Google

Translate blog

Visar inlägg med etikett kemi. Visa alla inlägg
Visar inlägg med etikett kemi. Visa alla inlägg

söndag 1 februari 2026

Nya insikter i livets ursprung

 


Bild https://www.mpg.de  I centrum av vintergatan har forskare upptäckt  svavelbärande sexledade ringmolekyler i ett interstellärt gasmoln.© MPE/ NASA/JPL-Caltech

Forskare vid Max Planck-institutet Institute for Extraterrestrial Physics (MPE) i samarbete med astrofysiker vid Centro de Astrobiología (CAB), CSIC-INTA, har identifierat den största svavelhaltiga molekylen som någonsin hittats i rymden. Det slag vars beteckningen är 2,5-cyklohexadien-1-thion (C₆H₆S). De gjorde detta genombrott genom att kombinera laboratorieexperiment med astronomiska observationer. Molekylen befinner sig i molekylmolnet G+0,693–0,027, cirka 27 000 ljusår från jorden nära Vintergatans centrum. Med en stabil sexledad ring och totalt 13 atomer överstiger molekylen vida storleken på alla tidigare upptäckta svavelinnehållande föreningar i rymden.

"Detta är den första entydiga upptäckten av en komplex, ringformad svavelinnehållande molekyl i interstellära rymden (utrymmet mellan stjärnorna) och ett avgörande steg mot att förstå den kemiska kopplingen mellan rymden och livets byggstenar på jorden", beskriver Mitsunori Araki, forskare vid MPE och huvudförfattare till studien om upptäckten som är publicerad i Nature 

Hittills hade astronomer bara upptäckt små svavelföreningar i rymden oftast molekyler med sex atomer eller färre. Stora, komplexa svavelinnehållande molekyler har förväntats hittas på grund av svavels viktiga roll i proteiner och enzymer. Men först nu fann man bevis på dessa.

Skillnaden mellan interstellär kemi och det organiska lager som finns i kometer och meteoriter har varit ett centralt mysterium inom astrokemin. Den nyligen upptäckta C₆H₆S är strukturellt besläktad med molekyler som hittats i utomjordiska prover och är den första i sitt slag som definitivt upptäckts i rymden. Den etablerar en direkt kemisk "bro" mellan det interstellära mediet och vårt eget solsystem.

tisdag 18 mars 2025

Webbteleskopet avslöjar Galax JADES-GS-z14-0 komplexa kemi

 


Bild wikipedia JADES-GS-z14-0 visas som en röd fläck markerad med en pil i den här bilden av galaxen NIRCam. Det vita objektet längst upp till vänster i fyrkanten är en galax i förgrunden som betecknas som NIRCam ID 183349.

Astronomer vid University of Arizona har nu lärt sig mer om en galax som existerade redan när universum var mindre än 300 miljoner år gammalt vilket innebär ungefär 2 procent av universums nuvarande ålder.

Galaxen observerades av NASA:s James Webb Space Telescope och har beteckningen JADES-GS-z14-0. Den är oväntat ljusstark och kemiskt komplex för att vara ett objekt från denna tidiga tid av universum. Det ger en sällsynt inblick i universums tidigaste tidshistoria. Resultaten av studien har publicerats i tidskriften Nature Astronomy och bygger även på då forskarna  först upptäckte galaxen  2024 och förstod att JADES-GS-z14-0 var den mest avlägsna galaxen i tid och rum som någonsin observerats.

Även om den första upptäckten gav eko av galaxens rekordstora avstånd i tid och rum från oss var dess oväntade ljusstyrka något som kunde ge kunskap om dess kemiska sammansättning och evolutionära tillstånd. Inom astronomin anses allt som är tyngre än helium vara "metall", beskriver Jakob Helton, forskare vid Steward Observatory. Metaller tyngre än helium kräver generationer av stjärnor för att uppkomma. Det tidiga universum innehöll bara väte, helium och spårmängd av litium. Men upptäckten av betydande mängder syre i galaxen JADES-GS-z14-0 tyder på att galaxen hade bildat stjärnor i potentiellt 100 miljoner år innan den observerades och från tidigare generation av stjärnor som inte längre fanns.

För att kunna bilda syre måste galaxen ha blivit till mycket tidigt efter BigBang eftersom den skulle ha behövt bildas ur en tidigare generation av stjärnor, beskriver George Rieke, professor i astronomi vid Regents University och studiens huvudförfattare. Dessa tidigare stjärnor måste ha utvecklats och exploderat som supernovor mycket snart efter BigBang för att syre skulle finnas i den interstellära rymden från vilken nya stjärnor skulle bildas och utvecklas ex de i galaxen JADES-GS-z14-0.

– Det är en väldigt komplicerad cykel att få så mycket syre som den här galaxen har. Så det är verkligen häpnadsväckande, beskriver Rieke. Upptäckten tyder på att stjärnbildningen började tidigare än vad forskarna tidigare trott vilket skjuter fram tidslinjen för när de första galaxerna kan ha bildats efter Big Bang.

Observationen krävde ungefär nio dagars teleskoptid, inklusive 167 timmars NIRCam-avbildning och 43 timmars MIRI-avbildning, med fokus på en mycket liten del av himlen.

Astronomerna vid University of California hade tur att den här galaxen råkade ligga på en perfekt plats för att kunna observeras med MIRI. Om de hade riktat teleskopet bara en bråkdel av en grad i någon annan riktning skulle de ha missat att få dessa viktiga data i mellaninfrarött ljus, beskriver Helton.

Det är otroligt att det fanns syre här och svårt att ta till sig att det redan innan denna galax fanns stjärnor som troligast blivit supernovor och bildat syre. Dessa bör ha varit stora kortexisterande blå jättestjärnor av väte som varit mycket kortlivade. Men kan det inte även finnas en möjlighet att ett tunt gasmoln mellan oss och galaxen innehållande syre ger fel spektra resultat av galaxen?

torsdag 28 september 2023

Det kan finnas liv uppbyggt av en kemi olikt oss därute

 


Om det finns liv på en planet där ute kanske det inte ser ut eller är uppbyggt av kol som livsformer på jorden. Detta beroende på att det finns så många kemiska ingredienser i universum och många sätt att blanda dem. Det som skapat liv på Jorden har ju konstruerat otaliga olikartade livsformer i form av djur och växter men med grunden utifrån kol. Kisel anses även vara en möjlig grundkälla för att uppbygga livsformer. Men uppbyggt utifrån kisel blir det en helt annorlunda livsvärld där liv är långsamt på alla sätt man kan tänka sig. Men  även andra förslag finns.

Ett team under ledning av forskare vid University of Wisconsin-Madison har skrivet en bok där man redogör för hundratals kemiska recept som potentielt kan ge upphov till liv. Processen att gå från grundläggande kemiska ingredienser till de komplexa cyklerna av cellmetabolism och reproduktion som definierar liv, beskrivs forskarna. Liv kräver inte bara en enkel början utan också upprepning.

Livets ursprung är en något-från-ingenting-process, beskriver Betül Kaçar som är en astrobiolog som med stöd från NASA och UW-Madison professor i bakteriologi vilka arbetat med projektet. Livet handlar om kemi och förhållanden som kan generera ett självreproducerande reaktionsmönster.

Kemiska reaktioner som producerar molekyler som ger samma reaktion om och om igen kallas autokatalytiska reaktion. I en ny studie publicerad 18 september i Journal of the American Chemical Society sammanställde Zhen Peng, en postdoktoral forskare i Kaçar-laboratoriet med medarbetare 270 kombinationer av molekyler - som involverade atomer från alla grupper och serier över det periodiska systemet - med potential för långvarig autokatalys. Vi kommer aldrig definitivt att veta vad som exakt hände på jorden för att generera liv. Vi har ingen tidsmaskin, skriver Kaçar. Men i ett provrör kan vi skapa flera planetariska förhållanden för att förstå hur dynamiken för att upprätthålla liv kan utvecklas. 

Att uppehålla liv och reproducera detta  är inte samma sak som att skapa det första livet.

Forskningen finansierades delvis av bidrag från NASA Astrobiology Program (80NSSC22K0546), John Templeton Foundation (62578 och 61926), Research Corporation for Science Advancement (28788) och Australian Research Council (DP210102133 och FT220100757).

Bild flickr.com