Google

Translate blog

söndag 12 februari 2023

Månen Mimas har en havsvärld

 


Mimas är en av Saturnus månar. Det utmärkande med denna måne är dess stora krater Herschel som har en diameter på 130 km vilken täcker en tredjedel av månens diameter.

Det var den 31 januari 2023 en forskare från Southwest Research Institute upptäckte att Saturnus minsta och innersta måne kunde generera den mängd värme som behövs för att ett flytande inre hav ska kunna existera. Nu vill forskare studera Mimas yta ytterligare för att förstå hur dess inre kan ha utvecklats och kratern Herschels struktur.

"Under de sista dagarna av NASA: s Cassini-uppdrag 1997-2017  vid Saturnus identifierade rymdfarkosten en libration eller svängning, i Mimas rotation något som ofta visar på en geologiskt aktiv kropp med ett hav under ytan", säger SwRI: s Dr. Alyssa Rhoden, specialist på geofysik hos isiga objekt, särskilt de som innehåller hav. Hon är en av författarna till ett nytt geofysiskt forskningsbrev om detta.

Hon säger att Mimas först verkade som en osannolik kandidat till ett inre hav med sin isiga, kraftigt kraterärrade yta med sin stora nedslagskrater Herschel som får den lilla månen att se ut ungefär som Death Star från Star Wars. Om Mimas har ett underjordiskt hav representerar Mimas en ny klass av små, havsvärldar med ytor som inte förråder havets existens.

"Även om våra resultat stöder ett hav under Mimas yta är det utmanande att förena månens geologiska egenskaper med vår nuvarande förståelse av dess termiska utveckling", säger Rhoden.

Rhoden är en ledare av NASA: s Network for Ocean Worlds Research Coordination Network som tidigare tjänstgjorde i National Academies 'Committee on Astrobiology and Planetary Science. En artikel som beskriver ovan forskning har publicerats online i GRL och kan nås här 

Men mer forskning behövs för att förstå hur och varför Mimas kan ha en havsvärld under sin yta (min anm.). Men helt säkert är det inte att detta hav finns.

Bild vikipedia en av Saturnus många månar Mimas, fotograferad av Cassini 2005 (NASA)

lördag 11 februari 2023

NASA: s rymdfarkost Lucys nya mål är asteroiden 1999 VD57

 


Asteroid 1999 VD57 blir ett flyby-mål för NASA: s Lucy-uppdrag vilken kommer att närma sig till 450 km från asteroiden den 1 november 2023. 1999 VD57 blir då den minsta asteroid i asteroidbältet (asteroidbältet finns mellan Mars och Jupiter)  som besökts av en rymdfarkost.

Lucy-uppdraget slår redan nu rekord genom att planeringen redan innefattar  besök vid nio asteroider (trojaner)  under sin 12-åriga rundtur bland Jupiters Trojan-asteroider. Trojaner innebär att de har samma bana som Jupiter och rör sig antingen före eller efter i  Jupiters bana. Ursprungligen var Lucy inte planerad att ta en närbild av några asteroider förrän under 2025. Men nu har det bestämts att den innan de nio trojanbesöken ska ta riktning mot en liten ännu namnlös asteroid i det inre av asteroidbältet betecknad som 1999 VD57. OBS denna asteroid är inte en trojan.

Det finns miljontals asteroider i asteroidbältet, säger Raphael Marschall, Lucy-medarbetare vid Niceobservatoriet i Frankrike, som identifierade asteroiden 1999 VD57 som ett objekt av särskilt intresse och en möjlighet för Lucy att flyga förbi. Marschal tillägger  att han valde mellan 500000 asteroider med väldefinierade banor för att se om Lucy kunde komma tillräckligt nära någon för att få en bra titt på någon av dem även på avstånd. Asteroid 1999 VD57 var ett bra mål. Lucys bana som den ursprungligen utformades kommer nu  att ta sig inom 450 km från asteroiden genom att Lucy-teamet den 24 januari 2023 lade till en liten manöver på farkostens bana.

Denna asteroid identifierades inte som ett mål tidigare eftersom den är så extremt liten. 1999 VD57 uppskattas vara ca 700 m i diamanter och blir  den minsta asteroid i asteroidbältet som någonsin besöks av en rymdfarkost. Den är mycket mer lik i storlek de jordnära asteroider som besökts av de senaste NASA-uppdragen OSIRIS-REx och DART än till tidigare besökta asteroider i asteroidbältet. 

Lucy-teamet kommer att genomföra en serie manövrar i början av maj 2023 för att placera rymdfarkosten på en bana så den passerar cirka 450 km från asteroiden.

Lucys huvudutredare är baserade på Boulder, Colorado-filialen av Southwest Research Institute, med huvudkontor i San Antonio, Texas. NASA: s Goddard Space Flight Center i Greenbelt, Maryland, tillhandahåller övergripande uppdragshanteringen, systemteknik och säkerhet och uppdragsförsäkring. Lockheed Martin Space i Littleton, Coloradovar var de som byggde rymdfarkosten. Lucy är det 13: e uppdraget i NASA: s Discovery Program. NASA: s Marshall Space Flight Center i Huntsville, Alabama, hanterar Discovery-programmet för Science Mission Directorate vid NASA: s huvudkontor i Washington.

Bild vikipedia på den omloppsbana Lucys förbiflygning av asteroiden 1999 VD57 planeras göra den 1 november 2023.

fredag 10 februari 2023

Kan maskininlärning finna liv därute ”om nu det finns något liv därute”.

 


Maskininlärning (engelska: machine learning) är ett område inom artificiell intelligens inom datavetenskap. Det handlar om metoder för att med data "träna" datorer att upptäcka och "lära" sig regler för att lösa en uppgift utan att datorerna har programmerats med regler för uppgiften.

Då man funderar över sannolikheten av att upptäcka tekniskt avancerat utomjordiskt liv därute vilket försökts länge nu är frågan varför vi inget finner. En del ser det som att vi haft oturen att inte söka på rätt plats eller att vi sökt på fel plats.  

Nu har ny forskning publicerad i Nature Astronomy under ledning av en grundstudent vid University of Toronto, Peter Ma, tillsammans med forskare vid SETI Institute, Breakthrough Listen och vetenskapliga forskningsinstitutioner runt om i världen, tillämpat en djupinlärningsteknik på ett tidigare studerat dataset av näraliggande stjärnor och avslöjat åtta tidigare oidentifierade signaler som kan vara intressanta  att analysera.

"Totalt har vi sökt igenom 150 TB data från 820 närliggande stjärnor av ett dataset som 2017 sökts igenom  med klassisk teknik men som då konstaterades innehålla ointressanta signaler", säger Peter Ma och tillägger. Vi ökar nu denna sökinsats till 1 miljon stjärnor med hjälp av MeerKAT-teleskopet i Sydafrika

Vi tror att arbetet med MerrKat kommer att bidra till att påskynda möjligheten för svar i vårt försök att svara på frågan 'om vi är vi ensamma i universum?'"

Sökandet efter utomjordisk intelligens (som SETI) letar efter bevis på utomjordisk intelligens bortom jorden genom att försöka upptäcka teknosignaturer eller andra tecken på teknik från främmande civilisationer. Det vanligaste är att söka efter radiosignaler. Radiosignaler är ett utmärkt sätt att skicka information mellan stjärnorna; signalen passerar snabbt genom det damm och den gas som genomsyrar rymden  med ljusets hastighet. SETI-projektet använder antenner för att avlyssna alla radiosignalfrekvenser som utomjordingar kan antas ha sändning på.

I studien undersöktes data från Green Bank Telescope i West Virginia som en del av en Breakthrough Listen-kampanj som ursprungligen inte visat något av intresse. Målet var att tillämpa nya djupinlärningstekniker med hjälp av en klassisk sökalgoritm för att ge snabba och mer exakta resultat. Signalerna var på kortvågsbandet vilket betyder att de hade kort spektralbredd, i storleksordningen bara några Hz. Signaler orsakade av naturfenomen tenderar att ske på bredbandsfrekvenser.

Signalerna hade icke-noll drifthastigheter, vilket innebär att signalerna hade en lutning. Sådana lutningar kan indikera att en signals ursprung hade en viss relativ acceleration till våra mottagare, alltså inte lokalt är brus från radioobservatoriet.

Signalerna förekom i observationer av källan och inte i observationer utanför källan. Om en signal kommer från en specifik himmelsk källa visas den då teleskop riktas mot målet och försvinner när teleskopet riktas från källan. Mänsklig radiostörning uppträder vanligtvis i ON- och OFF- observationer på grund av att källan är i närheten.

Cherry Ng, en annan av Ma: s forskningsrådgivare och astronom vid både SETI-institutet och det franska nationella centret för vetenskaplig forskning, sa i ett uttalade: "Dessa resultat illustrerar dramatiskt kraften i att tillämpa moderna maskininlärnings- och datorvisionsmetoder inom astronomi som kan resultera i nya upptäckter och ge högre prestanda. Tillämpningen av dessa tekniker i stor skala kommer att vara omvälvande för radioteknosignaturvetenskapen."

Vi får se vad som finns därute. Kanske en överraskning kanske ingenting alls (min anm.).

Denna forskning är publicerad i Nature Astronomy och kan hittas här

Bilden från vikipedia visar hur djupinlärning är en underkategori av maskininlärning och hur maskininlärning är en underkategori av artificiell intelligens (AI).

torsdag 9 februari 2023

Ännu ett försök att finna utomjordingar

 


SETI (Search for Extraterrestrial Intelligence började man för 60 år sedan att leta efter radiosignaler från utomjordiska tekniskt kunniga civilisationer. Men inget av detta slag har hittats. I en nyskriven artikel som publicerat i  till The Astronomical Journal i november 2022 kvantifierar en forskare vid Swiss Federal Institute of Technology Lausanne  arbetet.

"Ett intressant resultat  studien är att den överbryggar klyftan mellan två populära men motsatta åsikter", säger Dr. Claudio Grimaldi, gästforskare vid Laboratoriet för statistisk biofysik vid Swiss Federal Institute of Technology Lausanne och författare till den nya studien, till Universe Today. Den ena åsikten är att tekniskt avancerade varelser genomsyrar vår galax och att vi om vi uthålligt fortsätter sökandet så småningom kommer att hitta dem, medan den andra hävdar att utomjordiskt tekniskt liv är så sällsynt att det kan betraktas som praktiskt taget obefintligt.

Dr Grimaldis  säger "Personligen, om jag var tvungen att välja, skulle jag föredra det första alternativet framför det andra. Det kan dock finnas en tredje mindre extrem möjlighet som även den bör övervägas. Denna säger att då vi började söka för bara cirka 60 år sedan utan framgång hittills är det möjligt att jorden inte  ligger i riktningen för radiosignaler sedan dess, även om andra regioner i galaxen kan fulla av signaler. Med andra ord kan det vara så att jorden i minst 60 år befunnit sig i en slags 'tyst bubbla'."

En plats och sökande i ett sökområde där inget finns att finna (min anm.).

Dr Grimaldis resultat ger statistiska bedömningar om när en radiosignal kan passera jorden och noterar en 95 % sannolikhet för att nästa radiosignal kommer att inträffa inom 100000 år, 50 % sannolikhet för att det sker inom mindre än 60 och högst 1 800 år och 20% sannolikhet för att en signal inträffar tidigast om 240 år.

"I scenariot" tyst bubbla "är väntetiden på  mindre än 60 år mycket optimistisk", enligt Dr. Grimaldi.

Själv anser jag det är som att leta efter en nål i en höstack. Chansen att finna en enstaka signal finns om det finns något därute som sänder en. Men finns det någon? Sänder någon mot oss och om så (vi finns i en isolerad del av Vintergatan) upptäcker vi den?

Bild vikimedia.

onsdag 8 februari 2023

I Universum finns Molekylmoln som återuppstår kontinuerligt

 


Astronomer har nyligen upptäckt stora moln bestående av molekylärt väte platser där  stjärnor uppstår. Dessa moln kan existera i tiotals miljoner år fastän enskilda molekyler ständigt förstörs och de därefter sätts ihop igen. Den nya forskningen ger en övergripande bild av hur stjärnor kommer till.

För att producera stjärnor behövs mycket stora moln av molekylär vätgas. De här molnen fungerar som reservoarer till stjärnbildning men genomgår även katastrofala kollapser. När detta sker blir dussintals eller till och med hundratals stjärnor som varit dolda i molnet synliga. Utvecklingen i dessa moln kan berätta om ett galaxens stjärnbildningshistoria.

Nya observationer visar att när nya stjärnor dyker upp i ett gigantiskt molekylrikt moln bildas  bubblor upp runt stjärnan som innehåller mindre väte än i omgivningen. Med den minskade densiteten av molekyler som omger nya stjärnor i dessa bubblor drabbas de återstående molekylerna i bubblorna av bombardemang från utifrån joniserad strålning vilket bryter  sönder det lilla molekylära vätet till ett joniserat tillstånd. Men det finns  observationer som visat att dessa jättemoln dock håller otroligt länge. Forskare frågar sig varför nybildade stjärnor sliter sönder molnen.

Ett team av forskare från Steward Observatory / University of Arizon använde sofistikerade datorsimuleringar för att  svara på frågan. De simulerade en del av en galax och undersökte beteendet hos molekylära moln  då stjärnor bildades. De fann att  deras datasimuleringar överensstämde med observationerna av att nya stjärnor lätt kan riva sönder ett molekylärt moln (och då bildas bubblor vars innehåll är av mindre densitet än omgivningens) . Men de hittade också en balanserande faktor. Stora molekylära moln suger ständigt till sig det  omgivande väte som råkar komma i dess väg i en galax. Denna ackumuleringsåtgärd fyller då på molnets lager av väte. 

Forskarna fann att enskilda molekylära moln kan existera i upp 100 miljoner år. Men varje enskild vätemolekyl kommer bara att finnas upp till fyra miljoner år inom molnet. Men för varje molekyl som avdunstar kommer en ny in i molnet så molnet förblir i balans. Så länge ett moln kan fortsätta samla in nytt väte för att ersätta det förlorade kommer det att existera.

Resultatet visar därför hur stora molekylära moln kan existera under lång tid. Detta fastän enskilda molekyler försvinner.

Det vore intressant att förstå varför och hur balansen i ett vätemoln kan bestå och varför det blir så? Även frågan om det egentligen finns en gräns för hur länge det kan existera om det kan fyllas på med väte utan gräns i tid?

Bild vikipedia, Inom ett par miljoner år kommer ljus från starka stjärnor ha kokat bort detta molekylmoln av gas och stoft. Molnet har knoppats av från Carinanebulosan. Nyligen bildade stjärnor är synliga i närheten. Bilden spänner över ungefär två ljusår.

tisdag 7 februari 2023

Fruset vatten upptäckt på asteroiden Chariklo

 


10199 Chariklo eller som den även kallas1997 CU26 är  en klass av asteroider som kallas kentaurer. Det innebär att dess omloppsbana finns mellan Saturnus och Uranus. Chariklo  är den störst kända kentauren. Dessa asteroider rör sig mellan dessa två planeter och gör intrång i bådas banor.

I oktober 2022 upptäckte James Webb Space Telescope) när Chariklo i sin bana, förmörkade en bakomliggande stjärna. En händelse som kallas en ockultation. Webb vände sig i samma riktning igen i slutet av oktober och tog ytterligare bilder på samma fenomen.

Vid analys av den data som då Webb samlat in  upptäckte r astronomer  tydliga tecken på vattenis på asteroiden. Resultatet kommer nu att vägleda astronomer till bättre förståelse av naturen och beteendet hos små objekt i de yttre av vårt solsystem. Även om Chariklo är en av de största asteroiderna därute är den likväl  för liten och för långt bort från oss för att  Webbteleskopet ska kunna fotografera dess yta direkt.

Istället kan astronomer studera Chariklo genom ockultation, vilket är en indirekt men kraftfull metod för att studera små kroppar som Chariklo. Men laget visste inte om och när en stjärna skulle vara i riktning mot asteroiden. Chariklo då dess bana är instabil och oförutsägbar.  Men när man åter upptäcker att så kommer att ske ska Webb avbryta sitt dåvarande program och riktas dit.  

"Ovan  var det första stjärnockultationsförsöket med Webb", skrev teamet i ett uttalande från NASA publicerat onsdag 25 januari. Mycket hårt arbete gick åt för  att identifiera och förfina förutsägelserna av denna ovanliga händelse.

Det var den 18 oktober 2022 första gången Webb tog bilderna på Chariklo och dess system som även består av två ringar då asteroiden  passerade en bakomliggande stjärna. Med hjälp av Webbs  infraröda kamera (NIRCam) övervakade astronomer stjärnans ljusstyrka under en timme. Datan visade två nedgångar i stjärnans ljusstyrka som förväntat: Asteroidens ringar dolde först stjärnan när förmörkelsen började och ringarna dolde åter stjärnan när den sista av dess ringar avslutade ockultationen.

Asteroiden Chariklo är 250 km i diameter och finns 3.2 miljarder km från oss. Vi vet inte mycket om denna asteroid. Tidigare forskning antydde dock att is av vatten fanns någonstans i Chariklos system.

I den senaste forskningen har det visat sig genom Webbs data att Chariklo och dess två ringar visar ett spektrum bestående av tre absorptionsband av vattenis vilket markerade den första tydliga indikationen av kristallin isstruktur.

Närvaron av kristallin is indikerar sannolikt att Chariklo utsätts för konstant bombardemang av högenergipartiklar, enligt Dean Hines, astronom vid Space Telescope Science Institute i Maryland. "Eftersom högenergipartiklar omvandlar is från kristallina till amorfa tillstånd, indikerar detektering av kristallin is att Chariklo-systemet upplever kontinuerliga mikrokollisioner som antingen exponerar orört material eller utlöser kristalliseringsprocesser", säger Hines till NASA i ett uttalande och tillägger att även om astronomer upptäckte de första tydliga tecknen på kristallin vattenis vet de ännu inte med säkerhet var i asteroiden isen finns.

 Under de kommande månaderna hoppas forskare kunna använda Webbs höga känslighet för att bättre förstå enskilda egenskaper hos Chariklo och dess två ringar, säger Pablo Santos-Sanz, astronom vid Instituto de Astrofísica de Andalucía i Spanien som var en av de som deltog i denna forskning, i ett uttalande.

"Vi hoppas få insikt i varför den här lilla asteroiden har ringar och kanske finns även svagare ringar att upptäcka här", enligt ett uttalande av Santos-Sanz.

Bild vikipedia 10199 Chariklo eller 1997 CU26 centaur (asteroid) vars omloppsbana är mellan Saturnus och Uranus. Det är den störst kända centauren.

måndag 6 februari 2023

Asteroiden Itokawa en mycket hård stenbumling

 


En stor mängd asteroider och kometer sveper omkring därute i rymden. En del med banor förhållandevis nära oss. . Om en av dessa kom i kollisionskurs med oss, skulle vi kanske kunna förhindra en kollision. Om vi sänder upp en laddning som exploderar på dess yta kanske dess kurs ändras  eller krossas den till småpartiklar. Förhoppningsvis  missar den Jorden och inte får en ännu mer hotfull kurs efter explosionen. 

Men det verkar finnas en typ av asteroid som är särskilt svår att förstöra eller påverka.

Asteroider är bitar av i många fall större sten smed ett våldsamt förflutet i vårt solsystem. I en ny studie som publicerades nyligen i Proceedings of the National Academy of Sciences beskrivs upptäckten att asteroider som kan antas vara rester av kollisioner mellan större stenbumlingar är  extremt motståndskraftiga hårda  asteroider och svåra att förstöra genom kollisioner och sprängningar. Arbetet med studien i detta ämne  gjordes av Fred Jourdan, professor, Curtin University och Nick Timms, docent, Curtin University.

I september 2022 genomfördes NASA: s DART-uppdrag (Double Asteroid Redirection Test) framgångsrikt asteroiden Dimorphos. Målet med detta uppdrag var att testa om vi kunde förändra en asteroids bana  genom att låta en  rymdfarkost krascha på dess yta. Experimentet  blev en framgång.

Liksom andra nyligen genomförda asteroiduppdrag av Japan Aerospace Exploration Agency (JAXA) med besök på asteroiderna Itokawa och Ryugu, och av NASA med besök vid  asteroiden Bennu har närbilder visat att Dimorphos (ovan) är en av dessa asteroidspillror. Ovan uppdrag visade att asteroider som är spillror av krascher har låg densitet  de är porösa. De är de krossade bitarna av monolitiska asteroider, är relativt små och därmed svåra att upptäcka från jorden.

Därför utgör sådana asteroider ett stort hot mot jorden om de kommer på kollisionskurs med oss. Monoliter  är asteroider i form av en solid bit sten det man vanligtvis har i åtanke när man tänker på asteroider. De har en diameter på cirka 1 kilometer och har förutspåtts ha en livslängd på bara några hundra miljoner år i asteroidbältet (vilket finns mellan Mars och Jupiter). Detta är inte alls lång tid med tanke på vårt solsystems ålder. Den andra typen är asteroider är spillror från krascher. Dessa består helt av en massa av fragment som kastas ut under fullständig eller partiell förstörelse av existerande monolitiska asteroider vilka kraschat.

År 2010 återvände rymdfarkosten Hayabusa designad av JAXA efter besök på den 535 meter diameter stora jordnötsformade asteroiden Itokawa. Sonden förde med sig mer än tusen partiklar av stenar i storlek av mindre än ett sandkorn. Det var de första provet någonsin som tagits  av en asteroid.

Tidiga resultat från teamet på JAXA där de returnerade proverna analyserades visade att Itokawa var en rest efterprodukt efter en  fullständig förstörelse av en asteroid som varit minst 20 km stor i diameter.

I den nya studien beskrivs analyse av flera dammpartiklar som returnerats från asteroiden Itokawa med hjälp av två tekniker. I den ena tekniken avfyras en elektronstråle mot dammpartikeln och detekterar då de  elektroner som sprids. Det visar om en sten har chockats av någon krasch med något i det förflutna.

Den andra tekniken kallas argon-argon-datering och då  används en laserstråle för att mäta hur mycket radioaktivt sönderfall som skett i en kristall. Det ger åldern för ett sådant nedslag.

Resultaten visade att den enorma påverkan som en gång förstörde Itokawas moderasteroid och bildade Itokawa hände för mer än 4,2 miljarder år sedan, vilket är nästan lika länge sedan som vårt solsystems ålder.

Det resultatet var helt oväntat. Det innebär att Itokawa är mycket gammal.

En sådan förvånansvärt lång överlevnadstid för en asteroid tillskrivs dess chockabsorberande natur. På grund av att det är en spillra av en tidigare asteroid  är Itokawa till cirka 40 procent porös. Med andra ord är nästan hälften av den bestående av tomrum.

Detta resultat indikerar att asteroider som är spillror av tidigare stora kompakta asteroider är mycket rikligare i asteroidbältet än vi trodde. När de väl bildas verkar de vara mycket motståndskraftiga över tid.

Denna information är avgörande för vidare arbete för att  förhindra eventuella asteroidkollisioner med jorden. Medan DART-uppdraget lyckades med att förändra  omloppsbanan för asteroiden (den kompakta Dimorphos)  genom att krascha på dess yta och då knuffa till den är överföringen av kinetisk energi mellan en liten rymdfarkost och en grushögs- asteroid mycket liten. Det betyder att dessa är  motståndskraftigare mot att falla sönder om de påverkas av en krasch.

Därför, om det fanns ett överhängande och oförutsett hot mot jorden i form av en inkommande asteroid, skulle vi vilja ha ett mer aggressivt tillvägagångssätt. Till exempel kan vi behöva använda chockvågen från en kärnsprängning eftersom stora explosioner skulle kunna överföra mycket mer kinetisk energi till en naturligt dämpande grushögsasteroid och därmed kanske knuffa den till en ny bana.

Bild från vikipedia på Itokawa tagen av rymdfarkosten  Hayabusa