Google

Translate blog

onsdag 21 september 2022

Ursprunget till magnetiska switchbacks i solvinden löst

 


Då de tysk-amerikanska rymdfarkosterna Helios 1 och Helios 2 under 1970-talet flög nära solen registrerade båda sonderna plötsliga och oväntade omkastningar av solens magnetfält. Dessa omkastningar var alltid plötsliga och alltid tillfälliga och varade från några sekunder till ett antal timmar innan magnetfältet bytte tillbaka till sin ursprungliga riktning.

Dessa magnetiska omkastningar undersöktes men då på mycket större avstånd från solen av rymdfarkosten Ulysses i slutet av 1990-talet. Istället för en tredjedel av jordens omloppsradie från solen, där Helios-uppdragen befann sig som närmast till solen opererade Ulysses mestadels bortom jordens omloppsbana. 

Antalet av som det som snart skulle kallas magnetiska switchbacks upptäcktes dramatiskt fler i  antal då solen undersöktes av NASA: s Parker Solar Probe 2018. Detta indikerade att de plötsliga magnetfältförändringarna är fler nära solen än längre bort från denna och ledde till förslaget att de orsakades av S-formade störningar i magnetfältet. Detta förbryllande beteende gav fenomenet namnet switchbacks. Ett antal idéer föreslogs också om hur dessa skulle bildas. Magnetiska switchbacks innebär om vi haft samma fenomen på Jorden (min anm) att den magnetiska nordpolen bytta plats med den magnetiska sydpolen lite då och då.

Den 25 mars 2022 befann sig  Solar Orbiter inom planeten Merkurius omloppsbana - och dess Metis-instrument samlade in data. Meti -instrumenet blockerar skenet från solens yta och tog bilder av solens yttre atmosfär. Den så kallade koronan. Partiklarna i koronan är elektriskt laddade och följer solens magnetfältslinjer ut i rymden. De elektriskt laddade partiklarna kallas plasma. Runt 20:39 UT samma dag spelade Meti in en bild av solkoronan som visade en förvrängd S-formad kink (störning) i koronaplasmat. För Daniele Telloni vid National Institute for Astrophysics - Astrophysical Observatory of Torino, Italien, såg det misstänkt likt ut som en solbrytare. 

När han jämförde Meti-bilden, som hade tagits i synligt ljus, med en samtidigt tagen bild av Solar Orbiters Extreme Ultraviolet Imager (EUI) –instrument upptäckte han att magnetfältets byte ägde rum ovanför en aktiv region  av solen katalogiserad som AR 12972. Aktiva regioner är förknippade med solfläckar och magnetisk aktivitet. Ytterligare analys av Meti-data visade att plasmarörligheten ovan denna region var mycket långsam vilket kan förväntas i en aktiv region som ännu inte har släppt ut sin lagrade energi.

Daniele ansåg omedelbart att detta liknade den genererande mekanism för switchbacks som föreslagits av professor Gary Zank, University of Alabama i Huntsville, USA. En där Zank beskriver hur olika magnetiska regioner nära solens yta interagerar med varandra. Nära solen, och särskilt över aktiva regioner finns öppna och slutna magnetfältlinjer. De slutna linjerna är loopar av magnetism som böjer sig upp i solatmosfären för att sedan åter böja sig runt denna och försvinna tillbaks ner i solen igen. Öppna fältlinjer är omvända. De kommer från solen och ansluter till solsystemets interplanetära magnetfält. De är de så kallade magnetiska motorvägar längs vilken plasman kan flöda fritt och ger upphov till solvinden.

Daniele och Gary visade att switchbacks sker när det finns en interaktion mellan en region med öppna fältlinjer och en region med slutna fältlinjer. När fältlinjerna åter trängs samman kan de återansluta till mer stabila konfigurationer. Detta ger energi i form av en S-formad störning som far ut i rymden, vilken en förbipasserande rymdfarkost skulle registerna som en switchback.

" Det här är  den typ av resultat vi hoppades få med Solar Orbiter", säger Daniel Müller, ESA Project Scientist för Solar Orbiter. "För varje bana får vi mer data från vår svit av tillsammans tio instrument. Baserat på resultat som dessa kommer vi att finjustera de observationer som planeras för Solar Orbiters vid nästa solmöte för att förstå mer om hur solen ansluter till den bredare magnetiska miljön i solsystemet. Detta var Solar Orbiters allra första nära passage till solen, så vi förväntar oss att många fler spännande resultat kommer.

Solar Orbiters nästa nära passage av solen - återigen inom Merkurius omloppsbana sker på ett avstånd av 0,29 gånger avståndet mellan jorden och solen kommer att äga rum den 13 oktober.

Bild pxhere.com

tisdag 20 september 2022

Om Jupiter funnits på annan plats hade Jorden kunnat ha än mer liv

 


I en ny studie  av UC Riverside-forskare  vid University of California, Riverside visas att om Jupiters bana varit annorlunda kunde jorden varit mer gästvänlig för liv än den är idag.  Följ denna länk för bilder på hur.

Då en planet har en perfekt cirkulär bana runt sin sol förändras aldrig avståndet mellan solen och planeten. De flesta planeter har dock "excentriska" banor runt sina solar vilket innebär att banan är mer eller mindre ovalformad. När planeten i banan kommer som närmst sin stjärna (sol) får den mer värme och tvärtom (då den på sin bana är som längst från denna, men även en planets lutning på verkar värmeintaget) vilket påverkar klimat och årstider. Inte heller Jorden har en cirkulär bana.

Med hjälp av detaljerade modeller baserade på data av solsystemet som det är känt idag skapade forskarna genom datasimulering  alternativa solsystem. I dessa teoretiska solsystem fann de att om Jupiters bana varit mer excentrisk skulle det ge  stora förändringar av jordens bana runt solen.

"Om Jupiters position förblev densamma, men formen på dess bana förändrades, skulle det öka Jordens liv på fler platser", säger Pam Vervoort, UCR Earth och planetforskare och studiens huvudförfattare.

Mellan 0 och +100 grader Celsius är jorden beboelig för flera kända livsformer. Om Jupiter pressade jordens bana att bli mer excentrisk skulle delar av jorden ibland komma närmare solen. Delar av jordytan som nu är frysta (Antarktis) skulle bli varmare och temperaturen skulle öka i de beboeliga områdena.

Forskarnas resultat har publicerats i Astronomical Journal och det upphäver två länge hållna vetenskapliga antaganden om vårt solsystem.

"Många är övertygade om att jorden är symbolen för en beboelig planet och att varje förändring i Jupiters bana är dåligt för jorden", sa Vervoort. "Vi visar att båda antagandena är felaktiga."

Forskarna är intresserade av att tillämpa sitt resultat i sökandet efter beboeliga planeter runt andra stjärnor.

Under sin omloppsbana runt sin sol får olika delar av en planet fler eller färre direkta solstrålar vilket resulterar i att planeten har årstider. Delar av planeten kan vara trevliga under en säsong och extremt varma eller kalla under en annan.

Att innehålla vatten på ytan är ett mycket enkelt första mått något som inte har betydelse för formen på en planets bana eller säsongsvariationer på planeter säger Kane. Vatten kan vara flytande eller fruset (min anm.).

Dagens teleskop kan mäta en planets bana. Det finns dock ytterligare faktorer som kan påverka livet på planeter till exempel i vilken grad en planet lutas mot eller bort från sin sol. Den del av planeten som lutas bort från sin sol får mindre solinstrålning vilket gör denna del kyligare.

I samma studie visades att om Jupiter placerades mycket närmare solen skulle det resultera i en  extrem lutning av jorden vilket skulle få stora delar av jordens nedfryst.

Det är svårt att mäta lutningen av en exoplanets bana och även dess massa därför önskar  forskarna arbeta ut nya metoder som hjälper dem att uppskatta dessa faktorer.

Rörelsen av en jätteplanets bana  är viktig att förstå för att göra förutsägelser om mindre stenplaneters livsmöjligheter i andra system samt förstå mer om dem.

"Det är viktigt att förstå den inverkan som Jupiter har haft på jordens klimat genom tiden hur dess effekt på vår bana har förändrat Jorden tidigare och hur Jupiter kan förändra för oss igen i framtiden", säger Stephen Kane, UCR-astrofysiker och en av studiens författare.

Nog är Jupiter inget man funderar över om man ser på livet på Jorden. Men nu vet vi hur betydelsefull Jupiter är och varit för detta (min anm.).

Bild på Jorden bana runt solen. Bild vikipedia.  

måndag 19 september 2022

Vattenplaneter vanliga enligt nya rön

 


I en ny studie visas att fler planeter kan ha stora mängder vatten än man tidigare trott - så mycket som hälften vatten och hälften sten. Men vattnet är förmodligen inbäddat i berget eller som is snarare än i flytande form i sjöar och hav.

"Det var en överraskning att se bevis på att så många vattenvärldar kan kretsa kring den vanligaste typen av stjärna i galaxen. Det får enorma konsekvenser i sökandet efter beboeliga planeter." säger Rafael Luque, huvudförfattare på den nya artikeln och postdoktor vid University of Chicago.

 Luque hade tillsammans med medförfattare Enric Pallé från Institute of Astrophysics på Kanarieöarna och University of La Laguna, bestämt sig för att se på en grupp planeter som finns runt en typ av stjärna som kallas en M-dvärg. Dessa stjärnor är de vanligaste stjärnorna vi ser i vår galax och forskare har hittills katalogiserat många planeter runt dem.

Men eftersom stjärnor är så mycket ljusare än sina planeter kan vi inte se själva planeterna. Istället upptäcker forskare vanligast svaga tecken på planeternas effekter på deras stjärnor - skuggan som skapas när en planet korsar framför sin stjärna. Det betyder att många frågor kvarstår om hur dessa planeter faktiskt ser ut.

"De olika sätten att upptäcka planeter ger olik information", säger Pallé. Genom att fånga skuggan som skapas när en planet rör sig  framför sin stjärna kan forskare mäta planetens diameter. Genom att mäta den lilla gravitationskraften som en planet utövar på en stjärna kan forskare analysera dess massa.

Genom att kombinera de två mätningarna kan forskare få en  kunskap om planetens sammansättning. Kanske är det en stor men luftig planet som mestadels består av gas som Jupiter, eller en liten, tät, stenig planet som jorden.

Dessa analyser hade gjorts av enskilda planeter, men mycket mer sällan för hela den kända populationen av liknande planeter i Vintergatan. När forskarna såg på siffrorna - totalt 43 planeter - såg de en överraskande bild växa fram. Densiteten hos en stor andel av planeterna var för lätt för att deras storlek skulle bestå av ren sten. Istället är dessa planeter förmodligen bestående av hälften sten och hälften vatten, eller en annan lätt molekyl. Dessa planeter är dock så nära sina solar (M stjärnor är dvärgstjärnor) att något vatten troligen inte kan existera i gas eller flytande form. Istället kan vattnet finnas  i berget eller i fickor under ytan. Dessa förhållanden skulle likna Jupiters måne Europa, som tros ha flytande vatten under sin isiga yta.

"Jag blev chockad när jag såg den här analysen - jag och många människor inom fältet antog att dessa planeter var torra, steniga planeter", säger UChicago exoplanetforskare Jacob Bean, vars grupp Luque nu önskar göra fler analyser.

Fyndet matchar en teori om exoplanetbildning som fallit i onåd de senaste åren vilken säger att många planeter bildats längre ut i sina solsystem och sedan vandrat inåt över tid. Föreställ dig klumpar av sten och is som bildas tillsammans under kalla förhållandena långt ifrån en stjärna och sedan dras långsamt inåt av stjärnans gravitation.

Men mer forskning och analys behövs för att veta mer och det är något man hoppas James Webbteleskopet  efterföljaren till Hubble ska ge.

Majoriteten av forskningen utfördes som Luques doktorsavhandling vid Institute of Astrophysics på Kanarieöarna.

Men (min anm.) kan det vara så att dessa planeter istället är löst sammanfogade som popcorn istället för vattenrika? Jag tänker då på den jordnära asteroiden Bennu som består av en löst sammanfogad regolit över en mindre fast yta och är betydligt mindre vattenrik än ovan analys. Bara en tanke från mig.

Bild flickr.com på hur en molnrik vattenvärld kan se ut från rymden.

söndag 18 september 2022

Hubbleteleskopet fann stjärnor som i sin spiralrörelse ger en blick in i universums förgångna


 

Naturen är i många sammanhang uppbyggt i spiralform - från en orkans virvlar till protoplanetära skivor runt nya stjärnor och spiralgalaxer.

Nu har astronomer även funnit unga stjärnor som i spiralform dras in mot centrum likt en massiv stjärnhop i rörelse in i Lilla Magellanska molnets centrala del. Lilla Magellanska  molnet är en satellitgalax till Vintergatan.

Spiralens yttre arm i denna  spiralformade stjärnsamling kallad NGC 346 kan ses som en flod i rörelse bestående av gas och stjärnor. Detta "kan" vara ett effektivt sätt att driva på ny stjärnbildning, säger forskare.

Lilla Magellanska molnets stjärnor har en enklare kemisk sammansättning än stjärnorna i Vintergatan vilket gör att Lilla Magellanska molnets stjärnor  liknar de galaxer som fanns i det tidiga universum då tyngre element var mer sällsynta. Stjärnorna i Lilla Magellanska molnet är hetare än de i Vintergatan och brinner snabbare slut på sitt bränsle.

Det lilla Magellanska molnet är 200000 ljusår bort från oss och är en av de närmsta galaxerna till oss förutom Vintergatan som vårt eget solsystem är en del av.

Att lära sig hur stjärnor bildas i det lilla Magellanska molnet ger inblick i hur en eldstorm av stjärnfödelse kan ha inträffat i det tidiga universums historia när detta genomgick en "stjärnboom" cirka 2 till 3 miljarder år efter bigbang.

De nya resultaten visar dock att processen med stjärnbildningstakt i Lilla Magellanska molnet liknar den som sker i Vintergatan (ingen stjärnboom här).

Stjärnsamlingen NGC 346 är 150 ljusår i diameter med en massa på 50000 solar. Dess spiralform och den snabba stjärnbildningshastigheten här just i denna samling har förbryllat astronomer. Det krävdes den kombinerade kraften hos NASA:s rymdteleskop Hubble och Europeiska sydobservatoriets Very Large Telescope (VLT) för att reda ut beteendet i denna stjärnsamling.

" --- Vi skulle inte ha liv i universum  utan stjärnor och ändå förstår vi inte helt hur de bildas, förklarade studieledaren Elena Sabbi vid Space Telescope Science Institute i Baltimore. – Vi har flera modeller som gör förutsägelser men en del av de förutsägelserna är motsägelsefulla. Vi vill veta vad som reglerar processen för stjärnbildning eftersom det är dessa lagar som vi behöver för att förstå vad vi ser i det tidiga universum.

 Något som är än viktigare nu när James Webbteleskopet kan se längre tillbaks i tiden än något teleskop tidigare kunnat. Att se räcker inte vi bör även förstå vad vi ser (min anm.).

Forskare bestämde stjärnornas rörelser i NGC 346 på två olika vis. Med hjälp av Hubble gjordes mätningar av Sabbi och hennes team av förändringarna i stjärnornas positioner under 11 år (data för detta hade tidigare Hubbleteleskopet samlat in). Stjärnorna i regionen rör sig med en genomsnittlig hastighet på 3200 km/h. vilket innebär att de på 11 år rört sig ungefär 2 gånger avståndet mellan solen och jorden.

NGC 346 är relativt långt bort från oss och inuti en galax (Lilla Magellanska molnet). Detta innebär att mängden observerad rörelse är mycket liten och därför svår att mäta. Dessa utomordentligt exakta observationer var endast möjliga på grund av Hubbleteleskopets upplösning och höga känslighet. Hubbles tre decennier långa observationshistoria ger också en baslinje för astronomer att följa små himmelska rörelser över tid.

Intressant är att Stjärnor i Lilla Magellanska molnet är av samma sammansättning som de allra tidigaste stjärnorna. Något som är svårt att förstå de borde vara av samma sammansättning som Vintergatans som är uppbyggda efter de första stjärnornas kollaps i supernovor som resulterade i nya grundämnen. Den stjärnbildning som sker i dag i Lilla Magellanska molnet borde vara av samma slag som de som bildas i Vintergatan och stjärnorna i Lilla Magellanska molnet vara av samma slag som de i Vintergatan. Men så är det inte. Varför har det Lilla Magellanska molnet inte utvecklats? Har denna galax isolerats  och stannat i utveckling? Varför har inte supernovor här om sådana skett inte gett nya grundämnen härtill ny stjärnbildning? OM supernovor inte skett här varför isåfall? Har alla gamla stjärnor helt enkelt stannat av som neutronstjärnor, vita dvärgstjärnor.? Vad består exoplaneter av här? Många frågor men inga svar ?  (min anm.).

Bild vikipedia på den stjärnhopen NGC 346 där genomenet upptäcktes. Bilden tagen av Hubbleteleskopet.

lördag 17 september 2022

En ny förklaring framlagd om den röda nordpolen på Plutos måne Charon

 


En trio forskare vid Purdue University i Indiana USA har utarbetat  en ny teori med syftet att förklara varför Plutos måne Charon har en rödaktig nordpol. I en artikel publicerad i tidskriften Nature Communications beskriver Stephanie Menten, Michael Sori och Ali Bramson studier av de rödaktiga ytorna på isiga föremål i Kuiperbältet och hur de utefter dessa kan relatera till Charons rödtoniga nordpol.

Tidigare forskning har visat att många isiga föremål i Kuiperbältet helt eller delvis är täckta av rödbrun materia. Forskning har också visat att materialet är en tholinförening. Tholiner är komplexa organiska molekyler som bildas när ultraviolett strålning träffar enkla organiska molekyler såsom exempelvis metan. I den nya teorin visar forskarna att den röda Tholinföreningen på Charons nodrpol är metan som frigjorts från kryovulkaner (isvulkaner) och träffats av ultraviolett strålning. (kan i så fall samma sak vara förklaringen till alla de objekt i kuiperbältet vilka har en rödtoning likt Charon och även Pluto(min anm.)


För att testa teorin vände sig forskarna till Plutos måne Charon, vars nordpol är täckt av en röd tholinförening. De noterar att tidigare forskning visat att gas som släpps ut från Pluto är ansvariga för den rödaktiga polen. Men tidigare forskning har också visat att månen en gång var täckt av ett flytande hav som innehöll många slag av material, inklusive metan. 

När havet efterhand frös kan metan ha fastnat i isen, konstaterar forskarna. De noterar också att när vattnet blev utsatt för tryck skulle sprickor bildats vilket ledde till tillfälliga utbrott (isvulkanism eller som det även kallas Kryovulkanism). Kryovulkaniska utbrott  föreslås ha släppt ut en viss mängd metangas. Skulle då delar av den metangasen drivit hela vägen till nordpolen skulle den där ha frusit och fallit till ytan. Då den föll till ytan skulle den ha utsatts för miljontals år av ultraviolett strålning från solen vilket gjort att ytan rödtonades genom denna tholinförening.

Forskarna skapade i arbetet  simuleringar av hur metanmolekyler drev runt i Charon-atmosfären och beräknade hur mycket metan som kan ha släppts ut under kryovulkaniska utbrott och tagit sig till nordpolen. De fann att cirka 1000 miljarder ton av gasen kunde ha tagit sig dit - mer än tillräckligt för att skapa en röd nordpol.

Kryovulkaner (isvulkaner)är vulkaner som består av is. Isvulkaner finns på ismånar och troligen även på andra frusna astronomiska objekt som till exempel i ovan nämnda objekt i kuiperbältet. 

 Kuiperbältet består av en stor mängd små kometer, asteroider och småplaneter i banor runt solen och är beläget bortom Neptunus bana 20 astronomiska enheter utåt. Det har uppskattats att det finns åtminstone 70000 så kallade transneptuner (TNO) med en diameter större än 100 kilometer i detta bälte men mestadels består det av mindre asteroider.

Istället för lava spyr isvulkaner vid sina utbrott ut en blandning av flyktiga ämnen som vatten, ammoniak eller metan. Sådana blandningar betecknas ibland kryomagma och bildar plymer vid utbrotten, varefter kryomagman kondenserar till fast materia när den utsätts för den mycket låga omgivande temperaturen.

Bild från vikipedia. Foto från New Horizons som den 14 juli 2015 förbi Charon.

fredag 16 september 2022

Fermibubblor är kanske inte skyldiga till mystiska gammastrålningsutkast från ett svart hål

 


Fermibubblorna kan enligt många forskare tills nu vara relaterade till utsläpp av stora mängder energi som emitteras från det supermassiva svarta hålet i mitten av vår Vintergata. Vi vet att i andra galaxer kan supermassiva svarta hål som intar stora mängder materia driva ut högenergistrålning. Det är möjligt enligt många forskare att Vintergatans centrala svarta hål gick igenom en sådan fas tidigare och producerade jetstrålar som nu har lämnat de spår vi kallar Fermi Bubbles vi ser idag.

Gammastrålning eller γ-strålning är fotonstrålning, joniserande strålning av fotoner. Gammastrålning är den mest genomträngande form av strålar som förekommer i samband med radioaktivitet. Gammastrålning ingår i den kosmiska strålningen.

Fermi-bubblor upptäcktes första gången 2010. De är gigantiska bubblor av högenergigas som kommer från det galaktiska centrumet som sträcker sig över och under det galaktiska planet i galaxen med en omkrets av 50000 ljusår och expanderar med en hastighet av miljontals km i timmen. Vad som  skapade dem vet vi inte. Vintergatans supermassiva svarta hål är den tills nu ledande kandidaten till förklaring på dessa sedan miljontals år sedan skapade bubblor vilka sedan dess  rört sig utåt från en okänd källa (om vi inte ska acceptera det svarta hålet som källa rakt av) sedan dess.

 Fermi-bubblornas strålning är inte jämnt fördelad. I synnerhet finns det vad som beskrivs som en "kokong" av nyaccelererade kosmiska strålar i södra loben av Vintergatan, enligt en analys från 2011 som en del i superbubbelmiljön.

Nyligen har ett team av astronomer med ledning av astrofysiker Roland Crocker vid Australian National University i Australien lagt märke till något intressant då det nyligen upptäcktes en gammablixt i närheten av Vintergatan (inte i Vintergatan).

Ursprunget till dessa bubblor ses nu inte vara från Vintergatans svarta hål utan tros nu istället vara millisekundpulsarer i en liten dvärggalax som kretsar kring Vintergatan.

Upptäckten får konsekvenser för vår förståelse av Fermi-bubblornas källa men kan även få en inverkan på bredare forskningsområden såsom i sökandet efter mörk materia.

”Kokongens” (se ovan) placering sammanfaller direkt med placeringen av ett annat objekt – kärnan i Skyttens dvärgsfäroidgalax, en satellitgalax till Vintergatan som håller på att slitas isär och inordnas i Vintergatan.

Men det blir än mer intressant. ”Kokongen” och satellitgalaxen har också liknande form och orientering i rummet. Dock finns det möjliga felmarginaler i mätningsresultaten.

Om du ser något som avger gammastrålning i en större gammastrålningsstruktur är det förmodligen naturligt att anta att de två är relaterade. Men två saker med liknande form och inriktningar som ligger direkt i vår siktlinje som avger detta är märkligt.

Inte omöjligt dock. Men då måste det finnas en sannolik förklaring - till exempel en koppling mellan dessa två objekt (en koppling vi inte förstår i dag).

Forskarna bestämde sig för att undersöka kokongen för att se om dvärggalaxen möjligen kunde vara en alternativ förklaring till gammastrålningen som observerats däri.

De modellerade emissionen med en rad förklaringar (teorier)  inklusive kokongen inom bubblan och satellitgalaxen, och fann att satellitgalaxen med ganska stor trolighet var den mest troliga sändaren av gammastrålning i Fermibubble-kokongen.

Nästa fråga var naturligtvis varför det kunde ske. I Vintergatan genereras gammastrålar övervägande av kollisioner mellan kosmiska strålar och gas i det interstellära mediet.

Detta är inte möjligt  i denna satellitgalax. Den mindre satellitgalaxen faller genom gravitationen  in i Vintergatan och har gjort det under en tid; av troligen 2 till 3 miljarder år.

Inte heller har några massiva, kortlivade stjärnor försvunnit här som supernovor (inga spår av sådana skeenden finns här och därmed har inga stora kollisioner eller explosioner skett).

Den mest troliga förklaringen enligt teamet är därför millisekunders pulsarer. Neutronstjärnor (de kollapsade, ultratäta kärnorna av döda massiva stjärnor) med extremt snabba rotationshastigheter, på millisekundskalor; när de snurrar avger de strålar från sina poler - inklusive gammastrålning. Dessa skulle vara kompatibla med de senaste episoderna av stjärnbildning i satellitgalaxen och ha samma rumsliga fördelning som resten av stjärnpopulationen.

Detta fynd tyder på att dvärgsfäroidgalaxer som denna  kan producera mer gammastrålning än förväntat. 

I så fall kan de förvirra sökning efter signaler från mörk materia varav sökning här innebär sökningar efter ett överskott av gammastrålning som emitteras när partiklar av mörk materia och antipartiklar ömsesidigt förintar varandra.

Forskarna anser att resultatet av studien ovan  ger incitament till närmare undersökningar av små, svaglysande galaxer, för att se om vi behöver revidera vår förståelse av dvärgsfäroidgalaxer och de gamla populationer av stjärnor  de innehåller.

Forskningen utifrån ovan har nyligen publicerats i Nature Astronomy.

Bild flickr.com "Using data from NASA's Fermi Gamma-ray Space Telescope, scientists have recently discovered a gigantic, mysterious structure in our galaxy. This never-before-seen feature looks like a pair of bubbles extending above and below our galaxy's center".

torsdag 15 september 2022

James Webb teleskopet har upptäckt sandiga moln på en exoplanet

 


VHS J125601.92–125723.9 (förkortat VHS J1256–1257) är ett ungt trippeldvärgstjärnsystem beläget i stjärnbilden Korpen (Crosus) cirka72,0 ljusår (21,2 parsek) från solen.

Systemet består av det binära röda (dubbelstjärnsystemet)  VHS J1256–1257AB vars stjärnor har ungefär samma massa och den avlägsna stjärnan VHS 1256–1257 b (även den en röd dvärgstjärna) därav kallas systemet i sin helhet ett trippeldvärgstjärnsystem.

 Nyligen upptäcktes en kontinuerlig radioemission ( ettradiostrålningsutsläpp) från strålningsbälten som omger VHS J1256-1257. James Webb Space Telescope upptäckte här  en främmande värld (en brun dvärg) höljd i en atmosfär med  sandliknande silikatkorn. Dess beteckning är VHS 1256 b.

Exoplanetfyndigheten, beskrivs som den första upptäckten av sitt slag och gjordes av James Webb Space Telescopes NIRSpec- och MIRI-instrument. I data från dessa instrument upptäckte astronomer bevis på silikatrika moln runt denna bruna dvärg som är  nästan 20 gånger större än Jupiter. Fyndet bekräftar några tidigare teorier om dessa udda planetliknande världar.

Bruna dvärgar är objekt som inte är tillräckligt stora för att antändas till stjärnor men lite för stora för att ses som  planeter. Medan bruna dvärgar inte kan antända vanligt väte och bli stjärnor, kan de likväl producera sitt eget ljus och värme genom att bränna deuterium (en mindre vanlig isotop av väte som innehåller en extra neutron). Den bruna dvärgen i fråga betecknas VHS 1256 b och kretsar kring de två små röda dvärgstjärnorma VHS J1256–1257AB, cirka 72 ljusår från jorden i stjärnbilden Corvus, (kråkan) på södra himlen.

Astronomer upptäckte den udda exoplaneten redan 2016  (den bruna dvärgen) och upptäckten har förbryllat dem sedan dess på grund av dess rödaktiga glöd. De misstänkte att glöden kunde orsakas av någon typ av atmosfär. Observationer från James Webb Space Telescope har nu bekräftat denna teori och avslöjat att VHS 1256 b bör ha tjocka moln i sin atmosfär innehållande stora mängder av sandliknande silikatkorn.

Webb detekterade även vatten, metan, kolmonoxid, koldioxid, natrium och kalium i atmosfären på VHS 1256 b.

"Vi kommer att veta mer från iterationer av datareduktionen", säger Brittany Miles, astronom vid University of California, Irvine, och ledande forskare i projektet, till Space.com i ett mejl.

Webb-datan var så detaljerad att den visade att förhållandet mellan de olika gaserna förändras kontinuerligt i VHS 1256 b: s atmosfär vilket tyder på att atmosfären inte är lugn utan vild och turbulent. " I en lugn atmosfär finns det ett förväntat förhållande mellan, säg, metan och kolmonoxid", säger Sasha Hinkley, astronom vid University of Exeter i Storbritannien och en av studiens medförfattare. "Men i många exoplanetatmosfärer finner vi att detta förhållande är mycket skevt vilket tyder på att det finns turbulent vertikal blandning i dessa atmosfärer som muddrar upp koldioxid från djupet i atmosfären för att blandas med metan högre upp i atmosfären."

VHS 1256 b är liten för att vara en brun dvärg vilket innebär att den sannolikt är ung. Exoplaneten kretsar 360 gånger vår sols avstånd till jorden från sina två moderstjärnor utefter en ovalformad bana som tar 17000 år att slutföra.

Det intressanta är att med Webbteleskopet kommer vi nu att kunna analysera atmosfärers innehåll i exoplaneter  något som varit svårt eller omöjligt tidigare (min anm.,).  Det kommer att ge nya rön och kanske även upptäckter av exoplaneter vars atmosfär vi kan misstänka växt och djurliv på grund av dess atmosfärs likheter med jordens.

Bild vikipedia på var man kan finna solsystemet.