckte den subtila, periodiska dimningen av ljuset från WASP-39 (solen)  när planeten passerade framför denna.

Forskargruppen använde nu Webbs near-infrared spectrograph (NIRSpec) för sina observationer av WASP-39 b. Spektrumundersökningen av exoplanetens atmosfär visade  4,1 och 4,6 mikron av koldioxid vilket är det första tydligy detaljerade beviset för koldioxid som någonsin upptäckts på en planet utanför vårt solsystem.

"Så snart datan dök upp på min skärm tog koldioxidupptäckten tag i mig", säger Zafar Rustamkulov, doktorand vid Johns Hopkins University och medlem i JWST Transiting Exoplanet Community Early Release Science-teamet, som genomförde denna undersökning. "Det var ett speciellt ögonblick som passerade en viktig tröskel inom exoplanetvetenskap."

Inget observatorium har någonsin tidigare mätt sådana subtila skillnader i ljusstyrka för så många enskilda färger, på över 3- till 5,5 i mikronområdet i ett exoplanetöverföringspektrum tidigare. Tillgång till denna del av spektrumet är avgörande för att mäta mängden av gaser som vattenånga metan, samt koldioxid, som tros finnas i många olika typer av exoplaneters atmosfär.

"Att upptäcka en så tydlig signal av koldioxid på WASP-39 b bådar gott för framtida upptäckter av sammansättning i atmosfärer på mindre planeter", säger Natalie Batalha vid University of California i Santa Cruz, som var ledare av teamet som gjorde upptäckten.

Vi ser att James Webbteleskopet verkligen kommer att leverera nya rön, Upptäckter och skarpa bilder från universum kommer ofta nu från detta teleskop (min anm.).

Bild vikipedia på Exoplaneten WASP-39b vilken visat sig innehålla betydande mängder vatten i sin atmosfär och nu även koldioxid. (konstnärs koncept).


fredag 19 augusti 2022

Så bildas troligen svavelmoln i Venus atmosfär

 


Forskare som använt sofistikerade beräkningskemiska tekniker har identifierat en ny möjlighet till hur svavelpartiklar kan bildas i Venus atmosfär.

" Vi vet att Venus atmosfär har rikligt med SO2 (svaveldioxid) och även  svavelsyrapartiklar. Vi förväntar oss att ultraviolett strålning förstör SO2 vilket producerar svavelpartiklar. De är uppbyggda från en atom S (svavel) till S2, sedan S4 och slutligen S8. Men hur kommer denna process i gång. Det vill säga hur bildas S2?" undrar Senior Scientist James Lyons, vid Planetary Science Institute i USA,  författare till Nature Communications-papperet "Fotokemiska och termokemiska vägar till S2 och polysulfurbildning i Venus atmosfär." (förtydligar här vad man menar (min anm.) undran är hur och varför två svavelatomer går samman och blir S2 osv).

  Molekyler avS2 ochS2 kan sedan kombineras för att bildaS4, och så vidare. Svavelpartiklar kan bildas antingen genom kondensation av S8 eller genom kondensation avS2, S4 och andra allotroper - olika fysiska former i vilka ett element kan existera - som sedan omorganiseras för att bilda kondenserad S8.

" Svavelpartiklar och då det gula svavel som vi oftast stöter på, består av mestadels av S8, som har en ringstruktur i sin uppbyggnad. Ringstrukturen gör S8 mer stabil mot förstörelse av UV-ljus än de andra allotroperna. För att bilda S8 kan vi antingen börja med två S-atomer och göra S2, eller så kan vi producera S2 med en annan väg vilket är vad vi har gjort i studien, säger Lyons.

"Vi hittade en ny väg för S2-bildning, reaktionen av svavelmonoxid (SO) och disulfurmonoxid (S2O), vilket är ett mycket snabbare vis än att kombinera två S-atomer för att göra S2," sa Lyons. (S2O är två svavelatomer och en syreatom

" För första gången användervi beräkningskemiska tekniker för att bestämma vilka reaktioner som är viktigast, snarare än att vänta på att laboratoriemätningar ska göras eller använda mycket felaktiga uppskattningar av hastigheten på ostuderade reaktioner. Detta är ett nytt och mycket välbehövligt tillvägagångssätt för att studera Venus atmosfär, säger Lyons. "Människor är ovilliga att gå in i labbet för att mäta hastighetskonstanter för molekyler som består av S, klor (Cl) och syre (O) - det här är svåra och ibland farliga föreningar att arbeta med. Beräkningsmetoder per dator istället för farliga labbförsök är det bästa – och egentligen enda – alternativet.

Beräkningsmetoder användes för att beräkna hastighetskonstanterna och till att bestämma de förväntade reaktionsprodukterna. Dessa är toppmoderna beräkningsmodeller (vad vi kallar ab initio-modeller) ( initio betyder"från början"). Dessa ab initio-beräkningar gjordes av författarna av studien från Spanien och från University of Pennsylvania.

– Den här forskningen illustrerar en annan väg till S2 och svavelpartikelbildning. Svavelkemin är dominerande i Venus atmosfär och spelar med stor sannolikhet en nyckelroll i bildandet av den gåtfulla UV-absorbatorn. Mer allmänt öppnar detta arbete dörrarna för att använda molekylära ab initio-tekniker för att skilja ut Venus komplexa kemi, säger Lyons.

Antonio Francés-Monerris från Departament de Química Física, Universitat de València, Spanien är huvudförfattare till studien. Medförfattare inkluderar Javier Carmona-García och Daniel Roca-Sanjuán också från Universitat de València, Alfonso Saiz-Lopez från Institute of Physical Chemistry Rocasolano i Madrid och Tarek Trabelsi och Joseph S. Francisco från University of Pennsylvania.

Bild vikipedia på Molnstrukturen i atmosfären visas på Venus i det ultravioletta spektrumet.

lördag 25 juni 2022

Vid dvärgstjärnan HD 260655 finns några intressanta planeter

 


Astronomer vid MIT (Massachusetts Institute of Technology) med flera har upptäckt ett nytt multiplanetsystem inom vårt galaktiska närområde cirka 33 ljusår, från jorden, vilket gör det till ett av de närmaste kända multiplanetsystemen till vårt eget solsystem.

I centrum finns en liten och sval M-dvärgstjärna med beteckningen HD 260655 vilken  är sol till minst två jordstora planeter. De steniga världarna är sannolikt inte beboeliga då deras banor är relativt snäva och finns nära sin sol vilket utsätter planeterna för temperaturer  för höga för att flytande vatten ska finnas på dess ytor.

Forskare är likväl intresserade av detta solsystem då närheten och ljusstyrkans svaghet hos HD 260655 ger en möjlighet till närmare titt på planeternas egenskaper och vilken dess troliga atmosfär består av.

Båda planeterna i detta system anses var och en därför vara bra mål för atmosfärstudier av exoplaneter säger Michelle Kunimoto, postdoktor vid MIT: s Kavli-institut för astrofysik och rymdforskning och en av upptäcktens ledande forskare. "Finns det en flyktig rik atmosfär runt dessa planeter? Och finns det tecken på vatten eller kolbaserade arter? frågar sig forskarna.

Forskarteamet har i dagarna presenterat sin upptäckt av planetsystemet vid ett möte i American Astronomical Society i Pasadena, Kalifornien. Teammedlemmar av MIT inkluderar Katharine Hesse, George Ricker, Sara Seager, Avi Shporer, Roland Vanderspek och Joel Villaseñor, tillsammans med medarbetare från institutioner runt om i världen.  Det upptäckta planetsystemet identifierades ursprungligen av NASAs Transiting Exoplanet Survey Satellite (TESS) ett MIT-lett uppdrag som utformat till att observera de närmaste och ljusaste stjärnorna för att upptäcka periodiska nedgångar i ljus som kan bero på en förbipasserande planets närvaro.

Bild vikipedia som visar storleksförhållande klassmässigt mellan stjärnor. Ovan HD 260 655 är klassad som en M stjärna. Vår sol är klassad som G.

onsdag 15 juni 2022

Jupiters atmosfärs lager kan ge en inblick i Jupiters ursprung

 


2016 besökte NASA:s Juno planeten Jupiter. Då kunde den röda stormen (röda fläcken) ses tydligt. Utöver det fick man en glimt av den anmärkningsvärda storheten och färgrikedomen av den största planeten i vårt solsystem. Jupiters storslagenhet.  Det var då vi insåg att stormar av skilda storlek ven i dess atmosfär och att den röda var den största men inte den enda.

Juno kunde även mäta gravitationen på skilda områden av Jupiter vilket gav en första information om atmosfärens sammansättning något som inte varit möjligt tidigare då vi tidigare  endast kunnat se det översta skiktet av atmosfären på avstånd.

Ett internationellt team av astronomer under ledning av Yamila Miguel vid SRON/Leiden observatoriet upptäckte nu att Jupiters atmosfär (gashölje) inte är så homogent och välblandat som man tidigare antaget. Man förstod då att det fanns en högre halt av metall i atmosfärens lägre skikt. Skikt längre ner i Jupiter var metallrikare än de övre som enbart bestod av helium och väte.

Teamet analyserade den datainsamlingen som fanns och använde även datasimulering utifrån denna i skilda modeller av fördelning av metaller för att få mer teoretisk information om hur Jupiter bildats. Metallhalten i atmosfären visade sig inte vara homogent fördelad utan metallhalten var högre längre ner i atmosfären. Kanske inte helt ologiskt då gravitationen bör ha dragit tyngre innehåll i atmosfären in mot Jupiter (min anm.).

Upptäckten att den inre delen av atmosfären har mer tunga element än den yttre atmosfären innebär att överflödet av metall minskar utåt. "Tidigare trodde vi att Jupiter har en konvektion likt kokande vatten vilket borde gjort atmosfären väl blandad", säger Miguel. "Men resultatet visar annorlunda."

Det innebär att atmosfären består av skikt där metallhalten i atmosfären ökar ju längre ner i atmosfären vi kommer (min anm.). Medan halten av metall minskar ju högre upp i atmosfären vi mäter. Kanske inte så konstigt då gravitationen enligt mig borde dra ner den tyngre atmosfären in mot centrum och detta vara förklaringen.

Bild Vikipedia på Jupiter tagen 1979 av Voyager 1. Bilden är förbättrad för att framhäva detaljer.

fredag 11 februari 2022

Neptunusliknande gasplaneter ses förlora sin atmosfär (gas)

 


Exoplaneter finns i former och storlekar som inte finns i vårt solsystem. Det inkluderar små gasformiga planeter som kallas mini-Neptunes och steniga planeter flera gånger större än jordens massa som kallas superjordar och allt däremellan.

Nyligen har astronomer identifierat två "mini-Neptunes" vilka just nu förlorar sina  atmosfärer och sannolikt därefter blir till superjordar. Det är troligen strålning från planeternas stjärnor som avdunstar bort deras atmosfärer och driver den heta gasen att förångas likt kokande vatten. En oväntad upptäckt är att atmosfären inte försvinner ut i rymden utan dras in mot deras sol (något kanske gravitationen kan förklaras som på grund av planetens närhet till sin sol som då drar atmosfären in i mot sig (min anm.).

De nya rönen visar hur planeter kan omvandlas från gasplanet till stenplanet något som man trott kunde ske men tidigare inte upptäckt vara på gång därute.  

Mini-Neptunes är mindre och tätare versioner av planeten Neptunus i vårt solsystem, och tros bestå av stora steniga kärnor omgivna av tjocka lager av gas (vilket kan kallas atmosfär).

I de nya studierna använde ett team av astronomer NASA:s rymdteleskop Hubble för att se på den ena som finns kring HD 63433, en stjärna som ligger 73 ljusår bort. Och utöver denna mini-Neptunes användes W.M. Keck-observatoriet på Hawaii för att studera den andra i stjärnsystemet TOI 560 som finns 103 ljusår bort.

Deras resultat visar att atmosfärisk gas läcker ut från den innersta mini-Neptunus i TOI 560, kallad TOI 560.01 (även känd som HD 73583b), och från den yttersta mini-Neptunus i HD 63433, kallad HD 63433c. Detta tyder på att de kan förvandlas till superjordar. Här kan en film från youtube visa hur det kan se ut då en planet av detta slag mister sin atmosfär.

"De flesta astronomer misstänkte att unga, mini-Neptunes måste ha avdunstande atmosfärer", säger doktorand Michael Zhang vid Caltech Kalifoniens tekniska högskola i Pasadena som är en av de som gjort upptäckten och är huvudförfattare till  studierna och tillägger. "Men ingen hade någonsin fångat en i färd med att göra det inte förrän nu."

Kan Jorden en gång ha varit en mini-Neptunus? Nej inget visar att så är fallet då jorden i så fall varit betydligt större än den är i dag. Men hade ex Neptunus bildats på kanske Jordens eller Venus plats hade denna varit en kandidat för en omvandling av detta slag (min anm.).

Bild från https://www.news9live.com/  på An illustration of the mini-Neptune TOI 560.01. (Image credit: WM Keck Observatory/Adam Makarenko).

fredag 4 februari 2022

Exoplanet WASP-189b har en unik och intressant atmosfär.

 


WASP-189 b (även känd som HD 133112 b) är en exoplanet som har en bantid runt sin sol WASP-189 (HD 133112) på något mindre än tre jorddagar. WASP-189 b finns cirka 322 ljusår bort i Libra-konstellationen (stjärnbilden Vågen). Planeten upptäcktes första gången  2018 och observerades senare mer i detalj 2020 från CHEOPS- teleskopet.

 

Ett internationellt team av forskare vid Universitetet i Bern, Universitetet i Genève samt National Centre of Competence in Research (NCCR) PlanetS har nu analyserat atmosfären runt WASP-189 b genom spektroskopi.  Resultatet från denna heta Jupiter-liknande planet som WASP-189 b  är publicerades i Nature Astronomy. I studien visar ett internationellt forskarlag lett från Lunds universitet att atmosfären är uppbyggd i olika lager. Lager med mycket olika egenskaper.

CHEOPS-teleskopet visade bland annat att planeten finns ca 20 gånger närmre sin sol än jorden är till vår sol och dess dagstemperatur är ca 3200 grader Celsius. Observationer  med HARPS-spektrografen vid La Silla-observatoriet i Chile gjorde det för första gången möjligt att  närmare undersöka  på atmosfärens sammansättning.

"Vi mätte ljuset som kom från planetens sol då detta ljus passerade genom planetens atmosfär. Gaserna i atmosfären absorberar  då en del av solljuset, liknande ozon som absorberar en del av solljuset i jordens atmosfär och lämnar då ett karakteristiskt "fingeravtryck". Med hjälp av HARPS kunde vi identifiera  ämnen här som ger samma effekt som ozon gör här på jorden förklarade doktorand Bibiana Prinoth vid Lunds universitet, huvudförfattare till studien. Enligt forskarna inkluderade gaserna i atmosfären runt WASP-189b järn, krom, vanadin, magnesium och mangan.

En särskilt intressant substans som teamet  hittade  är en gas som innehåller titan: titanoxid. Medan titanoxid är mycket litet förekommande på jorden, kan den spela en viktig roll i atmosfären på WASP-189b - liknande den viktiga roll ozon har för jordens atmosfär.

– Titanoxid absorberar  ultraviolett strålning. Dess detektion kan därför indikera ett lager i atmosfären över WASP-189b som interagerar med stjärnbestrålningen på samma sätt som ozonskiktet gör i jordens atmosfär, säger Kevin Heng, professor i astrofysik vid Universitetet i Bern och medlem av NCCR PlanetS. 

 

 Faktum är att forskarna fann antydningar om ett sådant lager och andra lager i planeten atmosfär. "I vår analys såg vi att "fingeravtrycken" av de olika gaserna ändrades något jämfört med våra förväntningar över tid. Vi tror detta beror på starka vindar och andra processer vilket genererar dessa förändringar. Då ”fingeravtrycken” från olika gaser ändrades på olika sätt över tid tror vi att detta indikerar att de ligger i olika lager – på samma sätt som ”fingeravtrycken” av vattenånga och ozon på jorden skulle se annorlunda ut och förändras över tid om man undersökte jordens atmosfär på avstånd då dessa oftast förekommer här i olika atmosfäriska lager, förklarar Prinoth. Resultatet av studien kan förändra hur astronomer undersöker exoplaneters atmosfärer i framtiden.

"Tidigare antog astronomer oftast att exoplaneters atmosfär existerar som ett enhetligt lager och fortfarande försöker man förstå det som sådant. Men våra resultat visar att även atmosfären på intensivt bestrålade jättegasplaneter har komplexa tredimensionella strukturer, påpekar Jens Hoeijmakers, medförfattare och biträdande universitetslektor vid Lunds universitet.

"Vi är övertygade om att vi för att fullt ut ska kunna förstå dessa och andra typer av planeters atmosfär – inklusive sådana planeter som mer liknar jorden måste vi uppskatta den tredimensionella naturen i deras atmosfärer. Detta kräver innovationer inom dataanalysteknik, datormodellering och grundläggande atmosfärsteori, avslutar Kevin Heng.

Man kan väl se det som att man har förutfattade meningar vid exoplanetforskning. Vi söker likheter med planeter i vårt solsystem och försöker katalogisera exoplaneter utefter ett schema av enklast möjliga överblickbara slag (min anm.). Men det kan bli helt fel att bedöma efter förförståelsen. Ofta är saker mer komplicerade och överraskande än vi önskar.

Bild från http://www.sci-news.com/ där även mycket intressant beskrivs om http://www.sci-news.com/astronomy/cheops-ultrahot-jupiter-wasp-189b-08898.html WASP-189b

fredag 31 december 2021

En gång fanns en atmosfär på Merkurius.

 


Merkurius är den innersta och minsta planeten i solsystemet. Den har en omloppstid runt solen av ungefär 88 dygn. Ytan är ganska lik månens, täckt av kratrar. Här finns ingen atmosfär och yttemperaturen varierar mellan –173 grader Celsius i botten av kratrarna vid polerna och +427 grader Celsius på de varmaste platserna på solsidan Planetens består av en järnrik kärna täckt av  en stenig mantel vilket tyder på att planeten haft ett magmahav tidigt i sin utveckling.

Liksom all vätska under extrem hetta har detta hav avdunstat. Vätskan i detta hav bestod inte av vatten eller etan eller liknande vätskor. På  Merkurius var temperaturen sannolikt så hög att ångan bestod av förångad sten.

I en ny studie publicerad i The Planetary Science Journal modellerade Noah Jäggi med kollegor hur avdunstningen av ytan av detta magmahav bildade en atmosfär som sedan över tid avdunstade ut i rymden men som även förändrade Merkurius sammansättning och som nu gör att vi frågar oss hur måttligt flyktiga element som natrium kan ha ackumulerats på Merkurius yta.

Resultatet av studien var överraskande berättade Jäggi, doktorand vid Universitetet i Bern. Tidiga planetariska magmahav är inte ovanliga på en planet förklarade Lindy Elkins-Tanton, chef för School of Earth and Space Exploration vid Arizona State University. "Vi tror att alla steniga planeter haft ett eller flera sådana magmahav efter sitt bildande. Effekterna av ackrettionen  i slutet av planetbildning är just så energirik planeten  smälter ner till något djup."

I både det flyktiga och icke-flyktiga fallet avdunstar magmahavet och bildar en atmosfär. Molekyler i denna  kan därefter fly från atmosfären på ett av fyra sätt – plasmauppvärmning från solvindens laddade partiklar; fotoevaporation från extremt högenergirika solfotoner som röntgenstrålar eller ultravioletta fotoner från solens övre atmosfär som skapar ett utflöde av gas (även kallad hydrodynamisk flykt); Effekten där särskilt höghöjdsmolekyler med låg massa, glider ut från toppen av atmosfären innan de stöter på en annan molekyl och en molekylär kollision sker och fotojonisering blir resultatet att högenergifotoner producerar joner som flyr från planeten på olika sätt.

 

Teamets modell fann att av de fyra potentiella flyktmekanismerna var och en var möjliga för atmosfärförlusten. Den mest troliga gav en effekt som ledde till massförluster från 1 miljon till 4 miljarder kilo per sekund, sade Jäggi, allt beroende på hur effektivt det atmosfäriska innehållet värms upp och hur mycket strålning som producerades av den tidiga solen.


Men viktigast av allt, den totala förlusten av massa från de två mycket olika atmosfärteorier som testades - flyktiga och icke-flyktiga - befanns vara ganska lika. Med tanke på massförlusten var modellens resulterande tidsskala för effektivt kemiskt utbyte av den inre atmosfären mindre än 10000 år,

Bild vikipedia som visar en storleksjämförelse mellan de inre planeterna (Merkurius, Venus, jorden och Mars).

fredag 8 oktober 2021

Atmosfär försvinner från jordliknande planeter

 


Likt planeterna i vårt solsystem är förståelsen av soldynamiken i ett system en avgörande aspekt i att förstå livsmöjligheter. Jordens skyddande magnetfält upprätthåller sedan miljarder år tillbaks en atmosfär runt Jorden. Något som även gett ett stabilt klimat för livet att utvecklas här.

Däremot finns andra steniga planeter som kretsar runt vår sol antingen atmosfärlösa har mycket tät molnig atmosfär (Venus) eller har mycket tunn atmosfär (Mars) på grund av  interaktion med solen. Under de senaste åren har astronomer sökt efter samma process vid planeter i andra solsystem. Till exempel genomförde ett internationellt team av astronomer med ledning från bland annat National Astronomical Observatory of Japan (NAOJ) nyligen  observationer av två superjordar som kretsar mycket nära sina respektive stjärnor.

Dessa planeter, som inte har några kraftiga ursprungliga atmosfärer, representerar en chans att undersöka utvecklingen av atmosfärförändringar på heta steniga planeter. Dr. Hirano och hans team valde två planeter som ursprungligen identifierats av  NASA: s Transitting Exoplanet Survey Spacecraft (TESS) - TOI-1634b och TOI-1685b. Dessa två superjordplaneter kretsar kring M-stjärnor (röda dvärgar) och finns cirka 114 respektive 122 ljusår bort i riktning mot stjärnbilden Perseus.

TOI-1685 b är en exoplanet som kretsar kring stjärnan TOI-1685, belägen cirka 122,7 ljusår bort och TOI-1634 b är en exoplanet som kretsar kring stjärnan TOI-1634 belägen cirka 115,0 ljusår från oss.

I Studien beskrivs deras resultat nyligen publicerade i The Astrophysical Journal under ledning av Dr. Teruyuki Hirano från NAOJ och The Graduate University for Advanced Studies (SOKENDAI) i Tokyo, Japan. Till att börja med bekräftade Dr. Hirano och hans kollegor att planeterna är steniga superjordar som mäter 1,7 och 1,79 jordradier och är 4,91 och 3,78 gånger så massiva som jorden. De bekräftade också att de har korta omloppsbanor24 respektive mindre än 17 timmar att slutföra ett varv runt sina röda dvärgstjärnor. De fann att de saknade en väte - heliumatmosfär liknande vad jorden hade för miljarder år sedan. Med all sannolikhet på grund av planeternas närhet till sina solar. Röda dvärgstjärnor är benägna att blossa upp  emellanåt vilket är förödande för närbelägna planeters bildande av atmosfär.

Dessa planeter ger dock en stor möjlighet att studera hur atmosfärer utvecklas på steniga planeter särskilt de som kretsar kring röda dvärgstjärnor. Dessutom innebär det faktum att dessa planeter saknar atmosfär att astronomer kommer att kunna testa teorier om steniga planeter som kretsar nära röda dvärgstjärnor. Jämfört med gula dvärgar av G-typ (som solen) är röda dvärgar kända för att vara variabla istället för lugna i sitt sken och benägna att blossa upp. Eftersom steniga planeter som kretsar inom en röd dvärgs beboeliga zon (nära sin sol) sannolikt är tidvattenlåsta (med ena sidan ständigt vänd mot stjärnan), är astronomer naturligtvis nyfikna på om de kan upprätthålla en atmosfär överhuvudtaget och i så fall hur länge. Röda dvärgar utgör uppskattningsvis 75 % av stjärnorna i Vintergatan och många steniga planeter har hittats i röda dvärgsystem (inklusive Proxima b, som kretsar runt den närmaste stjärnan till vår egen sol).

Upptäckten och analysen är inte positiv för sökandet efter liv på planeter i 75 % av solsystemen därute. De med en röd dvärgstjärna som sol. Så bäst vore att söka efter planeter där liv kan finnas i solsystem med en sol som vår gula sol. Det finns miljarder sådana solsystem därute.

Bild från https://www.universetoday.com/ på ovannämnda planeter ur en illustratörs synvinkel.

fredag 20 augusti 2021

Gliese 1132b: Planeten som kontinuerligt mister och får ny atmosfär

 


Gliese 1132 b (även känd som GJ 1132 b) är en exoplanet som kretsar kring den röda dvärgstjärnan Gliese 1132, 40 ljusår bort från oss i riktning mot stjärnbilden Seglet.  I april 2017 påstods en vätedominerad atmosfär ha upptäckts runt Gliese. Något senare uteslöts påståendet. I stället hävdades 2021 upptäckten av en dimmig väteatmosfär utan helium men med en blandning av metan och vätecyanid (vilket innebär betydande underliggande fritt kväve i atmosfären.

Gliese 1132 b radie är något större än Jorden liksom dess massa. Åldern är likartad Jordens ca 4,5 miljarder år. Men den här världen har en slående skillnad, den kretsar mycket närmare sin röda dvärgstjärna (sol) än Jorden gör sin gula sol. Jorden tar ca 365 dagar på sig att kretsa runt sin sol medan Gliese 1132 b slutför en bana på bara 1,6 jorddagar. Denna närhet till sin sol resulterar i att Gliese 1132 b har en mycket högre yttemperatur än jorden har. På Gliese 1132 b är medeltemperaturen 137 grader C. En värme som bör koka bort dess atmosfär.

 

Likväl verkar inte detta skett astronomer har nyligen upptäckt att något ovanligt händer på Gliese 1132 b. Dess sols gravitationspåverkan som är 20 procent större på Gliese 1132 b än solens på Jorden skapar intensiva tidvattenkrafter som pressar och sträcker ut planeten. Denna effekt ger upphov till våldsam vulkanisk aktivitet och får gaser att rusa fram på ytan.

Dessa gaser bygger upp en andra atmosfär enligt NASA. Även  detta är spännande i sig. Det är första gången astronomer någonsin har sett något liknande. En planet som kontinuerligt förlorar sin atmosfär  men vilken även hela tiden återbildas. Den oavbrutet "återbildande" atmosfären ger astrogeologer en unik möjlighet att studera den inre kemiska sammansättningen av exoplaneten.

Bild vikipedia som visar hur en konstnär tolkar exoplaneten GJ 1132 b. Obs planeten är den större kroppen på bilden dess sol bortre kroppen.

lördag 19 juni 2021

En brun dvärgars atmosfär

 


Jupiter är den mest massiva planeten i vårt solsystem. Men liten jämfört med många av de jätteplaneter som finns runt andra stjärnor.

Dessa främmande världar, kallade super-Jupiters, väger upp till 13 gånger mer än Jupiter.  Astronomer har analyserat sammansättningen av några av dessa jätteplaneter. Men det har varit svårt att analysera deras atmosfärer eftersom dessa gasjättars sken går vilse i sina moderstjärnors sken.

 

Forskare har däremot lättare för att undersöka atmosfären hos bruna dvärgar så kallade misslyckade stjärnor. Objekt som är upp till 80 gånger Jupiters massa. Dessa har bildats ur ett kollapsande moln av gas likt stjärnor gjort, men saknat tillräcklig massa för att bli tillräckligt varma för att upprätthålla kärnfusion i sina kärnor och därmed bli stjärnor.

 

Istället delar bruna dvärgar ett släktskap med super-Jupiters. De är mellanformen av gasjätte och stjärna. Båda typerna av objekt har liknande temperaturer och är extremt massiva. De har också komplexa, varierade atmosfärer.

Den enda skillnaden, tror astronomer är deras ursprung. Super-Jupiters bildas runt stjärnor; bruna dvärgar bildas ofta isolerat enligt ovan.

Ett team av astronomer, ledda av Elena Manjavacas vid Space Telescope Science Institute i Baltimore, Maryland, har testat ett nytt sätt att se genom molnlagren på bruna dvärgar. De använde ett instrument vid W.M. Keck Observatory på Hawaii för att se i nära infrarött ljus färgerna och ljusvariationerna in i lagren av molnstrukturen i den närliggande, fritt flytande bruna dvärgen känd som 2MASS J22081363 +2921215 som finns 115 ljusår bort. 

 

Bruna dvärgar är extremt heta. Den bruna dvärgen i Manjavacas studie är ett fräsande objekt av 1 527 grader Celsius. Den är cirka 12 gånger tyngre än Jupiter. Som ung kropp snurrar den otroligt snabbt och slutför en rotation var 3,5 timme, jämfört med Jupiters 10-timmars rotationsperiod. Här finns en dynamisk, turbulent atmosfär.

 

Keck Observatorys MOSFIRE-instrument stirrade på den bruna dvärgen i 2,5 timmar och tittade på hur ljuset som filtreras genom atmosfären från dvärgens heta inre lyser upp och dämpas över tid. Ljuspunkter som visas på det roterande objektet indikerar regioner där forskare kan se djupare in i atmosfären, där det är varmare. Med infrafraröda våglängder blir det möjligt för astronomer att kika djupare in i atmosfären. Observationerna tyder på att den bruna dvärgen har en fläckig atmosfär av spridda moln.  Dess spektrum avslöjar moln av heta sandkorn och andra exotiska element. Kaliumjodid spåras i objektets övre atmosfär där även magnesiumsilikatmoln finns. Längre ner i  atmosfären finns ett lager av natriumjodid och magnesiumsilikatmoln. Det innersta atmosfärlagret består av aluminiumoxidmoln. Atmosfärens totala djup är 718 kilometer. De upptäckta elementen representerar en typisk del av sammansättningen av bruna dvärgatmosfärer, enligt Manjavacas.

Bild från vikipedia.

torsdag 27 maj 2021

Oväntade halter av tungmetaller hittade i kometer

 


Det var för 4,6 miljarder år sedan  kometerna bildades i solsystemet.

I en ny studie av belgiska astronomer vilka använt data från Europeiska sydobservatoriets Very Large Telescope (ESO:s VLT i Chile) har det visat sig att järn och nickel finns i kometers atmosfär vilka befinner sig långt bort från solen.

I en separat studie gjord av en polsk forskargrupp vilka även de använde ESO-data visades att nickel finns i den interstellära kometen 2I/Borisov. Det är första gången som halter av tungmetaller vilka normalt bildats eller finns i hetare miljöer har hittats i kalla avlägsna kometers atmosfärer.

“Det var en stor överraskning att finna järn- och nickelatomer i alla de 20-talet kometer vi  studerat under de senaste tjugo åren och då även i de som befinner sig långt från solen” säger Jean Manfroid vid universitetet i Liège, Belgien, som är forskningsledare för den studie som publicerats nyligen i Nature.

 

Astronomerna känner sedan tidigare till att tunga metaller finns i kometers stoftrika kärnor men eftersom fasta metaller normalt inte sublimerar (förångas direkt från fast till ånga och därmed ingår i den tunna atmosfären) vid låga temperaturer var det inte väntat att de skulle hittas i kalla kometers atmosfärer. Gaser av nickel och järn har nu detekterats i kometer så långt bort som 480 miljoner kilometer från solen mer än tre gånger avståndet mellan jorden och solen.

 

Det belgiska forskarlaget identifierade nickel och järn i ungefär lika höga halter i kometernas atmosfärer. Material från objekt i solsystemet, till exempel solen och meteoriter, innehåller normalt tio gånger mer järn än nickel. Detta nya resultat har därför betydelse för vår förståelse av förhållandena i det unga solsystemet men forskarna undersöker nu vad skillnaden beror på. Kometer utmärker sig.

Kanske man ska tänka sig att dessa metallhalter en gång släpptes ut i kometens atmosfär när dess kärna vid bildandet var hetare och dessa halter då blev kvar i atmosfären (min anm.) iså fall löser det problemet med innehållet och kan ses som normala förhållanden i atmosfärer av kometer i hela solsystemet. Att dessa halter skulle avdunsta eller falla till marken finns inget som visas eller skulle ske över tid. Men däremot varför järn och nickel just i kometers atmosfär är ungefär lika stort är en gåta.

Bild från kometen C/2016 R2 tagen den  16 Januari 2018. En av de kometer där tungmetall hittats. Tagen av SPECULOOS Paranal Observatory, Teide Observatory, Chile.

måndag 3 maj 2021

Nytt slag av atmosfär hittad på en exoplanet

 


I ett internationellt samarbete mellan astronomer ledda av  forskare från Astrobiology Center och Queen's University Belfast har upptäckts en ny kemisk signatur i en atmosfär på en exoplanet. En planet som kretsar runt en annan stjärna än vår sol. Hydroxylradikalen (OH) hittades på dagsidan av exoplaneten WASP-33b. En atmosfärblandning som aldrig hittats tidigare.  Denna planet är en så kallad "ultrahet Jupiter", en gasjätteplanet som kretsar runt sin värdstjärna mycket närmare än Merkurius kretsar runt solen och därför når atmosfären där temperaturer ca 2500 grader C (tillräckligt varmt för att smälta de flesta metaller).

Den ledande forskaren  i projektet vid Astrobiology Center och Queen's University Belfast, Dr. Stevanus Nugroho, säger: "Detta är det första direkta beviset på OH i atmosfären på en planet bortom solsystemet. Det visar inte bara att astronomer kan upptäcka denna molekyl i exoplanetatmosfärer, utan också att de kan börja förstå den detaljerade kemin hos denna planetariska population."

I jordens atmosfär produceras OH främst genom reaktionen mellan vattenånga och syreatomer. WASP-33b kretsar kring stjärnan HD 15082. Systemet finns 399 ljusår bort i riktning mot Andromedia.

I vikipedia förklaras beteckningen WASP eller Wide Angle Search for Planets som är ett internationellt konsortium av flera akademiska organisationer som utför en ultravidvinkelsökning efter exoplaneter med hjälp av transitfotometri. Innebärande att  man söker efter en skugga av en passerande planet framför sin sol.  https://sv.wikipedia.org/wiki/Transitmetoden

Utbudet av robotteleskop syftar till att undersöka hela himlen och samtidigt övervaka tusentals stjärnor av en skenbar magnitud från cirka 7 till 13.

 

WASP är detektionsprogrammet som består av Isaac Newton Group, IAC och sex universitet från Storbritannien. De två kontinuerligt fungerande observatorierna täcker norra respektive södra halvklotet. SuperWASP-North ligger vid Roque de los Muchachos Observatorium på berget med samma  namn som på La Palma på Kanarieöarna. WASP-South ligger vid Sydafrikanska astronomiska observatoriet, Sutherland i Roggeveldbergen i Sydafrika.

Dessa två observatorier använder åtta vidvinkelkameror som automatiskt söker med transitmetoden o miljontals stjärnor samtidigt vilket gör det möjligt att upptäcka sällsynta transithändelser.

Bild vikipedia storleksförhållande mellan Jupiter till vänster och den planet som omtalas ovan WASP-33b.

måndag 22 mars 2021

En förlorad atmosfär på Planet GJ 1132 b ersätts med en andra något annorlunda.

 


NASA:s rymdteleskop Hubble har funnit bevis på att en planet som kretsar kring en avlägsen stjärna kan ha förlorat sin atmosfär men förvånande nog får en andra genom vulkanisk aktivitet.

 

Planeten, GJ 1132 b som finns 42 ljusår bort i riktning mot stjärnbilden Seglet  har enligt teorin troligen från början haft en atmosfär. Planeten är en så kallad subNeptunus. Storlek som och gasplanet lik Neptunus,

Planetens atmosfär bestod troligen tidigare av väte- och helium. Men då planeten ligger så nära sin sol GJ 1132 att ett varv runt denna sol enbart tar 11 timmar har atmosfären avdunstat. I sammanhanget ska även sägas att samma sida alltid riktas mot solen.

På kort tid kommer  en planet i detta läge runt sin sol få en bar kärna i detta fall av storlek ungefär lika med jorden. Då tecken på detta kunde ses blev forskarna intresserade men det är inte slut med detta.

 

Till astronomernas förvåning observerade Hubble en atmosfär som enligt deras teori är en "sekundär atmosfär" (därav kan man se denna planet likväl som en gasplanet min anm.). Baserat på en kombination av direkta observationsbevis och infarens genom datormodellering rapporterade teamet att atmosfären består av molekylärt väte, vätecyanid och metan och finns i ett ett moln av kolvätedis som kan ses som smog. Modellering tyder på att smogen är baserat på fotokemiskt producerade kolväten liknande smog är på jorden. Forskare tolkar det nuvarande atmosfäriska vätet i GJ 1132 b som väte från den ursprungliga atmosfären som absorberades i planetens smälta magmamantel och nu långsamt släpps ut genom vulkaniska processer som en ny atmosfär. Atmosfären vi ser där idag tros ständigt fyllas på för att balansera vätgasen som läcker ut i rymden.

 

"Det är superspännande eftersom vi tror att atmosfären som först fanns  regenereras, så detta kan vara en sekundär atmosfär", säger studiens medförfattare Raissa Estrela vid NASA:s Jet Propulsion Laboratory (JPL) i södra Kalifornien. " Vi trodde  mycket bestrålade planeterskulle vara ganska tråkiga eftersom vi trodde att de förlorat sin atmosfär. Men vi tittade på befintliga observationer av den här planeten med Hubble och sa: "Åh nej, det finns en atmosfär där."

"  Vissa kan börja som sub-Neptunes  för att sedan mista sin atmosfär genom en mekanism av avdunstning av den ursprungliga atmosfären. Den här processen sker  tidigt i en planets existens när stjärnan är varmare," säger huvudförfattaren Mark Swain på JPL.

 

GJ 1132 b har en del paralleller till jorden men på vissa sätt är den väldigt annorlunda. Båda har liknande densitet, liknande storlek och liknande ålder som är cirka 4,5 miljarder år. Båda började med en vätedominerad atmosfär och båda var heta innan de svalnade. Teamets arbete tyder till och med på att GJ 1132 b och Jorden har liknande atmosfärstryck vid ytan.

 

Men planeterna har helt olika formationshistorier. Jorden tros inte vara den överlevande kärnan i en sub-Neptunus. Jorden kretsar på bekvämt avstånd från vår sol.

 Denna extremt nära närhet av GJ 1132 b till sin sol har gett effekten att planeten är låst den snurrar inte och visar därför samma sida till sin sol - precis som vår måne håller ena sidan permanent vänd mot jorden.

Ytterligare en spännande upptäckt av Hubbleteleskopet (min anm.) 

Hubbleteleskopet  har använts mycket och hittat otroligt mycket däruppe under sin 30 åriga historia. Under detta år ska det tas ur det och ersättas av Jameswebbteleskopet. 

Bild från vikipedia. GJ 1132b vid sin sol enligt en illustratör.

tisdag 16 mars 2021

Försök att förstå sammansättningen av atmosfären på exoplaneter

 


Under de senaste 25 åren har astronomer upptäckt mer än  4000 exoplaneter (planeter i andra solsystem). En del av dessa har upptäckts vara likt jorden stenplaneter där även is och atmosfär verkar finns.

 Genom att använda en kombination av olika observationstekniker har många av dessa exoplaneters  massa, storlek och densitet kunnat bestämmas.

Att studera atmosfären på steniga planeter är dock extremt svårt med den utrustning som för närvarande finns tillgänglig.

CARMENES är ett konsortium som samarbetar med Canary Astrophysics Institute där man söker vid M dvärgstjärnor efter planeter med Exoearths med nära infraröd instrument och optiska instrument och undersöker resultat i spektrometrar.

Där presenterades en studie ledd av Trifonov, astronom vid Max Planck Institute for Astronomy i Heidelberg (Tyskland). Den handlar om arbetet med att klassificera  atmosfären vid en så kallad superjord, en planet betydligt större än jorden Grise-486b i omloppsbana runt sin sol den röda dvärgen Grise 486. Detta system finns 26 ljusår från oss i riktning mot stjärnbilden jungfrun (Virgo).

 

För att göra detta har forskare använt en kombination av transitmätning (skugga från planeten vid passage framför stjärnan) och radiell hastighetsspektroskopiteknik (rödljusförskjutning), bland annat MuSCAT2 (multi för att studera atmosfären hos transitexoplaneter) med 1,52 m Carlos Sanchez-teleskopet vid Teide-observatoriet.

Resultaten av denna studie publicerades i tidskriften Science. Planeten de upptäckte fick beteckningen som nämnts ovan Gliese486b och har 2,8 gånger jordens massa och är 30 % större. "Att beräkna den genomsnittliga densiteten från massa- och radiemätningar tyder på att dess sammansättning liknar Venus och Jordens. Det finns metallkärnor inuti Venus och jorden," säger en av IAC-forskarna. Gliese 486b kretsar i en cirkulär bana som tar 1,5 dag runt sin sol på ett avstånd av 2,5 miljoner kilometer från sin sol.

 Trots att planeter ligger mycket nära sina stjärnor (dennas är extremt nära) bevarar de förmodligen en del av sin ursprungliga atmosfär (stjärnorna av M-typ är mycket svalare än vår sol det handlar om röda dvärgstjärnor), så vi kommer att observera planeter runt dessa mer i detalj när  nästa generation av instrument kommer.

Gliese 486b  är en bra kandidat för dessa nya  teleskop (kanske James Webb kan vara ett min anm.). Grease 486b har enligt  mätningar som är möjliga med dagens instrument en temperatur av ca 430 ° C på sin yta men kan likväl ha en atmosfär. Jämför med Venus som är helt dold i atmosfär men likväl anses ha en marktemperatur av 470C vilket innebär att bly flyter om det finns där.

En illustration (bilden ovan) från https://www.jioforme.com/nearby-super-earth-may-be-ideal-for-atmospheric-surveys/224816/ som visar solen Grease 486 med sin exoplanet som omtalas ovan Grease 486b (den svaga ljuspunkt till höger om stjärnan).

lördag 6 mars 2021

Titans atmosfär återskapad i laboratorium på Jorden.

 


I sökandet efter liv på andra platser i vårt solsystem är Saturnus måne Titan bland de intressantaste. På Titan finns många slag av organisk kemi i dess atmosfär och ner till dess yta. Forskare har under en tid misstänkt att studien av Titans atmosfär kan ge viktiga ledtrådar till de tidiga stadierna av livets utveckling på jorden. Tack vare ny forskning ledd av teknikjätten IBM har ett forskarlag lyckats återskapa de atmosfäriska förhållandena på Titan i ett laboratorium.

Mycket av det vi vet om Titan idag kommer från  Cassini, rymdfarkosten som kretsade runt Saturnus mellan 2004 till 2017 och avslutade sitt uppdrag genom att dyka in i Saturnus atmosfär. Under denna tid genomförde Cassini många direkta mätningar av Titans atmosfär och avslöjade en förvånansvärt jordliknande atmosfär.

Titan är det andra objektet i solsystemet som har en tät kväveatmosfär där organiska processer äger rum (det andra är jorden). Det som är särskilt intressant är det faktum att forskare tror att jordens atmosfär kan ha varit liknande den på Titan för ungefär 2,8 miljarder år sedan. Detta sammanfaller med den mesoarkeikumska eran, en period då fotosyntetiska cyanobakterier skapade de första revsystemen och långsamt omvandlade jordens atmosfäriska koldioxid till syrgas (vilket så småningom ledde till dess nuvarande balans mellan kväve och syre och möjliggjorde dagens syreberoende livsformer inklusive människan).

Titans yta tros innehålla ledtrådar som kan förbättra vår förståelse för hur livet uppstod i vårt solsystem. Men dess yta har varit och är ett problem att få en tydlig titt på (vi vet inte mycket då atmosfären är tät och vi inte kan se ner på ytan).

På 2030-talet planerar NASA att skicka en robotrotorfarkost som heter Dragonfly till Titan för att utforska dess yta och atmosfär och söka efter möjliga tecken på liv. Som alltid kommer det teoretiska arbetet och laboratorieexperimenten som utförs under tiden att göra det möjligt för forskare att begränsa fokus och öka oddsen för att uppdraget (när det sker) kommer att leta efter det som hoppas finnas på rätt platser. 

Men som alltid (min anm.) finns alltid en okänd faktor som kan göra att allt ställs på ända, Något förbisedd eller ännu ej upptäckt som gör liv omöjligt på Titan. Men naturligtvis kan vi även överraskas positivt och upptäcka liv i mängd på ytan eller under denna.

Bild på Saturnus största måne Titan, från vikipedia.

fredag 29 januari 2021

Ej helt förstådda ljus och sken i jordens atmosfär. kan dessa vara missuppfattade som UFO?

 


Åskmoln, lukten av regn på en varm trottoar, blixtarna av intensivt ljus följt av ett högt sprakande och  ett rullande åskdunder. Något vi alla sett och hört och blivit genomblöta av kanske även skrämda av.

Men hur mycket vet vi egentligen om detta väderfenomen? Det finns många saker kvar att förklara såsom blå blixtrar som snabbt uppstår och försvinner, älvbloss och röda sken för att inte tala om fenomenet klotblixt.

Vissa av dessa  saker är mycket svåra att observera från jordens yta (dock ej klotblixtar). I en ny rapport från den europeiska Atmosfär-Space Interactions Monitor (ASIM) observatorium på den internationella rymdstationen ISS beskrivs hur man försöker finna svar.

När man ser ner på jordens väder från den internationella rymdstationen ISS 400 km ovanifrån sprider ASIM:s förstärkt perspektiv ett nytt ljus över väderfenomen och deras egenskaper.  För första gången har en ESA International Space Station sett på väderfenomen.  ASIM: s resultat har publicerats i Nature. I Rapporten beskrivs en observation av fem intensiva blå blixtrar i en molntopp, en "blå jet" i stratosfären.

 

En blå jet är en form av blixtar som skjuter uppåt från åskvädersmoln. De kan nå så långt som 50 km in i stratosfären och pågår mindre än en sekund. Rymdstormjägare mätte en blå jet som sparkades  under fem 10-mikrosekunder i ett moln nära ön Naru i Stilla havet. Blixten genererade även  klingande "älvor". Älvor är snabbt växande ringar av optiskt ljus och UV-ljus i nedre delen av jonosfären. Här samverkar elektroner, radiovågor och atmosfären i bildandet av dessa utsläpp. Se en kortfilm genom denna länk på fenomenet. Men ännu förstår vi inte fenomenet utan forskning fortgår.

Klotblixtar, älvsken blå bloss mm. Jag anser att dessa fenomen ligger bakom många av ufo-rapporterna genom åren. Dessa sken rör sig snabbt åt alla håll. Klotblixten är det kanske allra intressantaste i det sammanhanget (min anm.).

Bild från vikipedia av en 1800-tals-avbildning av herrar som överraskas 

onsdag 6 januari 2021

Atmosfären på den vita dvärgen GD 424

 


Ett team av astronomer under ledning av Paula Izkerdo vid universitetet i La Laguna, Spanien har gjort spektroskopiska observationer av en nyligen upptäckt vit dvärgstjärna som betecknas GD 424. Resultaten av observationerna har gett en djupare uppfattning om atmosfären på denna stjärna.

Observationens resultat presenterades i en artikel publicerad den 23 december 2020 i arXiv.org. För arbetet med observationen användes en spektrograf och en mellanliggande dispersion benämnt som imaging (ISIS) system monterat på ett 4,2 meter William Herschel-teleskop (WHT) och en högupplöst Escher-spektrometer (HIRES) i ett 10 meter långt Keck I-teleskop.

 

"Vi presenterade en analys av upptäckten och den kemiska sammansättningen i GD 424, en metallrik vit dvärgstjärna. Den visade sig ha en av de största mängderna väte som någonsin uppmätts bland vita dvärgar med liknande temperaturer", skriver forskarna i artikeln.

GD 424 har en effektiv temperatur på ca 16300 C och en massa på ca 0, 01 solmassa (beräkning på massan av vår sol), en radie på ca 0,0109 sol radier (beräknad på vår sols radie) och en dess ålder uppskattas till cirka 215 miljoner år.

11 metaller visade sig GD 424 atmosfär innehålla nämligen syre, natrium, mangan, krom, nickel, kisel, järn, magnesium, titan, kalcium och aluminium.

För mer info av slaget vad forskarna funderade över var anledningen till så många metaller och hur närområdet ser ut följ länken här från verietyinfo.com /

 

Bild från vikipedia som visar färgskala och storleksförhållande på stjärnor, Exemplet är ett exempel på ett Hertzsprung–Russell-diagram.

söndag 3 januari 2021

Metan i en atmosfär är starkt tecken på liv

 


Metan en växthusgas och ökande utsläpp från främst olje- och gasutvinning ökar metanhalten i atmosfären vilket anses vara en bidragande orsak till en förstärkt växthuseffekt. De huvudsakliga källorna till metan är utsläpp från ansamlingar av metan på havsbotten och från manteln i jordens innandöme bland annat från lervulkaner.

 Utvinning från fossila bränslen främst från kol. Djurs matsmältningsprocess främst boskap och då från speciellt kor och andra idisslare. Produktion av arkéer i risfält. Anaerob(något organiskt som kräver syre för nedbrytning och sedan ger ifrån sig metan) nedbrytning av organiskt material. Industriella källor. Föråldringsprocessen i vanlig asfalt.

Det ultrakraftiga James Webb Space Telescope som sänds upp senare i år kommer att vara ett kraftfullt verktyg i sökandet av allt möjligt däruppe. Uppdragen och förväntningarna är många från från all världens astronomer. Ett uppdrag kan bli att söka efter metanförekomst i exoplaneters atmosfär om nu forskarna fårtid med teleskopet för detta.

Syre kan verka som det självklara att leta efter i en planets atmosfär när man söker efter tecken på liv, men det är fel. Genom detta antagande kan liv missas. Dess närvaro eller brist på syre är inte en tillförlitlig indikator. Jordens historia visar det.

Jordens atmosfär i dag innehåller cirka 21 % syre, och vi vet att det mesta kommer från organismer i planetens hav. Men det fanns en tid när cyanobakterier på den unga jorden började producera syre som en biprodukt av fotosyntesen (inget syre av betydelse för livsprocesser fanns då) och att det tog lång tid innan denna fotosyntes bidrog till en syrehalt som kunde ge andra slag av liv än dessa bakterier. Troligen en miljard år.

 

Tänk om vi undersökte en exoplanet och inte hittade syre och därmed  antog att där inte finns liv. Det skulle innebära att vi missat att där just nu fanns liv som inte behövde syre men som avgav metan. Mycket metan på en planet är en indikator på liv. Till denna ovanstående planet kom vi en miljard år för tidigt för att finna eventuellt liv av det slag som behövde syre och som kanske skulle vara likt vårt sätt att andas. Planeten var inte syresatt ännu.

Vi bör (min anm) vara uppmärksamma på att liv kan finnas i former vi inte kan föreställa oss. En annan möjlighet även om det finns syre är att liv på en exoplanet kan ha som grundmaterial kisel istället som hos oss kol. En värld med levande varelser vars grund baseras på kisel är en värld av varelser som rör sig så långsamt att vi kan ha svårt att förstå att det är levande kanske intelligenta varelser med en hög civilisation som vi inte kan förstå  att vi funnit.

Bild från pxhere.com. Enligt forskare kommer 17 % av metanutsläppen  från djurs matsmältning. En enda ko beräknas producera 400 gram metan per dag på Jorden. Vad som eventuellt producerar metan på en exoplanet vet vi inte (vikipedia).