Google

Translate blog

Visar inlägg med etikett enorma. Visa alla inlägg
Visar inlägg med etikett enorma. Visa alla inlägg

torsdag 6 april 2023

Små stjärnor kan ha stora planeter

 


Gasjättar likt andra planeter bildas från de skivor av material som omger unga stjärnor. Enligt kärnaccelerationsteorin bildas först en kärna av sten, is och andra tunga fasta ämnen som sedan genom gravitation drar till sig gas och damm. Processen börjar då kärnan är tillräckligt massiv (cirka 15 till 20 gånger jordens).

Stjärnor med låg massa (ex röda dvärgstjärnor de vanligaste stjärnorna därute) har enligt teorin skivor (ackretionsskivor) med mindre massa enligt fysiska utsagor och det bör inte vara möjligt att här bilda stora gasjättar av ett slag som är större än stjärnan. 

Men i en nyligen gjord studie, publicerad i Monthly Notices of the Royal Astronomical Society (MNRAS) finansierad av UK Science and Technology Facilities Council (STFC), såg forskare på 91306 stjärnor med låg massa, med hjälp av observationsdata från NASA: s Transiting Exoplanet Survey Satellite (TESS) och i 15 fall hittades tecken på ett stort ljusfenomen som passerar framför en mindre stjärna (misstänkt som gasjätteplanet större än dess sol).

Fem av dessa 15 potentiella jätteplaneter har sedan dess bekräftats som planeter. En av dessa bekräftade planeter kretsar kring en stjärna som är en femtedel av solens massa – vilket inte skulle vara möjligt enligt dagens planetbildningsmodeller. Ska förstås som omöjligt att en sådan stor planet bildats vid en så liten stjärna.

Huvudförfattaren till studien Dr Ed Bryant vid Mullard Space Science initierade Laboratory vid UCL, tidigare University of Warwick, var den som tog initiativ till studien som en del av sin doktorsexamen. Han beskriver det som att ”Stjärnor med låg massa är bättre på att bilda jätteplaneter än vi hittills trodde. Resultatet väcker nya frågor om planetbildningsmodeller. I synnerhet utgör vår upptäckt av gasjättar som kretsar kring stjärnor av 20 % av solens massa en konflikt med nuvarande teori om planetbildning”.

Medförfattare till studien Dr Vincent Van Eylen (Mullard Space Science Laboratory vid UCL) beskriver det med följande ord "Det faktum att, även om det är sällsynt, finns gasjättar runt stjärnor med låg massa vilket är ett oväntat fynd och innebär att modeller om  planetbildning kommer att behöva revideras."

En möjlig tolkning är att gasjättar inte bildas genom kärnacceleration utan genom gravitationell instabilitet, där skivan som omger en stjärna fragmenteras till planetstora klumpar av stoft och gas. Om så är fallet kan stjärnor med låg massa vara värd för mycket stora gasjättar två eller tre gånger större  än Jupiter. Detta anses dock osannolikt, eftersom skivorna runt stjärnor med låg massa inte verkar vara tillräckligt massiva för att fragmenteras på detta sätt. För min del låter det dock troligt att så kan ske. Vi ska inte låsa oss vid hur mycket massa som finns i en ackretionskiva utifrån ett samband med hur stor stjärnan är.

En annan förklaring, säger forskarna, är att astronomer har underskattat hur massiv en stjärnas skiva kan vara, vilket innebär att små stjärnor trots allt kan bilda jätteplaneter via kärnbildning.

Detta kan antingen bero på att vi felaktigt har beräknat massan av skivor vi kan observera genom teleskop eller att skivor har en större massa i början av en stjärnas liv, stadiet då de är mycket utmanande att analysera  (med dagens instrument), jämfört med senare i en stjärnas existens när vi kan observera dem lättare (då dammet inte är så kompakt i skivan).

Medförfattare i studien var även Dr Dan Bayliss (University of Warwick) skrev "Det är möjligt att vi inte förstår massorna av dessa protoplanetära skivor så bra som vi trodde att vi gjorde. Kraftfulla nya instrument som James Webb Space Telescope kommer att kunna studera egenskaperna hos dessa skivor mer detaljerat.

I artikeln beskrivs hur forskarna  försökte identifiera hur ofta jätteplaneter bildas runt stjärnor med låg massa och testade om denna förekomstfrekvens passade med vad kärnaccelerationsmodeller skulle förutsäga.

De använde en algoritm för att identifiera signalerna från transiterande gasjättar i ljus från stjärnor med låg massa. De kontrollerade sedan dessa signaler och diskonterade ett antal falska positiva resultat.

För att avgöra hur sannolik deras metod var att upptäcka gasjättar som kretsar kring dessa stjärnor är satte de in simuleringar av tusentals signaler från transiterande planeter i TESS insamlad stjärnljusdata och körde sedan algoritmen för att se hur många av planeter som skulle detekteras.

Nu arbetar forskarna vidare med att försöka bekräfta om ljusen är stora gasplaneter (eller utesluta) nio av de 15 kandidatplaneter de identifierat (fem har hittills bekräftats som planeter). Dessa kandidater kan potentiellt vara följeslagare till stjärnor eller det kan finnas en annan anledning till nedgångarna i ljusstyrka. Teamet kommer att dra slutsatsen om dessa objekts massor genom att leta efter en anomali i deras sols position, vilket indikerar den möjliga planetens gravitation.

Bild https://phys.org  Illustratörs intryck av soluppgången på planeten NGTS-1b, en gasjätte som tidigare upptäckts kretsa kring en stjärna med låg massa. Upphovsman: University of Warwick / Mark Garlick.

lördag 4 mars 2023

I universums ”barndom” var stjärnorna enorma i storlek

 


De första stjärnorna i kosmos var upp till över 10 000 gånger större än vår sols massa vilket är ungefär 1 000 gånger större stjärnor än de största stjärnorna som idag finns därute enligt en ny studie. I vår tid är de största stjärnorna 100 solmassor. Men i det tidiga universum bestod universum av mycket stora stjärnor. Stjärnor som snabbt gjorde slut på sitt bränsle och gjorde slut på sitt bränsle redan efter ca 1 miljon år, enligt nya forskarrön.

Genom sin storlek och sin korta existens fick universum vid dessas kollaps därefter nya grundämnen. De som sedan blev grunden till våra stjärnor av i dag och till uppbyggnaden av ex människan.

För mer än 13 miljarder år sedan, inte långt efter Big Bang, hade universum inga stjärnor. Det fanns inget annat än en varm soppa av neutral gas, nästan helt bestående av enbart väte och helium. Under hundratals miljoner år pressades den neutrala gasen  samman av gravitation till allt tätare bollar av materia. Denna tid är känd ses som den kosmiska mörka tiden.

I dagens universum kollapsar täta bollar av materia snabbare och då bildas stjärnor. Men det beror på att det moderna universum har något som det tidiga universum saknade: många olika grundämnen tyngre än väte och helium. Detta gör att de täta klumparna bestående av damm och gas i dag kan dras samman snabbt och  till hög densitet för att utlösa kärnfusion den process som driver stjärnors ljus och sken genom att kombinera lättare grundämnen till tyngre.

Men det enda sättet att få tyngre element i första skedet av universum var genom kärnfusionsprocess. Flera generationer av stjärnor som bildades, smälte och dog och berikade kosmos till dess nuvarande tillstånd av grundämnen.

Utan förmågan att snabbt släppa ifrån sig  värme måste den första generationen stjärnor bildats under mycket olika och mycket svåra förhållanden mot dagens stjärnor. För att förstå hur  de första stjärnor kom till vände sig ett team av astrofysiker till sofistikerade datorsimuleringar som skulle visa förhållandena  som vi förstår dem under  de mörka åldrarna då nästan enbart väte och helium fanns,  för att förstå vad som hände då. Resultatet  beskrevs i januari i en artikel som publicerades i preprintdatabasen arXiv och skickades in för peer review till Monthly Notices of the Royal Astronomical Society.

Det teori som utarbetades innehåller alla vanliga kosmologiska ingredienser: den mörka materian för att skapa galaxer, utveckling och ihopklumpning av neutral gas, strålning, kylning och ibland uppvärmning av gas. Teorin innehåller också något som andra har teorier saknat: kallfronter – snabba strömmar av kyld materia – som smäller in i redan bildade strukturer.

Forskarna fann att en komplex ström av interaktioner av detta slag föregick den första stjärnbildningen. Neutral gas började samlas och klumpa ihop. Väte och helium släppte ut lite värme vilket gjorde det möjligt för klumpar av den neutrala gasen att långsamt nå högre densitet.

Dessa bildade klumpar med hög densitet blev mycket varma och producerade strålning som bröt isär den neutrala gasen och hindrade den från att fragmenteras i  mindre klumpar. Det innebar att stjärnor bestående av dessa klumpar kunde bli otroligt stora. Dessa fram och tillbaka interaktioner mellan strålning och neutral gas ledde till massiva pooler av neutral gas vilket blev början på de första galaxerna. Gasen djupt inne i dessa protogalaxer bildade snabbt snurrande ackretionsskivor - snabbt flytande ringar av materia som bildas runt protostjärnor inklusive svarta hål i universum. 

Under tiden och runt protogalaxernas ytterkanter slog kalla fronter av gas ner. De kallaste, mest massiva fronterna trängde in i protogalaxerna hela vägen fram till ackretionsskivan runt en protostjärna. Dessa kallfronter smällde in i skivorna och ökade snabbt både deras massa och densitet till en kritisk tröskel, vilket gjorde att de första stjärnorna kunde komma till och då i enorm storlek.

De första stjärnorna var inte vanliga fusionsstjärnor som vår sol. De var gigantiska klumpar av neutral gas som tändes genom fusion i dess kärna med en gång utan att först  fragmenteras i små bitar vilket sker i dagens stjärnbildningsprocess. Den resulterande stjärnmassan var enorm.

De första stjärnorna var mycket ljusstarka och bestod under kort tid, mindre än en miljon år. (Stjärnor i det moderna universum kan existera i miljarder år). Därefter skulle dessa första stjärnor slutat som supernovor

Dessa supernovor gav upphov till element tyngre än väte och helium - som sedan blev början till nästa generation av stjärnbildning vår tids stjärnor. Men då universum efter hand blev alltmer förorenad av tyngre element än väte och helium kunde processen då enorma stjärnor bildades av väte och helium aldrig mer kunna uppkomma.

Själv ser jag det som möjligt att hitta dessa jättar som var väldigt ljusstarka men kortlivade i sökandet i tid och rum med James Webbteleskopet. Om de  nu funnits.

Inlägget har som utgångspunkt en artikel av Paul M. Sutter är forskningsprofessor i astrofysik vid SUNY Stony Brook University och Flatiron Institute i New York City

Bild vikimedia tagen av Hubble teleskopet. I den här bilden förstoras och förvrängs en avlägsen galax ljus kraftigt av effekten av gravitationlinsing. Efter att bilden släppts offentligt använde astronomer bilden för att mäta galaxens avstånd från oss vilket visade sig vara 9,4 miljarder ljusår.