Google

Translate blog

Visar inlägg med etikett sökning. Visa alla inlägg
Visar inlägg med etikett sökning. Visa alla inlägg

fredag 10 februari 2023

Kan maskininlärning finna liv därute ”om nu det finns något liv därute”.

 


Maskininlärning (engelska: machine learning) är ett område inom artificiell intelligens inom datavetenskap. Det handlar om metoder för att med data "träna" datorer att upptäcka och "lära" sig regler för att lösa en uppgift utan att datorerna har programmerats med regler för uppgiften.

Då man funderar över sannolikheten av att upptäcka tekniskt avancerat utomjordiskt liv därute vilket försökts länge nu är frågan varför vi inget finner. En del ser det som att vi haft oturen att inte söka på rätt plats eller att vi sökt på fel plats.  

Nu har ny forskning publicerad i Nature Astronomy under ledning av en grundstudent vid University of Toronto, Peter Ma, tillsammans med forskare vid SETI Institute, Breakthrough Listen och vetenskapliga forskningsinstitutioner runt om i världen, tillämpat en djupinlärningsteknik på ett tidigare studerat dataset av näraliggande stjärnor och avslöjat åtta tidigare oidentifierade signaler som kan vara intressanta  att analysera.

"Totalt har vi sökt igenom 150 TB data från 820 närliggande stjärnor av ett dataset som 2017 sökts igenom  med klassisk teknik men som då konstaterades innehålla ointressanta signaler", säger Peter Ma och tillägger. Vi ökar nu denna sökinsats till 1 miljon stjärnor med hjälp av MeerKAT-teleskopet i Sydafrika

Vi tror att arbetet med MerrKat kommer att bidra till att påskynda möjligheten för svar i vårt försök att svara på frågan 'om vi är vi ensamma i universum?'"

Sökandet efter utomjordisk intelligens (som SETI) letar efter bevis på utomjordisk intelligens bortom jorden genom att försöka upptäcka teknosignaturer eller andra tecken på teknik från främmande civilisationer. Det vanligaste är att söka efter radiosignaler. Radiosignaler är ett utmärkt sätt att skicka information mellan stjärnorna; signalen passerar snabbt genom det damm och den gas som genomsyrar rymden  med ljusets hastighet. SETI-projektet använder antenner för att avlyssna alla radiosignalfrekvenser som utomjordingar kan antas ha sändning på.

I studien undersöktes data från Green Bank Telescope i West Virginia som en del av en Breakthrough Listen-kampanj som ursprungligen inte visat något av intresse. Målet var att tillämpa nya djupinlärningstekniker med hjälp av en klassisk sökalgoritm för att ge snabba och mer exakta resultat. Signalerna var på kortvågsbandet vilket betyder att de hade kort spektralbredd, i storleksordningen bara några Hz. Signaler orsakade av naturfenomen tenderar att ske på bredbandsfrekvenser.

Signalerna hade icke-noll drifthastigheter, vilket innebär att signalerna hade en lutning. Sådana lutningar kan indikera att en signals ursprung hade en viss relativ acceleration till våra mottagare, alltså inte lokalt är brus från radioobservatoriet.

Signalerna förekom i observationer av källan och inte i observationer utanför källan. Om en signal kommer från en specifik himmelsk källa visas den då teleskop riktas mot målet och försvinner när teleskopet riktas från källan. Mänsklig radiostörning uppträder vanligtvis i ON- och OFF- observationer på grund av att källan är i närheten.

Cherry Ng, en annan av Ma: s forskningsrådgivare och astronom vid både SETI-institutet och det franska nationella centret för vetenskaplig forskning, sa i ett uttalade: "Dessa resultat illustrerar dramatiskt kraften i att tillämpa moderna maskininlärnings- och datorvisionsmetoder inom astronomi som kan resultera i nya upptäckter och ge högre prestanda. Tillämpningen av dessa tekniker i stor skala kommer att vara omvälvande för radioteknosignaturvetenskapen."

Vi får se vad som finns därute. Kanske en överraskning kanske ingenting alls (min anm.).

Denna forskning är publicerad i Nature Astronomy och kan hittas här

Bilden från vikipedia visar hur djupinlärning är en underkategori av maskininlärning och hur maskininlärning är en underkategori av artificiell intelligens (AI).

onsdag 26 oktober 2022

Ett nytt arbetssätt i sökande efter mörk materia.

 


Mörk materia antas vara fem gånger vanligare än vanlig materia och anses vara cirka 85% av universums totala massa och ungefär en fjärdedel (26,8%) av universums totala massa om man även tar med energi och mörk energi, (själv anser jag att mörk materia är ett tillstånd av vanlig materia som vi ännu inte förstår, men det innebär inte att jag inte kan beskriva motsatta synpunkter i min blogg. Alla får anse som de vill (min anm.).

Vi kan inte upptäcka dessa svårfångade partiklar (i beprövad forskningsmetodik) som ingår i mörk materia direkt då mörk materia inte avger något ljus med kraftfulla instrument som Hubble Space Telescope eller NASA: s kommande NancyGrace Roman Space Telescope (ROMAN) för att bevittna dess inflytande på galaxer och andra avlägsna stjärnkluster. (Så det är effekter av något okänt som gett idén om mörk materia. Men varför inte det istället ses som mörk energi okänd form av energi är en gåta).

Enligt en ny studie ledd av forskare vid Ohio State University kan nya radarsystem från Jorden (istället för teleskop därute) nu användas vilket underlättar sökandet.

John Beacom, medförfattare till studien är professor i fysik och astronomi vid Ohio State, säger att medan forskare vanligtvis bara letar efter små partiklar av mörk materia med liten massa är målet med den nya forskningen att förbättra sökningen genom att även söka efter makroskopisk mörk materia (större synlig mörk materia): partiklar med en stor massa som inte nås av nuvarande markdetektorer. "En av anledningarna till att mörk materia är så svår att upptäcka kan vara att partiklarna kan vara mycket massiva", säger Beacom. "Om massan av mörk materia är liten är partiklarna vanliga men om massan är stor är partiklarna sällsynta."

En ny idé jag aldrig hört tidigare (.min anm.)

Även om dessa partiklar inte kan beröras eller ses kan mörk materia uppfattas genom dess gravitationseffekter på andra himmelska fenomen som stjärnor eller svarta hål.

Även om dess effekter på andra naturliga system inte är lätta att kategorisera och tar tid att lära sig mer om gör mörk materia att nya vägar öppnas för forskare att förstå kosmos storlek, form och framtid, sa Beacom. Sådana detektioner kan också avslöja massan av de mörka partiklarna som beroende av deras storlek, kan ha enorma effekter på galaxers bildning och struktur.

Den nya forskningen är publicerad på preprint-servern med öppen åtkomst för intresserade, arXiv.org

Det som är nytt i forskningen i sökandet efter mörk materia är att forskare denna gång använde samma teknik som används för att spåra meteorer när de sveper över skyn. När meteoriter passerar genom jordens atmosfär berörs både dessa och partiklar av mörk materia joniseringsavlagringar - en form av strålning som lämnar efter sig fria elektroner (atomer som kan leda elektricitet). Elektromagnetiska vågor som frigörs av radar studsar av effekten av de fria elektronerna och signalerar närvaron av materia som sedan kan användas för att skilja ut mörk materia från meteoriters vanliga materia. På så sätt kan Jordens atmosfär omvandlas till en effektiv, storskalig partikeldetektor.

Även om forskare har använt denna metod vid meteorjakt i årtionden, säger Beacom att han var förvånad över att ingen någonsin hade tillämpat detta system i tidigare insamlad data i sökandet efter mörk materia.

En av studiens viktigaste slutsatser är hur teamets nya metod skulle kunna komplettera andra kosmologiska sökningar efter mörk materia eftersom deras system erbjuder en nivå av noggrannhet och känslighet som många andra teknikslag saknar.

"Nuvarande kosmologitekniker är ganska känsliga, men de har inget sätt att kontrollera sitt eget resultat", sa Beacom. "Det här är en helt ny teknik så om forskare är osäkra på vad de har upptäckt kan en signal kontrolleras i detalj med radarteknik."

Medförfattare i studien var Pawan Dhakal, Steven Prohira och Christopher Cappiello från Ohio State, samt Scott Palo och John Marino från University of Colorado Boulder.

Bild vikipedia en sammansatt bild av galaxhopen CL0024+17 tagen av rymdteleskopet Hubble som visar skapandet av en gravitationslinseffekt. Det antas att denna effekt till stor del beror på gravitationsinteraktionen med mörk materia.

torsdag 19 maj 2022

Sökning efter Dyson-sfärer (avancerade civilisationers energianvändning) fortsätter.

 


En Dyson-sfär är en i teorin en megastruktur som omfattar en stjärna vilkens energi fångas in av en civilisation i användningssyfte. Konceptet är ett tankeexperiment som försöker förklara hur en rymdfarande civilisation skulle få sina energibehov tillfredsställda när dessa behov överstiger vad som kan produceras utifrån hemplanetens resurser. Eftersom bara en liten bråkdel av en stjärnas energiutsläpp når ytan på en planet skulle byggnadsstrukturer runt en stjärna för att fånga upp solenergin göra det möjligt för en civilisation att få mycket mer energi. 

Sökande efter Dyson-sfärer i form av ringar eller svärmar är fortfarande något astronomer letar efter. Om det finns några DSR (Dyson-sfärer) kommer de så småningom att hittas och personen eller forskargruppen som finner den kommer att gå till historien som de eller den som gjort en av de mest betydelsefulla upptäckterna i mänsklighetens historia (kanske även nobelpriset hägrar då).

Bäst verkar det enligt teorin vara att söka efter detta vid vita dvärgstjärnor. Detta åtminstone i en teori som läggs fram i en ny artikel i månatliga meddelanden från Royal Astronomical Society (2022). DoI: 10.1093/mnras/stac1113  av Benjamin Zuckerman, en nu pensionerad professor i astrofysik vid UCLA (University of California).

 Zuckermans teori fokuserar på scanning av vita dvärgar i sökande efter avvikande infraröda signaturer som kan indikera på en konstgjord konstruktion som omger dem. Valet av vita dvärgar beror på att de förutom att vara vanliga är i sluttillståndet för stjärnor som vår sol. Vår sol blir en gång även den en vit dvärg.

Livscykeln för en sol som vår blir då bränslet sinar att först expandera till en röd jätte vilken slukar de planeter som finns i dess expansionsväg för att sedan skrumpna ihop till en vit dvärg av mycket stor massa. Därefter kommer den under några miljarder år i detta stadium att svalna och sluta som en svart dvärg (detta enligt teorin ännu har inga svarta dvärgar upptäckts men kanske universum är för ungt ännu för att någon vit dvärg ska ha uppnått denna fas (min anm.)).

Vita dvärgar avger termisk strålning upp till nära 2000 C som potentiellt kan absorberas och användas för att driva en DSR. Men som Dr. Zuckerman påpekar, skulle det solsystems civilisation som använder detta behöva ha utvecklat en teknisk civilisation innan något sådant objekt byggs runt den eftersom en civilisation som kan skapa en DSR förmodligen inte är intresserad av att bygga en runt någon annan vit dvärg än den de kommer från utifrån avståndet att hämta energi. Själv förstår jag inte var denna civilisation ska finnas under tiden deras sol expanderar till en röd jätte (min anm.).

Zuckermans tidigare arbete pekar på möjligheten att om det finns tekniskt avancerade civilisationer i Vintergatan, skulle åtminstone några av dem ha upplevt att deras sol blivit en vit dvärg. Om de efter denna katastrofala händelse byggt en DSR runt sin nu stabilare stjärna borde vi kunna se detta med hjälp av våra nya infraröda teleskop. Hur som helst är mer avancerade infraröda teleskop, som James Webbs teleskop snart är igång fullt ut och då blir möjligheten att finna dem om de finns större.

Men jag tvivlar på dess existens åtminstone utifrån ovan teori. Om vi finns när vår sol blir en röd jätte och det oberoende av hur avancerad vår teknik då är skulle vi utplånas om vi då stannade kvar på Jorden. Tiden är även miljarder  av år mellan expansionen till röd jätte och krympningen till vit dvärgstjärna. Jag kan inte se att resonemanget håller. Annat hade det varit om en civilisation av oerhört teknisk avancerad kunskap byggde upp en Dyson sfär runt en närliggande vit dvärg och använde denna energi. Alternativt lyckades tämja energin runt sin sol av slaget gul stjärna som vår sol.(mina funderingar).

Bild vikipedia 3D-rendering av en Dyson-sfär med stora, kretsande paneler.

tisdag 22 februari 2022

Scanning av Vintergatan för sökande efter intelligent liv. Resultat hittills radiotystnad.

 


Mänskligheten fortsätter sökandet efter utomjordisk intelligens (SETI) i en eller annan form. Något vi gjort sedan strax efter radiovågornas  användande i början av 1900-talet. Insatserna och kostnaderna har skiftat under årtiondena men sökandet har aldrig helt avstannat.

Sökningarna har emellanåt resulterat i svårförklarliga radiovågor men inga som gett tillförlitliga bevis på att de inte kommer från naturliga källor. Nu har en ny sökning efter teknosignaturer i Vintergatans centrala delar publicerats men även denna visar tystnad. Om vi någonsin upptäcker eller kommer i kontakt med en annan civilisation blir det ett nästan mytiskt ögonblick för människan. Människor skulle ganska snabbt dela upp sig i olika läger och ideologier och argumentera för vad som nu måste göras.

Det troliga är att det liv vi eventuellt upptäcker troligen kommer att vara encelliga liv någonstans i vårt eget solsystem. Möjligen innehåller någon av solsystemets månar bakterier i sina underjordiska hav.

I en ny artikel med titeln "A Search for Technosignatures towards the Galactic Centre at 150 MHz" en fjärde i en serie av artiklar beskrivs en sökning efter lågfrekventa radiovågor med hjälp av Murchison Widefield Array (MWA) i Australien. Huvudförfattare är Chenoa Tremblay vid Commonwealth Scientific and Industrial Research Organisation (CSIRO.) Den nya artikeln finns nu på arxiv.org.

Resultaten i artikeln kommer från sju timmars observationer under två nätter med MWA. Sökandet riktades då mot det galaktiska centret i vintergatan benämnt Skytten A*, (det supermassiva svarta hålet vid vår galax kärna). Sökningen här riktade in sig på sökning efter teknosignaturer hos 144 exoplaneter. Radiosignalsökning är nämligen fortfarande grunden i SETI:s arbete. Det beror delvis på att radiosignaler är det vi anser vara en tidig indikator på en tekniskt kunnig intelligens. Förmågan att producera radiovågor och använda dessa för sändning och mottagning bör som hos oss komma i en relativt tidig fas i en påbörjad  avancerad tekniskt sinnad livsforms utveckling.

 Det gjorde så för mänskligheten. Författarna skriver, "Förekomsten av både kraftfulla sändare och känsliga mottagare vid låga frekvenser - som båda uppstod tidigt i radioteknikens historia - motiverar lågfrekventa technosignatursökningar genom att tillhandahålla en exempelklass av konstruerade signaler och att söka efter dessa  sändare."

Jag tvivlar starkt (min anm.). Tvivlar på att vi vid sökning efter intelligent liv därute ska söka enbart efter detta utifrån mänsklighetens förförståelse av teknisk utveckling eller förförståelse av intelligens och civilisation. Det vi söker efter kan eventuellt finnas eller inte alls. Men om livsformer finns därute och då i en fas som gör dem upptäcktsbara och genom sin  tekniks utveckling upptäcktsbara (om de inte har teknik för att dölja denna för utomstående)  enligt jordens vetenskapsmän och kvinnors agenda är tveksamt. 

Den möjligheten är mycket mindre än att överhuvudtaget finna liv därute. Det vi söker utefter är en enkel metod att söka utefter radiosignalspårning. Men knappast den enda möjliga däremot kanske den billigaste. Men vi skulle mer söka utifrån vår fantasi eller med hjälp av AI (artificiell intelligens). Fantasi, brainstorming eller vad som helst vi kan komma på i sökväg om vi ska öka möjligheten att finna det som kanske finns därute om nu det finns något att finna. Kanske det bara finns tystnad därute.

Bild från vikipedia in mot mitten av Vintergatan och där området där det svarta hålet benämns Sagittarius A

lördag 29 januari 2022

Kraftansamling i sökandet efter vad mörk materia är

 


Ett internationellt forskarlag med deltagande från PRISMA+ Cluster of Excellence vid Johannes Gutenberg University Mainz (JGU) och Helmholtz Institute Mainz (HIM) har nu för första gången publicerat omfattande data om sökandet efter mörk materia med hjälp av ett världsomspännande nätverk av optiska magnetometrar. Enligt forskarna bör mörka materiafält producera ett karakteristiskt signalmönster som bör kunna detekteras genom korrelerade mätningar från flera stationer samtidigt i det så kallade GNOME-nätverket.

I analys av datainsamlingen från en månads kontinuerlig GNOME - mätning har ännu visat något resultat som tyder på egenskapen hos mörk materia. Mätningen gör det dock möjligt att formulera begränsningar för egenskaperna hos mörk materia vilket forskarna rapporterar om i tidskriften Nature Physics.

Man kan därmed utesluta vissa av de teorier man utgått från  och pröva nya sätt att arbeta efter i sökandet. Ibland undrar jag om man är så säker på att denna materia finns att man inte ger sig innan man finner något slags bevis för dess existens även om det kan vara så att den inte finns (min anm.) Det blir en självuppfyllande profetia.

 

GNOME står för Global Network of Optical Magnetometers for Exotic Physics Searches. Bakom detta projekt finns magnetometrar spridda över hela världen i Tyskland, Serbien, Polen, Israel, Sydkorea, Kina, Australien och USA.

 

Med GNOME vill forskarna föra sökandet efter mörk materia vidare. När allt kommer omkring har det länge varit känt att många förbryllande astronomiska observationer, såsom rotationshastigheten hos stjärnor i galaxerna eller spektrumet av kosmisk bakgrundsstrålning bäst kan förklaras av något som kallas mörk materia.

 

" Extremt lätta bosoniska partiklar anses vara en av de mest lovande kandidaterna för mörk materiaförklaringen numera. Dessa inkluderar så kallade axionliknande partiklar - ALPs," säger professor Dr. Dmitry Budker, professor vid PRISMA+ och vid HONOM vilket är ett institutionellt samarbete mellan Johannes Gutenberg University Mainz och GSI Helmholtzzentrum fur Schwerionenforschung i Darmstadt.

 

– Den kan också betraktas som ett klassiskt fält som oscillerar med en viss frekvens. En egenhet hos sådana bosoniska fält (något som hör hemma i strängteorin en teori jag kan anse som förklaring på allt som finns (min anm.))  är att - enligt ett möjligt teoretiskt scenario - dessa kan bilda mönster och strukturer. Som ett resultat kan densiteten av mörk materia koncentreras till många olika regioner - diskreta domänväggar mindre än en galax men likväl mycket stora.

Själv är jag skeptisk till mörk materia (min anm.) jag tror att det vi ser eller tycker oss se är vanlig materia i en form vi ännu ej förstår och kanske inte söker förklaring på utan istället koncentrerar oss på mystik som den gäckande mörka materian.

Bild maxpixsell.net

tisdag 5 oktober 2021

Att söka efter liv därute i rymden innebär gränslöshet.

 


Avi Loeb är bland annat tidigare ordförande (2011-2020) för astronomiavdelningen vid Harvard University och grundare av Harvard's Black Hole Initiative och utöver det chef för Institute for Theory and Computation vid Harvard-Smithsonian Center for Astrophysics.

Med hans egna ord nämner han denna händelse.  ”I mitt förstaårsseminarium på Harvard förra terminen nämnde jag att den närmaste stjärnan till solen, Proxima Centauri, avger mestadels infraröd strålning och har en planet, Proxima b, i den beboeliga zonen. Som en utmaning för eleverna frågade jag: "Anta att det finns varelser som kryper på ytan av Proxima b, hur skulle deras ögon då se ut för att kunna se i infrarött sken?"

Den snabbast svarande eleven i klassen svarade inom några sekunder mantisräkorna då dessa har infraröd syn. Dessa räkors ögon ser ut som två pingisbollar kopplade med sladdar mot huvudet. "De ser ut som en utomjording", viskade hon.

Ett bra svar och möjligt som ögon för utomjordingar med en hemplanet där solen sänder infraröd strålning som ljuskälla.

Även om ytorna på planeter och asteroider kan utforskas på distans efter biologiska signaturer kan utomjordiskt liv dock vara mest rikligt under ytan. Beboeliga förhållanden kan finnas i haven om de finns eller under isiga ytor där hav kan finnas på djupet. Det är inte bara under isen på månar som Saturnus Enceladus eller Jupiters Europa detta kan finnas utan även under tjocka islager, på fritt flytande objekt i den interstellära rymden (mellan stjärnsystemen eller mellan galaxerna).

Bild från vikipedia på den ovan nämnda räksorten.

lördag 6 februari 2021

Spelteorin kan användas enligt vissa i sökande efter liv därute

 


I  ny forskning från University of Manchester föreslås att man använder en strategi kopplad till  "spelteori" för att maximera möjligheten  att hitta intelligent utomjordiskt liv därute.

I arbetet ställde man frågan om det finns avancerade utomjordiska civilisationer i vår galax och om dessa försöker kommunicera med oss. Vad är då det bästa sättet att hitta dem? Detta är den stora utmaningen för astronomer som deltar i sökandet efter utomjordisk intelligens i programmet (SETI). I en ny artikel publicerad i The Astronomical Journal av Jodrell Bank astrofysiker och Dr Eamonn Kerins föreslås en ny strategi baserad på spelteorin för att hitta dem om de finns och söker kontakt.

I SETI-programmet används ett av två tillvägagångssätt. Ett är att genomföra en undersökning som sveper över stora delar av skyn i hopp om att upptäcka en signal som låter konstlad från någonstans. Detta tillvägagångssätt ger snabbt enorma mängder data som kan vara mycket svåra att söka igenom under rimlig tid (vi talar om många år och då ska signalen komma just under denna svepningstid över skyn).

Ett alternativt tillvägagångssätt är riktade mål där SETI - sökningen fokuserar mer på specifika stjärnsystem liknande vårt solsystem (vår sol). Detta söksätt ger mer omfattande data om ett enskilt system men ingen garanti för att just det solsystem vi avsöker har planeter där tekniskt avancerat liv finns som söker kontakt.

Det finns en fråga som kvarstår. Bör man lyssna efter en signal från eventuellt existerande aliens eller istället skicka en signal som de kan upptäcka (fast en signal går enbart i ljusets hastighet så det är inte många solsystem vi hinner sända fram till och få svar från under ett människoliv).

 Vissa forskare, som den framlidne professor Stephen Hawking har varnat för att skicka signaler till civilisationer som kan ha stor teknisk överlägsenhet över oss (och kanske inte är fredliga eller förstår varför vi skulle ha existensberättigande på en livsduglig planet de själva skulle behöva).

Andra har noterat att om varje civilisation har samma rädsla så kommer det inte att finnas någon signal för någon att upptäcka. Detta kallas den så kallade SETI Paradoxen. Jag (min anm.) tänker då på att om någon därute söker kontakt är de mycket tekniskt långt gångna och har kanske en baktanke med sina kontaktförsök. Kolonisation. 

Men självfallet kan det även finnas naiva civilisationer som söker kontakt vilka levt lång tid i frid och inte tänker på konkurrens eller strid och ondska utan söker kontakt av nyfikenhet. Det kan även finnas så tekniskt avancerade varelser därute att de kan kontrollera allt och inget har att oroa sig för. Allt är möjligt i ett obegränsat universum. Ska vi då leta vidare? Ja jag anser det människan är nyfiken. Men om vi ska visa att vi finns för en eventuellt misstänkt bebodd planet därute får inte ske utan begrundande. Ingen vet heller om en civilisation därute har andra och snabbare resesätt än vi har. De kanske använder ex maskhål. Resa teoretiskt bara några meter men förflyttas miljarder ljusår. En teori många forskare anser är möjlig.

Bild från vikipedia med texten Spelteori kan bland annat användas för att analysera poker.

onsdag 11 november 2020

Ny teori visar att vi i undersökandet av en exoplanet skulle kunna se mörk materia på denna

 


Den mörka materian antas stå för 80% av all materia i universum och är osynlig och enbart detekterbara genom den svaga gravitationskraft på omgivningen (om det nu är okänd materia som ger denna effekt).

I en ny studie visas att mörk materia kanske kan upptäckas på exoplaneter som kretsar kring avlägsna solar närma galaxens centrum.

I studien diskuteras att i vissa situationer kan mörk materia samla sig i kärnan av ett massivt objekt i detta fall en exoplanet och där som effekt frigöra energi i form av värme. Nu hoppas  astronomer i ett nytt forskningsprogram att söka efter denna mörka materias effekt.

Mörk materias historia gå tillbaks till 1970-talet då astronom Vera Rubin såg något märkligt i galaxers roterande. Rubin fann att stjärnor kretsade runt i vintergatan alldeles för snabbt med tanke på hur mycket synlig materia det fanns. Hon kom då fram till att om du lägger upp gravitationsdragningen av allt vi kan se i en galax och sedan observerar rotationshastigheten i galaxen borde dessa slitits itu för miljarder år sedan. Men då detta inte skett måste någon okänd form av materia finnas som ger en sammanhållande effekt.

Min uppfattning (min anm.) är att om det finns mörk materia finns det mörk energi. Men jag tror att det som vi ser är en effekt av vanlig materia och energi som vi ännu inte förstår.  

Under årtiondena sedan Rubins upptäckt har fler mysterier hopat sig. Gasen inuti galaxhopar är för het för kända processer från materia och energi. Galaxer rör sig för fort. Universum har för många storskaliga strukturer med tanke på universums ålder. Strålning från det tidiga universum är för ojämnt fördelad för att kunna förklaras av materia ensamt Kanske (min anm.) vi skulle lägga mer energi i att förstå detta som effekt av gravitation.  Ljuset från avlägsna bakgrundsgalaxers kurvor är för starkt när de passerar nära massiva galaxhopar för att förklaras med den kunskap vi har i dag om materia och energi.

Baserat på datorsimuleringar av gigantiska kluster av galaxer med beräkning av mörk materias existens förväntar vi oss att den finns mer in  mot centrum i galaxer och i allmänhet tunnare längre ut  från dessa centra. Och att det är dessa skillnader i mörk materias densitet i en galax som kan hjälpa astronomer identifiera detta mystiska ämnes effekt på en exoplanet. Mörk materia är utspridd genom hela Vintergatan. Exoplaneter har vi hittat tusentals av i omloppsbana runt avlägsna solar. Flertalet av Kepler Space Telescope och Transiting Exoplanet Survey Satellite (TESS).

 

Faktum är att de tusentals bekräftade exoplaneter som hittills hittats bara utgör en liten andel av alla möjliga världar. Bara i Vintergatan varierar uppskattningarna av det verkliga antalet exoplaneter från det extrema antalet av 300 miljarder till 1 biljon.

Ibland antas mörk materia och vanlig materia interagera vilket gör att den mörka materian för över en del av sin energi till den normala materian vilket saktar ner dess rörelse på grund av den  mörka materian i processen. Dessa interaktioner är särskilt vanliga när två saker händer: det finns en stor tät koncentration av normal materia som fungerar som en gravitationsfälla för mörk materia och det finns massor av mörk materia som flyter runt.

Dessa två kriterier skulle kunna uppfyllas på exoplaneter nära Vintergatans centrum. Den mörka materians densitet i dessa områden är mycket högre än den är runt solsystemet och stora planeter (Jupiter-storlek och uppåt) och kan samla mörk materia partiklar i sina kärnor. Den skulle göra detta genom sin gravitation. I högdensitetsmiljöer kan den normala materian dra den mörka materian till sitt centrum.

 

Dessa interaktioner skulle inte bara sakta ner den mörka materians rörelse det skulle även värma upp planeten. Mörk materia anses även interagera med sig självt i vissa fall och förintas i en kort blixt av energi. Denna energi skulle vara för svag för att se direkt men under loppet av miljarder år skulle dessa ihållande blixtar från otaliga interaktioner kunna bidra med till en extra källa av värme till planeten.

 

Slutresultatet blir då enligt forskningen att planeter närmare centrum av galaxen kan uppleva en betydande mängd uppvärmning från mörk materia vilket får temperaturen att stiga med tusentals grader.

 

För att testa denna teori måste vi ta temperaturerna på många exoplaneter. Det blir ett av de uppdrag som James Webb Space Telescope (JWST) är inställd för att klara av då  detta kommer upp i rymden i oktober 2021.

 

Forskarna noterade att JWST har precis tillräcklig känslighet (att både registrera temperaturer på exoplaneter och i sökandet tillräckligt nära det galaktiska centrumet) för att finna om denna effekt av mörk materia är verklig. Om så bör vi kunna se en distinkt och märkbar uppvärmning av planeter ju närmare de är till det galaktiska centrumet i en galax.

Bild från pixabuy.com. Tycker det fascinerande att se på bilder som är vad vi idag anser är fantasiplatser därute.

måndag 29 juni 2020

Den 4000:e kometen har upptäckts


Den 15 juni 2020 upptäcktes en aldrig tidigare sedd komet i data från Solar and Heliospheric Observatory (SOHO) . Det var den 4 000: e kometupptäckten. Kometen har fått namnet SOHO-4000 i väntan på den officiella beteckningen från Minor Planet Center.

Som de flesta andra SOHO-upptäckta kometer är även SOHO-4000 en del av Kreutz-gruppen. Kometgruppen Kreutz följer alla samma allmänna bana de går nära solens yttre atmosfär när de rundar denna. SOHO-4000 är en av de små i gruppen med en diameter av endast ca 4-15 meter i diameter och den var extremt svagt lysande och nära solen när den upptäcktes - vilket innebär att SOHO är det enda observatoriet som har upptäckt kometen eftersom kometen var omöjlig att se från jorden med eller utan teleskop.

SOHO är ett gemensamt uppdrag för Europeiska rymdorganisationen (ESA) och NASA. SOHO startades 1995 och studerar solen från dess inre till sin yttre atmosfär, med en oavbruten utsikt mellan solen och jorden ungefär en miljon mil däremellan. Men under de senaste två och ett halvt decennium har SOHO också blivit den största komet-sökaren i mänsklig historia.

Bilden är från vikipedia och visar en målning från 1843 års komet C/1843 D1 över Tasmanien en berömd medlem av Kreutz-gruppen målad av den engelsk-australiska konstnären Mary Morton Allport.

lördag 11 april 2020

Det finns ett invecklat globalt kommunikationsnätverk dolt här på jorden


Ett kommunikationsverktyg vi först bör lära oss använda innan vi söker konstruktivt efter utomjordiskt liv används i dag inte. I första hand används radiokommunikation.


Är människor egentligen redo att ta en första kontakt med andra intelligenta varelser? Är vår teknik sofistikerad nog att upptäcka kommunikationssignaler från en annan värld? Ett språk är det den österrikiske etologen Karl von Frisch låste upp i början av 1900-talet binas beteende för att visa avstånd till blommor är ett språk vi inte ens tänkt som möjligt att använda i sökandet efter utomjordiskt liv.  Likande system har myror.

 Tyson är en forskare inom området och för att läsa mer om och utförligare om området följ denna länk.


 Kinas Femhundra meter Aperture sfäriska Telescope, (FAST) är det största radioteleskopet på jorden och kan upptäcka radiovågor över hela universum.  "Det symboliska språket för vetenskapsmannen, matematikern och ingenjören är svårt och man måste undvika de saker som går förlorade i översättning från en kultur till en annan”, Tyson säger att denna typ av språk är mer exakt och mindre öppen för feltolkning. Om vi hittar utomjordiskt intelligent liv kommer vi kanske att kommunicera med dem på ett språk som liknar ett datorprogrammeringsspråk, byggt på den binära koden? 


Men det finns ett invecklat globalt kommunikationsnätverk dolt här på jorden som vi bara har blivit medvetna om och som kan vara det rätta språket med utomjordiskt liv. . Tyson vänder vår uppmärksamhet till en "dold matris på jorden det skapande av ett varaktigt samarbete mellan svampar, växter, bakterier och djur som existerar här men vi dåligt förstår." Han hänvisar till mycel, ett komplext nätverk av trådliknande glödtrådar som bildar den funktionella strukturen hos en svamp och sträcker sig till andra arter, såsom träd. Dessa förgreningar likt glödtrådar som utgör mycel, illustreras i showen av specialeffekter att väva in jorden under våra fötter till ett kommunikativt nätverk som avslöjar skogarnas komplexa och sammanlänkade natur vilket vi ser existerar men som vi inte har kontakt med. 


"Vem är vi att söka efter främmande intelligens när vi inte ens kan känna igen eller respektera medvetandet runt omkring oss under våra fötter


Fri Bild från pixabay.com på en varelse som kanske finns därute. Ingen kan veta vilket.

fredag 23 augusti 2019

Sökning efter ultraviolett strålning ska användas för att söka efter liv därute.


Astronomer har upptäckt ett nytt sätt att söka efter liv i kosmos. Hård ultraviolett strålning vilket röda stora solar sänder ut i solutbrott och hittills  ansetts  förstöra möjligheten till liv på planeter i dess närhet. Men så behöver det inte vara det kan finnas biosfärer på dessa planeter (som kan finnas i solsystem där detta sker)  som just detta strålande kan avslöja.


Denna strålning kan utlösa en skyddande glöd för liv på exoplaneter som kallas biofluorescence enligt ny forskning som Cornell University.  ”Detta är ett helt nytt sätt att söka efter liv i universum. Tänk en främmande värld som glöder slappt i ett kraftfullt teleskop”, enligt huvudförfattare till rapporten om ämnet Jack O'Malley-James, en forskare vid Cornell Carl Sagan Institute.


”På jorden finns det vissa koraller i vattnen vilka använder biofluorescence för att omvandla solens skadliga ultravioletta strålning till ofarliga synliga våglängder något som skapar en vacker lyster. Kanske kan sådana livsformer även existera på andra världar och då är tecknet på detta denna lyster.”, sade medförfattare Lisa Kaltenegger, docent i astronomi vid Carl Sagan Institutet.


Astronomer är oftast överens om att en stor del av exoplaneterna utanför vårt solsystem finns i den beboeliga zonen av M-typ stjärnor De vanligaste stjärnorna i universum. M-typ stjärnor blossar ofta upp i solutbrott och när ultravioletta flames flyger iväg ger sken runt planeter av biofluorescenceeffekter i vackra färger.


Nästa generation av teleskop ska kunna upptäcka denna glöd av färger runt exoplaneter därute och då ge en tanke på att här kan finnas liv som likt koraller på Jorden kan omvandla hård ultraviolett strålning till livsmöjligt ljus.
  

Ultravioletta strålar kan absorberas i längre säkrare våglängder genom en process som kallas ”photoprotective biofluorescence”, och denna mekanism lämnar ett visst tecken som astronomer kan söka efter.”Sådana biofluorescence kan exponera dolda biosfärer på världar genom deras tillfälliga glöd när en flare från en stjärna träffar jorden”, sade Kaltenegger.


Astronomerna ger sig inte de söker på alla möjliga och omöjliga vis efter någon form av tecken av liv i universum (min anm). Att acceptera eller anse att vi är ensamma finns inte i deras agenda.


Bild: från vikipedia strålning 

lördag 10 augusti 2019

Förslag finns på hur miljoner svarta hål ska hittas i Vintergatan


Ett svart hål är enligt den allmänna relativitetsteorin en koncentration av massa med ett så starkt gravitationsfält att ingenting inte ens ljus kan övervinna dettas gravitation. Materia eller ljus som kommer in innanför det svarta hålets händelsehorisont förblir där och kan aldrig komma ut igen, förutom eventuellt oerhört långsamt i form av Hawkingstrålning


Miljontals svarta hål gömmer sig i vår galax. Det åberopas av ett par japanska astrofysiker som skrivit en rapport om detta och föreslår en sökning för att hitta kanske miljontals ”isolerade svarta hål” (IBHs) som sannolikt enligt dem finns i Vintergatan.

Dessa svarta hål döljs i mörker och damm i det som ses som tomrum mellan stjärnorna.

Förslaget är att försöka finna dem med radiovågssökning. En metod de tror kan ge resultat.


Om astronomer kan sålla ut de vågorna från allt oväsen som finns i galaxen av radiovågor skulle de kunna upptäcka dessa osynliga svarta hål.

Isolerade svarta hål som är små jämfört med det supermassiva svarta hål som finns i mitten av Vintergatan.


Det finns däremot inte tillräckligt med materia runt de små hålen för dessa ska kunna upptäckas genom utsändande av röntgenstrålning vilket det stora i Vintergatan hittades utifrån.


Nog kan det vara både intressant och bra (min anm) att veta var dessa små hål finns. Kanske något finns närmre än vi anar. Men vad säger att de finns i miljoner eller överhuvudtaget undrar jag.


Men om de finns bör vi inte sända farkoster i riktning mot dem. Vem vet om inte ex pioneer 1-2 vilka nu finns utanför vårt solsystem med hälsningar till ev. utomjordiska upphittare är på väg mot ett okänt litet dolt svart hål och förintas där. 


Bilden är från Vikipedia och visar det svarta hålet i galaxen M87 taget med Event Horizon Telescope.

måndag 1 juli 2019

eRosita har kastats in i jakten på mörk energi


Den 21 juni 2019 lanserades  rymdfarkoster med Spektrum-Röntgen-Gamma (Spektr-RG / SRG) teleskop sändes upp från den kazakiska stäppen. En händelse som markerar början på en spännande resa. SRG kommer att bära den tyska 'extended ROentgen undersökningutrustningen med en Imaging Telescope Array' (eROSITA), X-ray telescope och ryska konst-XC instrumentet.


 En Proton-raket var drivkällan upp till banan  1,5 miljoner kilometer från jorden. I omloppsbana runt denna jämviktspunkt började eROSITA den största undersökning någonsin av universum.



Målet är att söka efter och kartlägga heta källor såsom galaxhopar, aktiva svarta hål, supernovor, röntgenkällor och neutronstjärnor. Denna möjlighet att söka så brett och kombinera dessa sökningar är möjlig att göra tjugo gånger känsligare än den tidigare utrustning som gjort detsamma med ROSAT teleskopet som sändes upp innan 2000-talet.


 Med sin utökade kapacitet ska eROSITA hjälpa forskare att få en bättre förståelse för struktur och utveckling av universum och även bidra till sökandet av mörk energi ”, säger Walther Pelzer, styrelseledamot Space förvaltning på den tyska Aerospace Center (Deutsches Zentrum für Luft-und Raumfahrt; DLR), som stött utvecklingen av eROSITA vid Max Planck-institutet för utomjordisk fysik (MPE).


Mycket lite är ännu  känt om universum. Det består som man tror sig veta av  ingredienser som är upp till fyra procent av dess energitäthet 'normalt' material såsom protoner och neutroner men det är bara en liten del av vad som finns.


Vad de andra 96 procent består av förblir ett mysterium. Man tror idag att 26 procent är mörk materia. Men den största andelen, uppskattningsvis 70 procent består av mörk energi. För att spåra denna måste forskare iaktta ofattbart stora och extremt heta galaxhopar som består av upp till flera tusen galaxer som rör sig vid olika hastigheter inom ett gemensamt gravitationsfält. Inuti genomsyras dessa strukturer av en tunn mycket het gas som kan observeras genom dess avgivande av röntgenstrålning.


Detta är där Erosita's X-ray 'ögon' spelar in. De tillåter oss att observera galaxhopar och se hur de rör sig i universum och framför allt hur snabbt. Vi hoppas att detta kommer att berätta mer om mörk energi ”, förklarar Thomas Mernik en av forskarna.

Jag anser (min anm) att vi bara kan hoppas de hittar något med denna utrustning som de kan ge kunskap om universum och att de tolkar vad de finner

lördag 4 augusti 2018

Två instrument varav ett nytt för att söka efter liv därute i universum


Antalet grupper som aktivt bedriver sökandet efter tecken på intelligent liv utanför jorden har ökat betydligt under senare år. En organisation som bedriver bland annat detta för NASA:s räkning är SETI. Där bland annat en programvara finns för allmänheten att ladda ner för att hjälpa forskare att söka signaler av skilda slag från okända källor med hjälp av sin egen dator. Men mycket annat ingår i detta projekt bland annat Keplerteleskopet.


Idag finns även ett nytt verktyg kallat Rio.

Rio är ett verktyg för att tolka betydelsen av en signal. För detta ändamål används en skala där betydelsen klassificeras efter vilken konsekvens eller betydelse en signal kan ha och om denna eventuellt kan komma från en intelligens därute. Skalan är tiogradig

Sökningar efter ljus och ljudsignaler har pågått i ca 50 år utan resultat. Men troligen kommer vi aldrig att ge upp sökandet det finns oräkneliga platser att avsöka och nya metoder kommer säkert som resulterar i att  allt måste göras om igen.

Men hoppfullt är det inte anser jag. Men hoppet är det sista som lämnar nyfikna astronomer och säkert mänskligheten också

torsdag 7 juni 2018

Bör vi söka efter utomjordiska virus därute?


Virus räknas vanligtvis inte som en livsform utan  som ett mellanting mellan levande och död materia då de saknar egen ämnesomsättning. Virus kan inte heller föröka sig på egen hand utan detta görs genom att infektera en levande cell och parasitera i denna. Men genom detta förökar det sig desto mer och ger upphov till allehanda sjukdomar och problem. 

Virus  är den vanligast förekommande formen av liv (blandning av materia o liv) på jorden och forskare i dag anser att det bör även vara den vanligaste formen även på främmande himlakroppar om det finns liv där vilket virus kan infektera eller ligga o vänta på.
 NASA har därför börjat fundera över om vi inte skulle söka efter virus också bland de exoplaneter mm som finns däruppe. Bakterier som anses som lägsta formen av liv vilket förökar sig själva utan värdskap likt virus söks det redan efter.

Men ännu inte efter virus. Virus är även något vi bör vara försiktiga med att få med hit från ex Mars om det finns där då virus är svåra att bekämpa och helt okända virusformer här på Jorden kan ställa till med massdöd.

Nu finns astrobiologer vilka börjat överväga att söka efter virus bortom jorden med hjälp av NASA:s resurser.

Virus är en integrerad del av livet på jorden som vi känner det och varför det inte skulle vara det på andra planeter därute om liv finns skulle vara underligt.

Men som sagt inget är omöjligt det kanske finns planeter där liv finns men inga virus. Allt är möjligt.

Bilden är på ett av de otrevliga virusen vi har här på Jorden rotaviruset vilket ger svår maginfluensa hos i första hand små barn.

tisdag 26 december 2017

Det är isvärldarna vi ska söka efter om vi ska söka liv därute.


Europa en av Jupiters månar hör till gruppen månar med ett tjockt istäcke där liv kan finnas under istäcket.

Stenmånarna är nästintill säkert livlösa världar. Strålning och nedfall av diverse sten och utöver det bristen på atmosfär får de flesta månar att nästan garanterat vara livlösa.

Samma sak i sökandet efter exoplaneter. Hittas isplaneter är möjligheten där större för liv än om en stenplanet hittas. Det behövs mycket som måste stämma för att en stenplanet (eller stenmåne) ska kunna hysa livsformer.

Av den anledningen bör sökandet koncentreras på sökandet och undersökningar av isplaneter o isbelagda månar.

Se mer om detta här. En utgångspunkt jag med alla krafter är helt enig med. Is skyddar livet under densamma och om vi ser på en av vårt solsystems isvärldar månen Europa kan följande utmärkas. 

Isens tjocklek där är man osäker på men vattnet tillsammans med isen är ca 100 meter. Vad som finns under isen av varelser (om de finns) är kanske mindre spännande då det troligast (om de finns) är mycket små vattenvarelser eller bakterier.
Men det är min förförståelse av hur det kan se ut. Det kan vara ett helt galet tänkande. Är skeptiker till liv överhuvudtaget i universum utanför Jorden. Men man ska aldrig vara för säker på någonting.
Bilden är på månen Europa med dess karakteristiska sprickbildning i isen.

måndag 4 september 2017

Svag radioaktivitet visas av världens känsligaste mörk- materiadetektor

Xenonit heter världens känsligaste detektor för att söka efter mörk materia.

Se medföljande bild på hur förhållandet mellan materia, mörk materia och mörk energi fördelas i universum enligt den forskning man idag ser som den riktigaste och troligaste.

Men ännu har ingen mörk materia bevisats, enbart med stor sannolikhet bekräftats finnas.

Därav namnet mörk då den är svårupptäckt med de instrument vi idag förfogar över tillverkade av vanlig materia.

Detektorn Xenonit finns i Italien där den försöker finna snabba radioaktiva blixtar vilka bör visa mörk materias sällsynta krockar med en xenonkärna i behållare där ren xenon flyter.


Varför just xenon är ett grundämne lämpligt för detta nämns inte i medföljande rapport men ädelgasen kan intresserade läsa mer om här. 

fredag 27 januari 2017

Nya verktyg för att söka liv i rymden konstrueras hela tiden

Vi kan vara överens om att vetenskapen inte ger sig. Denna har bestämt sig för att det ska finnas liv därute och konkurrerar nu med varandra om att vara den som först hittar detta och därmed går in i historieböckerna som den som upptäckte liv därute först.

Nya och mer avancerade teleskop vilka söker på alla slag av våglängder efter tecken på aktivitet därute skapas på löpande band.

Man ska snart söka än mer avancerat efter signaturmönster och aminosyror med en känslighet av 10000 mer än tidigare.

Ännu har nämligen all forskning efter liv på planeter eller månar etc i vårt solsystem gett noll resultat. Samma sak när vi sett utanför vårt solsystem.

Inget visar att vi inte är ensamma. Men forskarna ger sig inte det handlar om att de bestämt sig för att hitta något därute. Ett arbete som aldrig kommer att ta slut.