Google

Translate blog

Visar inlägg med etikett atmosfär. Visa alla inlägg
Visar inlägg med etikett atmosfär. Visa alla inlägg

torsdag 17 oktober 2024

Ny metod i sökandet efter atmosfär på exoplaneter

 


Bild https://pxhere.com/en/photo/741447 på okänd exoplanet.

En studie utförd av doktorand Qiao Xue vid University of Chicago tillsammans med professor Jacob Beans grupp på samma universitet har visat ett nytt sätt att avgöra om avlägsna exoplaneter har  atmosfär. Den nya tekniken har potential att hjälpa oss att lära mer om mönster i atmosfärer.

Atmosfärer sprider värme runt en planets yta men sänker temperaturen på den varmaste sidan av planeten (som är direkt vänd mot sin sol och tvärtom). Forskarnas hypotes i studien var att om en exoplanets faktiska temperatur inte är så hög som den teoretiskt sett skulle kunna vara kan vi anta att dess atmosfär förhindrar detta.

Problemet var dock tills nu att vi har saknat instrument som är tillräckligt känsliga för att ge tillräckligt exakta avläsningar för dessa temperaturer. James Webb Space Telescope har ändrat på det och erbjuder en ökad kapacitet att se i infrarött vilket gör det möjligt för forskare att registrera planeternas temperaturer genom att mäta intensiteten på den energi de avger.

När exoplaneter passerar framför sin sol skymmer de en del av stjärnans ljus vilket leder till en liten minskning av stjärnans uppmätta ljusstyrka. När planeten befinner sig nästan bakom stjärnan i förhållande till våra visningsenheter kan vi fånga systemets maximala ljusstyrka – det vill säga den oskymda stjärnan i kombination med det jämförelsevis minimala ljuset som sänds ut från planeten.

 När planeten passerar bakom stjärnan i förhållande till vår vy kan vi registrera ljuset som stjärnan sänder ut på egen hand. Genom att subtrahera detta mått på ljus från mätningen av ljuset från stjärnan i kombination med ljuset från planeten kan ljusstyrkan och därmed temperaturen på planeten härledas.

På detta sätt drog Xue slutsatsen att den första planet som hon tillämpade den nya metoden på exoplaneten GJ1132 b (vilken finns 39 ljusår från oss) inte har någon atmosfär – den uppmätta temperaturen på planeten är för nära den beräknade maximala temperaturen för att antyda någon temperaturreglerande komponent på planeten. – Den är därför inte en lämplig kandidat för liv, beskriver hon. 

Den nya metoden är inte det enda sättet att avgöra om en exoplanet har en atmosfär eller inte, men den är ett enklare och mer tillförlitligt sätt att söka efter avlägsna planeter med atmosfärer. Xue beskriver att den är mindre mottaglig för falska negativa och positiva resultat än den tidigare tekniken. "Den tidigare tekniken mäter ljus som filtreras genom planetens atmosfär och är mer utmanande eftersom den kan förväxlas med aktivitet på stjärnan och närvaron av moln", beskriver Bean.

Om forskarna kan förstå vad som ger upphov till atmosfärer på planeter blir det lättare att utesluta obeboeliga planeter i jakten på exoplaneter som upprätthåller liv.

"Den här studien var spännande eftersom jag äntligen fick chansen att arbeta med stenplaneter, som är drömobjektet för varje exoplanetforskare eftersom de har så stor potential för liv", beskriver Xue. "Nu är jag så spänd på att se vad som kommer härnäst."

Studieförfattare utöver Xue vid UChicago var Jacob Bean, Michael Zhang och Edwin Kite, samt medförfattare från Harvard och Smithsonian Center for Astrophysics, Cornell University, University of Arizona och Peking University i Kina.

Att utarbeta en säker spårning efter atmosfärers sammansättning på exoplaneter skulle vara en säker metod att lättare utelämna eller bekräfta en exoplanets möjlighet att hysa liv. Den metoden finns ännu inte. Metoden ovan är en ny metod som måste användas tillsammans med övriga men en enkel och säker egen metod finns ännu inte.

måndag 14 oktober 2024

EN ångande värld

 


Bild  https://nouvelles.umontreal.ca/en illustration av exoplaneten GJ 9827 där man hittat en betydande mängd vattenånga i dess atmosfär.

I en kanadensiskt ledd internationell studie har avslöjats nya rön om atmosfären hos GJ 9827 d – en exoplanet som kretsar kring stjärnan GJ 9827 i stjärnbilden Fiskarna, cirka 98 ljusår från jorden. Upptäckten gjordes med hjälp av James Webb Space Telescope.

I studien fann man att planetens atmosfär innehåller en hög koncentration av tyngre molekyler, inklusive en betydande mängd vattenånga vilket fick astronomer att misstänka att det kan vara en "ångvärld".

GJ 9827 d antas inte vara möjlig för liv på grund av sin närhet till sin sol och den höga yttemperaturen (runt 350 grader Celsius) men upptäckten är ett stort steg framåt i sökandet efter livsvänliga miljöer.

Närvaron av en tung, vattenrik atmosfär på en liten planet som GJ 9827 d ger bevis på konceptet att sådana atmosfärer existerar och kan studeras med JWST:s instrument.

– Det här är ett stort steg mot målet att söka efter atmosfärer runt mindre, jordliknande planeter, beskriver Piaulet-Ghorayeb doktorand vid Université de Montréals Trottier Institute for Research on Exoplanets (IREx).

Tidigare i år och med hjälp av data från rymdteleskopet Hubbleteleskopet beskrev IREx-forskare att de hade upptäckt vatten i atmosfären hos GJ 9827 d, vilket gör den till den minsta exoplaneten med en bekräftad atmosfär. Planeten är ungefär dubbelt så stor som jorden. Tillsammans öppnar upptäckten nya vägar för sökandet efter liv bortom vårt solsystem och ökar vår förståelse för hur planeter bildas och dess sammansättning.

Studien, som publiceras i Astrophysical Journal Letters, leddes av Caroline Piaulet-Ghorayeb,  i samarbete med forskare från ett flertal institutioner i världen.

torsdag 3 oktober 2024

Låg densitet och snedfördelad atmosfär- jo en sådan planet finns därute

 


Bild wikipedia Illustratörs bild av exoplaneten WASP-107b som är en super-Neptunus exoplanet som kretsar kring stjärnan WASP-107, 200 ljusår från jorden i stjärnbilden Jungfrun.

Astronomer från University of Arizona har tillsammans med en internationell grupp forskare med hjälp av Webbteleskopet observerat atmosfären i en het och unikt uppblåst exoplanet. Exoplaneten WASP-107b är lika stor som Jupiter men har endast en tiondel av Jupiters massa. Planeten har en öst-västlig asymmetri i atmosfären vilket innebär att det finns en betydande skillnad mellan väderstrecken och dess atmosfär här.

"Det här är första gången som asymmetri mellan öst och väst på en exoplanet har observerats när den passerar sin sol", beskriver studiens huvudförfattare Matthew Murphy, doktorand vid U of A Steward Observatory.

Öst-västlig asymmetri hos en exoplanets atmosfär visar på skillnader i atmosfärens egenskaper, såsom temperatur eller molnegenskaper och som här observerats mellan planetens östra och västra halvklot. Att avgöra om denna asymmetri existerar eller inte är avgörande för att förstå klimatet, atmosfärsdynamiken och vädermönstren hos exoplaneter.

Exoplaneten WASP-107b är låst till sin stjärna. Det betyder att exoplaneten alltid riktar samma sida mot sin sol den kretsar kring. Den ena halvan av den tidvattenlåsta exoplaneten är ständigt vänd mot sin sol medan den andra  alltid är vänd bort vilket resulterar i en permanent dagsida och en permanent nattsida. James Webb Space Teleskopet kunde separera signalerna från atmosfärens östra och västra sida och få en mer fokuserad syn på specifika processer som sker i exoplanetens atmosfär.

"Dessa ögonblicksbilder berättar mycket om gaserna i atmosfär, moln, atmosfärens struktur, kemin och hur allt förändras när en planet får olika mängder solljus", beskriver Murphy.

Exoplaneten WASP-107b är unik i det att den har en mycket låg densitet och relativt låg gravitation vilket resulterar i en atmosfär som är mer uppblåst än andra exoplaneters med samma massa men som inte alltid vänder samma sida mot sin sol.

– Vi har inget liknande i vårt eget solsystem. Planeten är unik bland de exoplaneter vi upptäckt. beskriver Murphy.

WASP-107b har en yttemperatur på ca 475 Celsius vilket är medeltemperatur mellan de planeter som finns i vårt solsystem och de hetaste exoplaneter vi känner till.

"Traditionellt sett fungerar våra observationstekniker inte lika bra för dessa mellanliggande planeter, så det har funnits många spännande öppna frågor som vi äntligen kan börja besvara", beskriver Murphy. – Till exempel har några av våra modeller visat att en planet som WASP-107b inte borde ha den här asymmetrin alls i sin atmosfär– så vi lär oss något nytt här, beskriver han.

Forskare har sett på exoplaneter i nästan två decennier och observationer från både markteleskop och rymdteleskop har hjälpt astronomer att dra slutsatser om hur exoplaneters atmosfär kan se ut, beskriver Thomas Beatty, medförfattare till studien och biträdande professor i astronomi vid University of Wisconsin-Madison.

"Men det här är faktiskt första gången som vi har sett den här typen av asymmetri i en atmosfär direkt imed hjälp av transmissionsspektroskopi i rymden vilket är det primära sättet på vilket vi förstår vad exoplaneters atmosfärer består av, beskriver Beatty. Resultaten har publicerats i tidskriften Nature Astronomy.

Min tanke är att asymmetrin beror på att planeten har låst bana (vänder samma sida mot sin sol hela tiden) vilket får dess atmosfär att dras från nattsidan mot dagsidan genom gravitationen från dess sol. Därav  skillnaden öst väst. 

lördag 28 september 2024

Formaldehyd bidrog en gång i Mars forntid till bildandet av organiskt material

 


Bild https://www.tohoku.ac.jp/en Diagramet ovan visar processerna för hur organiskt material bildades på den tidiga Mars. ©Shungo Koyama.

Formaldehyd förekommer naturligt i de flesta levande djur och växter och är en viktig del av ekologin.

Mars är i vår tid en kall och torr planet. Men det finns geologiska bevis på att flytande vatten fanns på Mars för cirka 3 till 4 miljarder år sedan. Där det finns vatten finns det oftast liv enligt jordiska mått. I sin strävan att svara på frågan om liv funnits på Mars i det förgångna skapade forskare vid Tohoku University en detaljerad modell av den möjliga produktionen av organiskt material i Mars forntida atmosfär.

Organiskt material avser resterna av levande ting som växter och djur eller biprodukter av vissa kemiska reaktioner. Hur som helst ger det stabila kolisotopförhållandet (13C/12C) som finns i organiskt material värdefulla ledtrådar om hur dessa byggstenar i livet ursprungligen bildades vilket ger forskarna en glimt in i det förflutna. Till exempel avslöjade Mars-rovern Curiosity  att organiskt material som finns i sediment från på Mars är ovanligt utarmat vid 13C. Det upptäcktes också att kolisotopförhållandena varierade signifikant mellan proverna. Orsaken till denna variabilitet är ett mysterium.

För att förstå dessa resultat utvecklade en forskargrupp ledd av Shungo Koyama, Tatsuya Yoshida och Naoki Terada vid Tohoku University en modell för Mars troliga atmosfäriska evolution. Modellen fokuserade på formaldehyd (H2CO),vilket   forskargruppen tidigare fastställt skulle kunna producerats i den forntida atmosfären på Mars. Anledningen till detta val är att formaldehyd kan generera komplexa organiska föreningar som sockerarter vilka är viktiga för flertalet levande varelser och växter. Med andra ord kan formaldehyd vara den saknade faktorn som skulle kunna förklara de avvikande värdena hos Curiosity-rovers prover. Det kan också vara ett tecken på tidigare liv på Mars.

Denna upptäckt indikerar att formaldehyd bidrog till bildandet av organiskt material på den forntida Mars, vilket innebär att bioviktiga molekyler som socker och ribos (en komponent i RNA, som finns i alla levande celler) kan ha producerats på planeten.

Mycket fanns ej tecken på och om det en gång blev liv eller om det fanns liv på Mars, den gåtan löstes ej. Mycket tyder på att vatten fanns i stora mängder men enbart vatten skapar inte liv. Så om liv funnits på Mars kanske vi aldrig får ett säkert svar på.

Studiens resultat publicerades i Scientific Reports den 17 september 2024.

söndag 4 februari 2024

Hubbleteleskopet har upptäckt vattenånga i atmosfären på en liten exoplanet

 


GJ 9827d upptäcktes av NASA:s rymdteleskop Kepler under 2017. Planeten fullbordar en omloppsbana runt sin sol,en röd dvärgstjärna (GJ 9827) på 6,2 dag. Stjärnan ligger 97 ljusår från jorden i stjärnbilden Fiskarna

 Astronomer har med hjälp av NASA:s rymdteleskop Hubble nu nyligen observerat GJ 9827d och upptäckte då att exoplaneten har vattenånga i atmosfären. GJ 9827d  är  ungefär dubbelt så stor som Jorden. – Det här är första gången som vi direkt kan visa genom en atmosfärisk detektion att planeter med vattenrik atmosfär finns runt andra stjärnor, beskriver Björn Benneke, medlem i forskarlaget Trottier Institute for Research on Exoplanets vid Université de Montréal.

”Upptäckten av vatten på en så här liten planet är en milstolpe", tillägger Laura Kreidberg, en av forskarna bakom studien vid Max Planck-institutet för astronomi i Heidelberg, Tyskland.

Det är dock fortfarande för tidigt att säga om Hubble spektroskopiskt mätte en liten mängd vattenånga i en uppblåst väterik atmosfär, eller om planetens atmosfär till största delen består av vatten, som lämnats kvar efter att en ursprunglig väte/heliumatmosfär avdunstat genom strålning från sin sol.

Båda resultaten är spännande, oavsett om vattenånga är dominerande eller bara en liten del i en vätedominerad atmosfär, beskrivs i en vetenskaplig artikel av Pierre-Alexis Roy vid Trottier Institute for Research on Exoplanets vid Université de Montréal.

GJ 9827d  är lika het som Venus, över 400 C och skulle det definitivt vara en ogästvänlig ångande värld om atmosfären till övervägande del består av vattenånga.

Hubble-programmet observerade planeten under 11 passager då planeten passerade framför sin sol under tre år. Under passagerna filtrerades stjärnljuset.

– Hubble-upptäckten öppnar dörren för framtida studier av den här typen av planeter med James Webb rymdteleskop. JWST kan se mycket djupare infraröda observationer och upptäcka ex kolbärande molekyler som kolmonoxid, koldioxid och metan. När vi väl har fått en total inventering av en planets grundämnen kan vi jämföra dem med stjärnans den kretsar kring och förstå hur den bildades, beskriver Thomas Greene, astrofysiker vid NASA:s Ames Research Center i Kaliforniens Silicon Valley.

Bild Exoplanet GJ 9827d (konstnärs koncept) https://hubblesite.org

måndag 15 januari 2024

Kan syre i atmosfären visa på en tekniskt avancerad civilisation

 


I en ny studie publicerad i Nature Astronomy av Adam Frank, Helen F. och Fred H. Gowen Professor of Physics and Astronomy vid University of Rochester författare till The Little Book of Aliens (Harper, 2023) och Amedeo Balbi, docent i astronomi och astrofysik vid University of Roma Tor Vergata, Italien, beskrivs kopplingen mellan atmosfäriskt syre och den potentiella ökningen av avancerad teknik på avlägsna planeter.

I artikeln undersöker vi om en atmosfärs sammansättning är tecken på närvaron av avancerad teknik, beskriver Balbi. Frank och Balbi och hävdar att, utöver behov av andning och metabolism i flercelliga organismer är syre även avgörande för eld. Bruket av eld är ett kännetecken för en teknologisk civilisation. Forskarna fördjupar sig i begreppet "teknosfärer", expansiva områden av avancerad teknologi som avslöjar tecken – kallade "teknosignaturer" – av utomjordisk teknisk kunnig intelligens.

Oavsett om det handlar om matlagning, smide av metaller tillverkning av material för hem eller utnyttjande av energi genom att bränna bränslen, har förbränning varit drivkraften bakom jordiska industrisamhällen.

Genom att se på jordens historia fann forskarna att kontrollerad användning av eld och de efterföljande metallurgiska framstegen endast var möjliga när syrehalten i atmosfären nådde eller översteg 18 procent. Detta innebär att endast planeter med betydande syrekoncentrationer kan utveckla avancerade teknosfärer och lämna detekterbara teknosignaturer. De nivåer av syre som krävs för att biologiskt upprätthålla komplext liv och intelligens är inte lika höga som de nivåer som krävs för teknik, så även om en art kanske kan uppstå i en värld utan syre, kommer den inte att kunna bli en teknologisk art, enligt forskarna.

"Du kanske kan få biologi – du kanske till och med kan få intelligenta varelser – i en värld utan syre", beskriver Frank. Men utan en eldkälla kommer det aldrig att utvecklas högre teknik eftersom högre teknik kräver bränsle och smältning."

Här kommer "oxygen bottleneck" in i bilden, en term som myntades av forskarna för att beskriva den kritiska tröskel som skiljer världar som är kapabla att främja teknologiska civilisationer från de världar där detta inte är möjligt.

"Förekomsten av höga halter av syre i atmosfären är som en flaskhals som du måste ta dig igenom för att få en teknologisk art", säger Frank. "Du kan få allt annat att fungera, men om du inte har syre i atmosfären kommer du inte att ha en teknologisk art. Att rikta in sig på planeter med höga syrehalter bör därför prioriteras eftersom närvaron eller frånvaron av höga syrenivåer i exoplaneters atmosfärer kan vara en viktig ledtråd för att hitta potentiella teknosignaturer", beskriver Frank.

"Att upptäcka intelligent, teknologiskt liv på en annan planet skulle vara enormt", tillägger Balbi. – Därför måste vi vara extremt försiktiga med att tolka eventuella upptäckter. Vår studie tyder på att vi bör vara skeptiska till potentiella teknosignaturer från en planet med otillräckligt syre i atmosfären.

Bild https://www.deviantart.com/

torsdag 11 januari 2024

En föränderlig atmosfär på WASP-121 b

 


WASP-121 b är en välstuderad het Jupiterlik planet som kretsar kring en stjärna som finns cirka 880 ljusår från jorden (WASP-121). Dess extrema närhet till sin sol innebär att den är tidvattenlåst [samma sida är vänd mot dess sol hela tiden] och solsidan av planeten är ca 2700 C. Ett internationellt team av astronomer har nu studerat planeten genom att kombinera fyra uppsättningar arkivobservationer av WASP-121 b, alla gjorda med Hubbles Wide Field Camera 3 (WFC 3). Den kompletta sammanställningen inkluderade observationer av: WASP-121 b då den passerar framför sin sol (i juni 2016); då WASP-121 b passerar bakom sin sol (från vår synvinkel sett) i november 2016); och två faskurvor av WASP-121 b (tagna i mars 2018 respektive februari 2019). 

Astronomer  tog det unika steget att bearbeta varje datauppsättning på samma sätt även om detta tidigare hade bearbetats av ett annat team. Bearbetningen av data var tidskrävande och komplicerat, men värt det eftersom det gjorde det möjligt för teamet att direkt jämföra bearbetad data från varje uppsättning av observationer med varandra.

Forskarlaget fann tydliga bevis för att observationerna av WASP-121 b hade varierat ljus över tid. Med hjälp av sofistikerad modelleringsteknik visades att dessa tidsmässiga variationer kunde förklaras av vädermönster i exoplanetens atmosfär. En av forskarna i teamet, Quentin Changeat, ESA-forskare vid Space Telescope Science Institute, utvecklar det som följande:

– Vårt dataset representerar en betydande mängd observationstid för en enda planet och är för närvarande den enda konsekventa uppsättningen av sådana upprepade observationer. Informationen som vi extraherade ur dessa observationer användes för att karakterisera (härleda kemin, temperaturen och molnen) i atmosfären på WASP-121 b vid olika tidpunkter. Detta gav en utsökt bild av planeten vars sken förändrats över tid.

Efter att ha analyserat varje dataset fann teamet tydliga bevis på att observationerna av WASP-121 b just varierade över tid. Även om instrumentella effekter kan kvarstå, visade data en uppenbar förändring i exoplanetens hot spot och skillnader i spektralsignatur (som betecknar den kemiska sammansättningen av exoplanets atmosfär) som tyder på en föränderlig atmosfär.

Teamet använde sofistikerade beräkningsmodeller för att försöka förstå det observerade beteendet i exoplanetens atmosfär. Modellerna indikerade att  resultat kunde förklaras av kvasiperiodiska vädermönster, särskilt massiva cykloner som upprepat skapas och avstannar som ett resultat av den enorma temperaturskillnaden mellan den solvända sidan av planeten och den mörka sidan av exoplaneten. Resultatet är ett betydande steg framåt när det gäller att potentiellt observera vädermönster på exoplaneter.

Bild vikipedia som visar en konstnärs föreställning av WASP-121b.

fredag 24 november 2023

Webbteleskopet kikar in i atmosfären på WASP-107b

 


WASP -107b är en gasplanet som befinner sig 200 ljusår ifrån jorden i Jungfruns stjärnbild.

WASP-107b kretsar kring en stjärna något kallare och mindre massiv än vår sol. Dess massa är likartad med Neptunus. Men storleken är mycket större och nästan i Jupiters storlek. Detta gör att WASP-107b är en ganska "fluffig" gasplanet jämfört med gasjättarna i vårt solsystem.

Men det gör det också möjligt för astronomer att se ungefär 50 gånger djupare in i dess atmosfär än det djup som är möjligt att se in i  Jupiters. Teamet av europeiska astronomer drog nytta av exoplanetens anmärkningsvärda fluffighet genom att observera den med Mid-Infrared Instrument (MIRI) på James Webb Space Telescope (JWST).

Denna möjlighet öppnade ett fönster att se djupt in i atmosfären och reda ut dess kemiska sammansättning. Möjligheterna till detta berodde på att spektralegenskaperna är mycket mer framträdande i en mindre tät atmosfär jämfört med en mer kompakt atmosfär. Studien som nyligen publicerats i Nature, beskriver förekomsten av vattenånga, svaveldioxid (SO2) och silikatmoln men däremot inga spår av metan (CH4). Metan finns på flera av vårt solsystems månar och gasplaneter.

Upptäckten ger viktig information om dynamiken och kemin i WASP-107b atmosfär. För det första antyder frånvaron av metan ett  varmt inre vilket ger en inblick i transporten av värmeenergi i planetens atmosfär. För det andra var upptäckten av svaveldioxid en stor överraskning. Tidigare beräkningar hade förutspått dess frånvaro, men nya klimatmodeller av WASP-107b:s atmosfär visar nu att i dess fluffiga gas bildas svaveldioxid. Även om dess ganska svala sol sänder ut en relativt liten mängd av högenergirika fotoner kan dessa nå djupt in i planetens atmosfär på grund av planetens fluffighet. Denna omständighet möjliggör de kemiska reaktioner som krävs för att producera svaveldioxid.

Molnen i atmosfären består av små silikatpartiklar, ett ämne som finns på många platser  då det är den primära beståndsdelen i sand. 

Det europeiska konsortiet som ingick i studien bestod av 46 astronomer från 29 forskningsinstitutioner i 12 länder. MPIA-teamet ( Max Planck institute for astronomy i Tyskland) bestod av Jeroen Bouwman, Paul Mollière, Thomas Henning, Oliver Krause och Silvia Scheithauer.

Bild https://www.mpia.de/ Konstnärligt koncept av exoplaneten WASP-107b och dess sol. © Illustration: LUCA School of Arts, Belgien/ Klaas Verpoest; Vetenskap: Achrène Dyrek (CEA och Université Paris Cité, Frankrike), Michiel Min (SRON, Nederländerna), Leen Decin (KU Leuven, Belgien) / Europeiskt MIRI EXO GTO-team / ESA / NASA

lördag 28 oktober 2023

NY upptäckt i Jupiters atmosfär.

 


NASA:s James Webb Space Telescope har upptäckt en tidigare okänd funktion i Jupiters atmosfär. Det är en snabb jetström som sträcker sig 4800 kilometer över Jupiters ekvator ovan de stora molntäckena. Upptäckten av denna jetstråle ger insikter i hur lagren i Jupiters turbulenta atmosfär interagerar och visar hur Webb kan spåra egenskaper som dessa.

Det här är något som överraskade oss totalt, beskriver Ricardo Hueso vid Baskiens universitet i Bilbao, Spanien, huvudförfattare till artikeln som beskriver upptäckten och som nyligen publicerades i Nature Astronomy.

Det som vi alltid har sett som suddigt dis i Jupiters atmosfär framstår nu i skarpa drag som vi nu kan se följer  planetens snabba rotation, tillägger Hueso.

Forskargruppen analyserade data från Webbs NIRCam (Near-Infrared Camera). Data som insamlats i juli 2022. Även om olika markbaserade teleskop, rymdfarkoster som NASA:s Juno och Cassini och NASA:s rymdteleskop Hubble har observerat Jupiter-systemets förändrade vädermönster har Webbteleskopet tillhandahållit nya upptäckter om Jupiters ringar, månar och atmosfär, noterade  Imke de Pater vid University of California, Berkeley.

Jupiter skiljer sig från jorden på många sätt då Jupiter är en gasjätte och jorden är en stenig tempererad värld men båda planeterna har skiktad atmosfär. Våglängder av infrarött ljus, synligt ljus, radio- och ultraviolett ljus som man observerat Jupiter med under tidigare uppdrag har visat att det i lägre, djupare lager av planetens atmosfär finns stormar och ammoniakismoln.

Den nyupptäckta jetströmmen färdas i en hastighet av cirka 515 kilometer i timmen vilket är dubbelt så snabbt som en kategori 5-orkan här på jorden. Jetströmmen finns cirka 40 kilometer ovanför molnen i Jupiters lägre stratosfär.

Forskarna ska göra ytterligare observationer av Jupiter med Webbteleskopet  för att avgöra om jetströmmens hastighet och höjd förändras över tid.

Medverkande i studien var Ricardo Hueso (Hueso) (UPV), Imke de Pater (UC Berkeley), Thierry Fouchet (Observatoriet i Paris), Leigh Fletcher (University of Leicester), Michael H. Wong (UC Berkeley)

Bild vikipedia på Jupiter tagen 1979 från Voyager 1. Bilden har förbättrats för att framhäva detaljer.

onsdag 20 september 2023

Metan och koldioxid i atmosfären i K2-18 b. Kan innebära liv på planeten.

 


K2-18b är en exoplanet som kretsar kring den röda dvärgstjärnan K2-18 på 124 ljusårs avstånd från Jorden. Planeten är 8,6 gånger mer massiv än jorden.

NASA: s James Webb Space Telescope hittade intressanta molekyler i  K2-18 b:s atmosfär. Upptäckten av kolbärande molekyler som metan och koldioxid. Webbs upptäckt läggs till de senaste studierna som tyder på att K2-18 b kan vara en Hyceanplanet. På en hyceanplanet finns väte i atmosfären och hav bestående av vatten på ytan.. 

Den första insikten i de atmosfäriska egenskaperna hos denna exoplanet som finns i den beboeliga zonen runt sin sol kom från observationer med NASA: s  Hubbleteleskop.

K2-18 b finns  i riktning mot stjärnbilden Lejonet. Exoplaneter som K2-18 b med storlek mellan jorden och Neptunus finns inte i vårt solsystem (men är en vanlig planettyp i andra solsystem). Denna brist på motsvarande närliggande planeter innebär att dessa "sub-Neptunus" är dåligt förstådda och arten av deras atmosfärer är en fråga som debatteras bland astronomer. Överflödet av metan och koldioxid och bristen på ammoniak stöder hypotesen att det kan finnas ett hav av flyttande vatten under den väterika atmosfären på K2-18 b.

Webb-observationerna gav också en trolig detektion av en molekyl som kallas dimetylsulfid (DMS). På jorden uppstår denna bara från liv. Men då K2-18 b ligger i den beboeliga zonen och nu visat sig innehålla  kolbärande molekyler, betyder inte det nödvändigtvis att planeten har livsformer. Planetens storlek - med en radie 2, 6 gånger större än jorden innebär att planetens inre sannolikt innehåller en stor mantel bestående av is under hårt tryck likt på Neptunus. Men på K2-18 b med en tunnare väterik atmosfär och en havsyta. Men havet kan vara för varmt för att hysa livsformer och är kanske inte i  flytande form.

Även om denna typ av planet inte existerar i vårt solsystem, är sub-Neptunusplaneter den vanligaste typen av planet som  är kända i vår galax, beskriver teammedlem Subhajit Sarkar vid Cardiff University. Teamets resultat har godkänts för publicering i The Astrophysical Journal Letters.

Bild en illustratörs tolkning av K2-18b (blå) kretsande runt sin sol den röda dvärgstjärnan K2-18. På bilden ses  ytterligare en exoplaneten runt solen K2-18c.

tisdag 5 september 2023

Termometermolekyl" bekräftad på exoplaneten WASP-31b

 


WASP-31b är en så kallad "het Jupiter" med låg densitet som kretsar kring den metallfattiga dvärgstjärnan WASP-31. Exoplaneten upptäcktes 2010 och den ligger i stjärnbilden Kratern ungefär 1305 ljusår från oss.

Kromhydrid (CrH) är en molekyl som är relativt sällsynt och känslig för temperatur. Just därför är den användbar som "termometer av stjärnor", enligt astronomen Laura Flagg vid Cornell university eftersom den bara är riklig i ett smalt intervall det mellan 900-1700 celcius.

Flagg är forskningsassistent i astronomi vid College of Arts and Sciences (A &S), och har använt denna och andra metallhydrider för att bestämma temperaturen hos mindre heta stjärnor och bruna dvärgar. I teorin, beskriver hon, kan kromhydrid vara temperaturvisare i heta Jupiter-exoplaneter vilka är jämförbara i temperatur med bruna dvärgar - om dessa speciella molekyler finns i dessas atmosfärer.

Nu har Flagg och ett team av forskare vid Cornell university med hjälp av högupplösta spektralobservationer, bekräftat  närvaron av kromhydrid i en exoplanetatmosfär den hos  WASP-31b.

Kromhydrid har inte tidigare upptäckts i någon exoplanets atmosfär så detta fynd är  första upptäckten av en metallhydrid i ett högupplöst exoplanetspektrum, beskriver forskarna.

Den definitiva upptäckten av metallhydrider i WASP-31b är ett viktigt framsteg i förståelsen av heta jätteplanetatmosfärer, beskriver Flagg, även om upptäckten inte ger ny information om den enskilda planeten.

"Kromhydridmolekyler är mycket temperaturkänsliga", skriver Flagg i studien. Vid varmare temperaturer ses bara krom. Och vid lägre temperaturer blir det andra saker som ses. Så det finns bara ett specifikt temperaturområde, av cirka 900-1700 celcius, där kromhydrid finns i överflöd.

I vårt solsystem är den enda upptäckten av denna molekyl i solfläckar, skriver Flagg.

I sin forskning använder Flagg högupplöst spektroskopi för att upptäcka och analysera exoplanetatmosfärer och jämföra det totala ljuset från system när planeten är vid sidan av sin stjärna, mot när planeten är framför sin stjärna och blockerar en del av stjärnans ljus. Vissa element blockerar mer ljus vid vissa våglängder och mindre ljus vid andra våglängder något som avslöjar vilka element som finns på planeten.

"Hög spektral upplösning innebär att vi har mycket exakt våglängdsinformation", skriver Flagg. "Vi kan få tusentals olika linjer. Vi kombinerar dem med olika statistiska metoder, med hjälp av en mall som visar en ungefärlig uppfattning om hur spektrumet ser ut – och vi jämför det med insamlad data och matchar det. Om det matchar bra finns det en signal. I det här fallet gav kromhydridspektra en signal.

Krom är sällsynt, även vid rätt temperatur så forskare behöver känsliga instrument och teleskop, beskriver Flagg.

För att analysera WASP-31b använde forskarna högupplöst spektra från en  observation i mars 2022 som en del av kartläggningen från Exoplanets with Gemini Spectroscopy från Hawaiis Maunakea, med hjälp av Gemini Remote Access to CFHT ESPaDOnS Spectrograph (GRACES).

Flagg är huvudförfattare till "ExoGemS Detection of a Metal Hydride in an Exoplanet Atmosphere at High Spectral Resolution", publicerad 16 augusti i ApJ Letters. Medförfattare inkluderar: Ray Jayawardhana, Hans A. Bethe professor och professor i astronomi (A &S); Jake D. Turner, Hubble-forskare vid Cornell Center for Astrophysics &; Planetary Science; Ryan J. MacDonald, tidigare forskningsassistent vid Carl Sagan Institute och nu NASA Sagan Fellow vid University of Michigan; och Adam Langeveld, postdoktoral forskare i astronomi (A&S). Flagg, Turner och Langeveld ingår i Jayawardhanas forskargrupp.

Bild vikipedia Hot Jupiter, exoplanet WASP-31b som en konstnär ser denna planet. WASP-31b ligger i stjärnbilden Kratern ungefär 1305 ljusår från jorden.

lördag 2 september 2023

Neptunus mörka fläck sedd från Jorden

 


Rymdsonden Voyager 2 upptäckte en mörk fläck när den passerade förbi Neptunus 1989. En fläck som försvann några år senare. “Sedan den första upptäckten av en mörk fläck på Neptunus (fler kortlivade sådana har upptäckts senare) har jag alltid undrat vad dessa kortlivade och svårobserverade formationer är” skriver Patrick Irwin, professor vid Oxfords universitet i Storbritannien och forskningsledare för en studie som publicerades nyligen  om ämnet i Nature Astronomy.

Irwin och hans forskargrupp använde i sin forskning data från ESO:s VLT (very large telescope) för att avfärda den tidigare hypotesen att de mörka fläckarna är klara områden i moln. De nya observationerna indikerar att de istället bildas av partiklar i ett skikt under det synliga disskiktet då is- och dispartiklar blandas i Neptunus atmosfär. 

Att nå denna insikt har inte varit lätt då de mörka fläckarna inte är långvariga fenomen vilket har gjort det omöjligt för astronomerna att studera dem tillräckligt länge och ingående för att säkert säga vad de är. En möjlighet uppstod dock med NASA/ESA:s Hubbleteleskop med vilket man upptäckte ett flertal mörka fläckar i Neptunus atmosfär 2018, bland annat på planetens norra halvklot. Irwin och hans forskarkollegor började då studera fläckarna med ett instrument som är idealiskt för detta ändamål.

MUSE-instrumentet (Multi Unit Spectroscopic Explorer) som finns på VLT. Med detta kunde man dela upp det reflekterade solljuset från Neptunus i dess komponentfärger (våglängder) för att erhålla ett 3D-spektrum. Eftersom ljus i olika våglängder härrör från olika djup i Neptunus atmosfär ges ett spektrum större möjlighet att bestämma den mörka fläckens höjd i atmosfären. Spektrumet bidrog också med information om sammansättningen i de olika skikten i atmosfären och ledtrådar till varför fläcken ser mörk ut.

Observationerna ledde till ett oväntat resultat. Under arbetet upptäcktes en sällsynt ljus molntyp som bildas på stort djup och som inte har observerats tidigare med rymdteleskop, beskriver en av medförfattarna till studien, Michael Wong vid University of California, Berkeley, USA. Denna ovanliga molntyp uppträdde som en ljus fläck bredvid den större mörka fläcken och i samma atmosfärsskikt. Det är en ny tidigare okänd molntyp som är distinkt från de små ljusa “följemoln” av metanis som tidigare har setts på höga nivåer. 

Bild https://www.eso.org/ Med hjälp av ESO:s Very Large Telescope (VLT) har astronomer observerat en stor mörk fläck i Neptunus atmosfär, med en oväntad ljus fläck som följeslagare.

onsdag 28 juni 2023

Nya rön om exoplanet TRAPPIST-1 c

 


Fritt från vikipedia: TRAPPIST-1c är en stenig Venus-lik exoplanet 39 ljusår från jorden i riktning mot stjärnbilden Vattumannen. Planeten kretsar runt den röda dvärgen Trappist-1 på 2,4 dygn och antas inte ligga i den beboeliga zonen av Trappist-1 utan är förmodligen en het  planet. Den antas ha en bunden rotation runt sin stjärna, så att samma sida alltid riktas mot stjärnan vilket resulterar i att ena sidan av planeten har permanent dag, medan den andra har permanent natt. Den är 1,156 gånger så massiv som jorden vilket gör den mer massiv än de andra sex  planeterna som ingår i systemet. Den har en radie av 1,056 % gånger  av jordens.

Ett internationellt forskarlag har nu använt NASA:s rymdteleskop James Webb för att beräkna mängden värmeenergi från  stenplaneten TRAPPIST-1 c. Resultatet tyder på att planeten troligen inte har en atmosfär eller om den finns är mycket tunn.

Dagstemperaturen på TRAPPIST-1 c  är över 100 C  . Den precision som krävs för mätningar av detta slag visar Webbs användbarhet i att karakterisera stenexoplaneter som liknar dem i vårt solsystem (ex Jordens).

Resultatet från studien ger uppslag till  ytterligare ett steg för att hitta planeter kring små röda dvärgstjärnor som TRAPPIST-1 (den vanligaste typen av stjärna i Vintergatan) som kan upprätthålla atmosfärer.

Vi vill veta om stenplaneter har atmosfär eller inte. Förr kunde vi egentligen bara studera planeter med kraftiga, väterika atmosfärer. Med Webb kan vi söka efter atmosfärer som domineras av syre, kväve och koldioxid, beskriver Sebastian Zieba, doktorand vid Max Planck-institutet för astronomi i Tyskland och förste-författare till studien som publicerades nyligen i Nature.

"TRAPPIST-1 c är intressant eftersom det är en planet dom liknar Venus. Den är ungefär lika stor och tar emot en liknande mängd av strålning från sin sol som Venus får från vår sol, beskriver medförfattare Laura Kreidberg, vid Max Planck.

TRAPPIST-1 c är en av Sju stenplaneter som kretsar runt en ultrasval röd dvärgstjärna (en M-dvärg) i detta fall 40 ljusår från jorden. Även om planeterna är lika stora och massiva som de inre steniga planeterna i vårt eget solsystem, är det inte klarlagt om de har liknande atmosfärer (Trappist-1 systemet har sju stenplaneter av ungefär samma storlek som Jorden). Under de första miljarder åren av M-dvärgars existens avges svag röntgen och ultraviolett strålning något som kan utplåna en ung planets atmosfär. Dessutom kan det ha funnits tillräckligt med vatten, koldioxid och andra flyktiga ämnen tillgängliga för att skapa betydande atmosfärer då planeterna bildades.

Data från studien visar att det är osannolikt att planeten är en planet lik Venus med en tjock CO2-atmosfär med svavelsyramoln.

Frånvaron av en tjock atmosfär tyder på att TRAPPIST-1 c kan ha bildats med relativt lite vatten tillgängligt. Om de kallare, mer tempererade TRAPPIST-1-planeterna längre ut från sin sol bildades under liknande förhållanden, kan de också ha bildats  med brist  på vatten och andra komponenter som är nödvändiga för att  en planet ska bli livsvänlig.

Den känslighet som krävs för att skilja mellan olika atmosfäriska scenarier på en så liten planet så långt borta är anmärkningsvärd. Minskningen av ljusstyrkan som Webb upptäckte under den sekundära förmörkelsen då planeten passerade framför sin sol var bara 0,04 procent: motsvarande som att se på en skärm med 10000 små glödlampor och uppmärksamma att  fyra av dem har slocknat.

Det är extraordinärt att vi kunnat mäta ovan, skriver Kreidberg. Det har funnits frågor i årtionden om och hur stenplaneter kan behålla atmosfärer. Webbs förmåga leder oss verkligen in i en tid där vi kan börja jämföra exoplanetsystem med vårt eget solsystem på ett sätt som vi aldrig kunnat tidigare.

Bild vikipedia, konstnärs föreställning av TRAPPIST-1c.

måndag 26 juni 2023

WASP-76b är så het att råmaterial till sten svävar i dess atmosfär.

 


"WASP-76b är en exoplanet klassificerad som en het Jupiter. Den finns i riktning mot stjärnbilden Fiskarna och kretsar kring sin sol, WASP-76 på ett avstånd av cirka 0,033 astronomiska enheter (AU en AU är avståndet vår sol och Jorden). Omloppstiden för WASP-76b är cirka 1,8 dagar. Dess massa är ungefär 0, 92 gånger av Jupiters".  Citerat fritt  från vikipedia.

WASP-76b har ingen yta (den består enbart av gas) men har en massiv och varm atmosfär. Temperaturen är i genomsnitt 2000 C. Det är tillräckligt varmt för att mineral och stenbildande element som kalcium, nickel och magnesium ska förångas och flyta runt i den tjocka atmosfären (gasen). Utöver det regnar järn förmodligen ner från molnen. Planetexperter som har studerat WASP-76b vill veta mer om dess atmosfär och dess bildande. Nyligen såg ett forskarlag under ledning av astronomen Stefan Pelletier på WASP-76b då när den passerade framför sin stjärna.

De använde MAROON_X ett högupplösande spektrogram för att mäta kemin i planetens atmosfär. De hittade ca 11 stenbildande element som flyter runt i den tjocka atmosfären. Dessa element inkluderar natrium, kalium, litium, nickel, mangan, krom, magnesium, vanadin, barium, kalcium och järn. Studier av planeter som WASP-76b ger ledtrådar till processen vid planetbildning. Astronomer tror att planeter vanligtvis bildas relativt nära sin moderstjärna (sol).

Dessa planeters metalliska och steniga material tål värme. Gas- och isjättevärldarna kan också komma relativt nära varandra. Men så småningom migrerar de till platser där deras flyktiga element (väte, etc.) kan bestå.Det är så det förmodligen hände i vårt eget solsystem. Så ett av målen i sökandet efter exoplaneter är att ta reda på om planetbildning sker på ungefär samma sätt vid alla stjärnor.

 (Det låter konstigt. Vad sker för att de ska flytta på sig? Det måste i så fall vara en naturlig händelse som sker frågan är vad som styr det. Tvekar på denna lösning. Kan det istället vara gravitationshändelser mellan skilda kroppar som slumpmässigt får planeter att vandra bort från sin sol eller stanna kvar i närheten eller dras närmre sin sol?). 

När astronomer började hitta exoplaneter var heta stora gasplanetrar  de man fann först och gav dem beteckningen heta Jupitrar. De är stora och kan vanligtvis ses i bländningen av sina moderstjärnor vid sin passage framför dessa. De kretsar nära sina stjärnor vilket värmer upp dem. Det är där termen "het Jupiter" har sitt ursprung.

När det gäller WASP-76b förångar extrem värme metaller. Normalt, på en stenig värld, skulle dessa metalliska element stelna. Det är vad som hände här på jorden, Mars, Jupiter och på Merkurius. Men för denna heta Jupiter blir metallerna en del av gasen. Intressant nog finns metaller också i gasjättarna i vårt eget solsystem, men dessa världar (Jupiter etc)  är mycket kallare än WASP-76b. Så metallelementen här är "frusna" och de dyker inte upp i atmosfärerna, enligt astronom Pelletier. 

Bild vikipedia konstnärlig bild av den Jupiterstora WASP-76b (baserat på insamlad data från 2020)

lördag 29 april 2023

Rubidium och samarium upptäckt i en exoplanets atmosfär.

 


Med hjälp av Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations (ESPRESSO)  har astronomer vid den kinesiska vetenskapsakademin (CAS) undersökt atmosfären hos MASCARA-4b – en avlägsen exoplanet och ultrahet Jupiterstor planet. Studien publicerades den 11 april på arXiv pre-print-servern och visade på rubidium och samarium i denna exoplanets atmosfär. Det är första gången dessa ämnen hittats i en planets atmosfär

MASCARA-4b är en gasjätte som kretsar runt sin sol MASCARA-4 cirka 556 ljusår från jorden. Planeten har en medeltemperatur av  ca 2000 C. Dess sol MASCARA-4 är en ljusstark stjärna av A-typ

Planetens storlek är ca 1,51 Jupiterradier och dess massa är 1,67 Jupitermassor vilket ger en densitet av 0,48 g / cm3. Planeten kretsar  ett varv runt sin sol  var 2,82: e dag, på ett avstånd av 0, 047 AU från denna. På grund av dess stora atmosfäriska skalhöjder och transmissions-spektroskopimetrisk (TSM) är MASCARA-4b ett utmärkt mål för atmosfärisk karakterisering.

Därför bestämde sig detta team av astronomer under ledning av Zewen Jiang vid CAS Key Laboratory of Optical Astronomy i Peking, Kina, för att observera MASCARA-4b med ESPRESSO vilket är en fibermatad ultrastabil echelle-spektrograf med hög upplösning, monterad på Very Large Telescope (VLT) vid Europeiska sydobservatoriet (ESO) i Cerro Paranal, Chile.

"Två passager av MASCARA-4 b observerades en den 13 februari 2020 och en den 1 mars 2020 med ESPRESSO.

 Observationerna visade på flera tyngre ämnen i atmosfären på MASCARA-4 b bland annat rubidium (Rb), samarium (Sm), liksom joner av titan (Ti) och barium (Ba). Detta är första gången som Rb och Sm detekteras i atmosfären på en exoplanet, medan Ti och Ba rapporterats i flera andra exoplaneters atmosfär.

Det noterades att Sm, med atomnummer 62, är det tyngsta grundämne som upptäckts i atmosfären av en exoplanet. Det är också det första grundämnet i lantanidserien (Den serie av 15 grundämnen som i det periodiska systemet börjar med lantan (atomnr 57) och slutar med lutetium (atomnr 71). som har upptäckts på en exoplanet.

Förutom de ovan nämnda upptäckterna bekräftade studien också tidigare upptäckter av magnesium (Mg), kalcium (Ca), krom (Cr) och järn (Fe) i atmosfären på MASCARA-4b. Författarna till artikeln uppmuntrar till ytterligare atmosfäriska studier av exoplaneter för att söka andra sällsynta ämnen.

Bild vikipedia på storleksförhållande av stjärnklasser. Stjärnan som ovan planet finns vid är av storlek A. Följ länken här på än mer intressant  info om skillnader mellan olika stjärnklasser (spektralklasser).

tisdag 28 mars 2023

Exoplanet HD-2047496 b mister sin atmosfär.

 


En  från oss avlägsen mini-Neptunus planet antas ha atmosfär eller  hav eller en kombination av båda även om detta inte blir beständigt just på denna planet. Exoplaneten betecknad HD-2047496 b  finns cirka 77 ljusår från jorden.

Upptäckten av denna kan hjälpa forskare att bättre förstå hur planetsystem utvecklas och varför det saknas neptunuslika världar nära sina moderstjärnor i Vintergatan.

Teamet av planetforskare från hela världen kunde karakterisera exoplanetens egenskaper medan de analyserade data från dess stjärna (sol) insamlat av High Accuracy Radial velocity Planet Searcher (HARPS). De kombinerade dess data med data från Transiting Exoplanet Survey Satellite (TESS) och avslöjade ljusstyrkan och våglängderna för ljuset från stjärnan, HD-207496 (dess sol) avslöjade exoplanetens egenskaper när planeten passerade sin sol från oss sett. 

Astronomerna kunde bestämma att HD-2047496-b (alternativt namn TOI-1099 b), har en diamerter av 2,25 gånger större än jorden, medan dess massa är cirka 6, 1 gånger lägre. Detta innebär att exoplaneten har mindre täthet än jorden vilket ledde till att teamet kategoriserar den som en "mini-Neptunus" - en planet som är mindre massiv än Neptunus men som fortfarande liknar denna.

Teamet kunde också beräkna att HD-2047496-b kretsar kring sin stjärna på 6,4 jorddagar på ett avstånd av bara 9,4 miljoner kilometer avstånd. Men allt med denna  värld är inte helt konstaterat.

HD-2047496-b har sannolikt en stenig kärna täckt av mestadels vatten eller gas, men forskarna vet inte vilket, eller om här finns både ock. Men vad som täcker HD-2047496-b: s steniga kärna, är det sannolikt tillfälligt.

Även om dess sol HD-2047496 endast är cirka 80% av solens massa och 79% av vår sols diameter, är den fortfarande tillräckligt stor för att dess gravitation ska dra till sig exoplanetens atmosfär som består av väte- eller heliumatmosfär, enligt teamets datamodell.

De flesta Neptunusliknande planeter som kretsar kring stjärnor på så litet avstånd skulle ha fått sina atmosfärer avskalade sina eventuella hav kokade bort. Något som kan förklara att Neptunusliknande planeter sällan ses vid detta avstånd från sin sol.

" De Neptunusstora planeterna reduceras i storlek  därför över tid till att bestå enbart av sina steniga kärnor. Då HD-2047496-b undgått detta öde hittills beror det troligast på att dess sol endast är cirka 520 miljoner år gammal vilket innebär att solsystemet  relativt ungt, särskilt jämfört med vårt 4,6 miljarder år gamla solsystem. Därför har dess sol inte ännu hunnit att dra till sig planetens atmosfär (eller kokat bort havet). Men över tid kommer detta troligast att ske.

Astronomerna beräknar att om planetens atmosfär inte redan har avlägsnats och lämnat efter sig ett hav så bör den rivas bort inom de närmaste 500 miljoner åren. Detta kommer att lämna HD-2047496-b antingen som en stenig kärna täckt av hav, eller en helt karg naken planetkärna oberoende av om den har en blandning av hav och atmosfär eller inte. Teamet föredrar en förklaring till planeten som ser den täckt av en blandning av atmosfär och hav snarare än bara ett hav eller bara en atmosfär, men tillade att ytterligare undersökning av denna värld är nödvändig för att förstå dess sammansättning.

Teamets forskning har accepterats för publicering i tidskriften Astronomy & Astrophysics och finns tillgänglig på pappersförvaret arXiv.

Bild från www.pxfuel.com

onsdag 30 november 2022

Webb-teleskopet har upptäckt en planet med en mycket annorlunda atmosfär

 


WASP-39b finns i Jungfruns stjärnbild och cirka 700 ljusår från jorden dess sol är WASP-39.

Webbteleskopet och med flera teleskop ex NASA: s Hubble och Spitzerteleskop har tidigare avslöjat isolerade ingredienser i denna planets atmosfär. Men de nya avläsningarna från Webb ger en fullständig meny av innehåll  och  tecken på aktiva kemiska reaktioner och moln i denna atmosfär.

De senaste uppgifterna ger  en antydan av hur dessa moln kan se ut på nära håll. Det är uppbrutna moln /exempel från jorden på uppbrutna moln är ex cumulusmolnsnarare än ett enda molnhöjt täcke över hela planeten. Så är det även på Jorden som inte heller denna är helt höljd i moln som ex Venus är.

Webb-teleskopets uppsättning av mycket känsliga instrument tränades för att undersöka atmosfären i WASP-39 b. Denna ligger nära sin sol ca åtta gånger närmre sin sol än Merkurius är vår sol och har en storlek som Saturnus.

Fynden bådar gott för förmågan hos Webbs instrument att genomföra  breda spektrum från undersökningar av alla typer av exoplaneter som vetenskapssamhället hoppas finna spännande fynd på. Det inkluderar att undersöka atmosfärerna hos mindre och steniga planeter som de i TRAPPIST-1-systemet

"Vi observerade WASP-39 b med flera instrument som tillsammans gav oss en bred del i det infraröda spektrumet och en mängd kemiska fingeravtryck som varit otillgängliga fram till detta uppdrag, säger Natalie Batalha, astronom vid University of California, Santa Cruz, som bidrog till och hjälpte till att samordna den nya forskningens resultat.

Sviten av upptäckter av atmosfärens innehåll beskrivs i en uppsättning av fem nya vetenskapliga artiklar, varav tre är i press och två av dem är under granskning. Bland avslöjandena är den första gången svaveldioxid en molekyl som framställs ur kemiska reaktioner som utlöses av högenergiljus från en  sols strålning upptäckts i en exoplanets atmosfär.

 "Det är första gången vi ser konkreta bevis på fotokemi - kemiska reaktioner initierade av energirikt stjärnljus - på en exoplanet", säger Shang-Min Tsai, forskare vid University of Oxford i Storbritannien och huvudförfattare till artikeln.

"Planeter förändras och förvandlas genom att de kretsar i sin sols strålningsbad", säger Batalha och tillägger att på jorden får detta livet att frodas.

WASP-39 b närhet till sin sol gör den till ett laboratorium för att studera effekterna av strålning från solstrålning på exoplaneter.

För att se ljuset från WASP-39 b spårade Webb planeten när den passerade framför sin stjärna, så  en del av stjärnans ljus kunde filtreras genom planetens atmosfär. Olika typer av kemikalier i atmosfären absorberar olika färger i spektrum de färger som saknas berättar för astronomer vilka molekyler som finns. Genom att se på universum i infrarött ljus kan Webb plocka upp kemiska fingeravtryck som inte kan upptäckas i synligt ljus.

Andra atmosfäriska beståndsdelar som detekterades av Webb-teleskopet inkluderade natrium, kalium och vattenånga.

Webb upptäckte även koldioxid. Under tiden då observationen gjordes detekterades kolmonoxid men signaturer av metan (CH4) och vätesulfid saknades. Om dessa  molekyler förekommer är det vid mycket låga nivåer.

Att ha en sådan komplett lista över kemiska ingredienser i en exoplanets atmosfär ger forskare en glimt av överflödet av olika element i förhållandet till varandra, såsom kol-till-syre eller kalium-till-syre-förhållande. Det ger i sin tur inblick i hur denna planet – och kanske andra – bildades ur den skiva av gas och stoft som omgav moderstjärnan i dess yngre år.

Spännande tider och resultat väntar med James webbteleskopet.

Bild vikipedia på Wasp-39b som visar hur man anser det kan se ut på plats.

onsdag 23 november 2022

Slumptal är metoden vid sökandet efter att beskriva varmt väte i exoplanet-atmosfärer

 


Att upptäcka egenskaperna hos kvantsystem som består av ett flertal interagerande partiklar är en enorm utmaning. De kan tolkas matematiskt men är omöjliga att upptäcka. Att bryta den gränsen skulle leda till mängder av nya rön och tillämpningar inom fysik, kemi och materialvetenskap.

Nu har forskare vid Center for Advanced Systems Understanding (CASUS) vid Helmholtz-Zentrum Dresden-Rossendorf (HZDR)  tagit ett stort steg framåt för detta genom  att beskriva det som kallas varmt tätt väte -väte som finns under extrema förhållanden  under högt tryck. Deras arbete är (ska eller är nu publicerat) i Physical Review Letters.

Forskarnas arbetssätt baserades på en metod där man använde slumptal något som nu för första gången kan lösa den grundläggande kvantdynamiken hos de inblandade elektronerna då många väteatomer interagerar under förhållanden som finns till exempel i planeter eller i fusionsreaktorer.

Väte är det vanligaste elementet i universum. Det är bränslet som driver stjärnorna inklusive vår sol och det utgör det inre av planeter som ex gasjätten Jupiter. Den vanligaste formen av väte i universum är inte den osynliga och luktfria gasen eller de vätemolekyler vatten innehåller.

Det är det varma täta vätet från stjärnor och planeter innebärande extremt komprimerat väte som i vissa fall kan leda elektricitet lika bra som metaller. Forskning om varm tät materia fokuserar på materia under förhållanden under mycket höga temperaturer eller tryck som vanligtvis finns överallt i universum dock ej naturligt på Jorden. För att försöka belysa egenskaperna hos väte och annan materia under extrema förhållanden, förlitar sig forskare mycket på datasimuleringar. En allmänt använd metod kallad täthetsfunktionalteori(DFT). 

Trots sin framgång i många sammanhang har denna metod misslyckats med att beskriva varmt tätt väte. Den främsta anledningen är att exakta datasimuleringar kräver exakt kunskap om interaktionen mellan elektronerna i varmt tätt väte.

I den nya publikationen visar författarna Maximilian Böhme, Dr. Zhandos Moldabekov, Young Investigator Group Leader Dr. Tobias Dornheim (CASUS-HZDR) och Dr. Jan Vorberger (Institute of Radiation Physics-HZDR) för första gången att egenskaper hos varmt tätt väte kan beskrivas mycket exakt med så kallade Quantum Monte Carlo (QMC) simuleringar.

 

När det gäller vätgas skulle Böhmes och hans kollegors arbete potentiellt kunna bidra till att klargöra detaljerna i hur varmt tätt väte blir metalliskt väte, en ny fas av vätgas som studeras intensivt både genom experiment och simuleringar. Att generera metalliskt väte experimentellt i labbet kan möjliggöra intressanta applikationer i framtiden.

Den som är intresserad av vårt solsystems planeter och månar följ gärna länken här  som där vårt  solsystems planeters atmosfärinnehåll beskrivs). Länken är från vikipedia.

 Bilden ovan från vikipedia visar däremot citat från vikipedia ”Graphs of escape velocity against surface temperature of some Solar System objects showing which gases are retained. The objects are drawn to scale, and their data points are at the black dots in the middle”.