Google

Translate blog

måndag 28 december 2020

Mystik radiosignal upptäckt från närliggande stjärna.

 


Proxima Centauri finns 4,24 ljusår bort och är den stjärna som finns närmast oss om man räknar bort solen.  Den tillhör stjärnbilden Kentauren och trippelstjärnsystemet Alfa Centauri och kretsar runt dubbelstjärnan Alfa Centauri med en omloppstid på omkring 550000 år. Den skenbara magnituden på +11,05 gör att stjärnan endast syns i teleskop.

 Tidigare denna månad den 2 december beskrev jag i bloggen om den berömda Wow! signalen som ännu inte förklarats vilken upptäcktes 1977. Sedan dennas upptäckt har många forskare varit engagerade med sökandet efter utomjordisk intelligens (SETI  signalspaning). 

Signalen från 1977 anses vara den bästa kandidaten för en främmande radiosignal från en främmande civilisation som hittats. Den hördes bara en gång (något jag min anm. tycker visar att den har en tillfällig källa och därmed en naturlig förklaring). Den var aldrig helt bekräftad och förblir oförklarad än i dag. Jag (min anm.) anser att vi ska vara skeptiska till varifrån signalen eller källan kom. Kan mycket väl varit en störning från en satellit eller från utrustning vid det observatorium där man upptäckte den.

Men nu har en ny signal hittats benämnd som Wow!signal 2020. Den verkar komma från Proxima Centauri. Den närmaste stjärnan till vår sol. Det är nästan säkert inte ett utomjordiskt telegram. Men radiovågorna kom från närheten av Proxima Centauri. Den kommer att hjälpa astronomer förfina sina söktekniker efter en tio år lång sökning efter främmande sändningar från de närmast miljoner liggande stjärnorna. Vid arbetet  används Australiens Parkes Observatory vilket även sökte vid Proxima Centauri där teamet upptäckte den iögonfallande signalen. Signalen har fått namnet BLC-1. Radiovågorna plockades upp vid observationer gjorda mellan april och maj 2019.

"Det är ganska förväntat att då och då upptäcka något konstigt och även intressant och vi då måste tänka på nästa steg," säger Sofia Sheikh, en doktorand vid Pennsylvania State University. Men även Sheikh och andra forskare misstänker starkt att signalen är av mänskligt ursprung, blc-1 är dock den mest kittlande upptäckt som gjorts sedan 1977.

Teamet förbereder två rapporter som beskriver signalen och en uppföljningsanalys. Den senaste "signalen" kommer sannolikt att ha en vardaglig förklaring men riktningen på den smala strålen, runt 980 MHz, och en uppenbar förändring i dess frekvens sägs vara förenligt med rörelsen av en planet.

Forskare förbereder nu som sagt en rapport om strålarna för Breakthrough Listen, projektet och söker vidare efter tecken på liv i rymden.

Själv (min anm.) anser jag att signalen kommer från något på jorden, en satellit eller från utrustningen eller något i observatoriet en mikrovågsugn eller mobil eller liknande. Men det är viktigt att finna denna källa i så fall så inte det blir feltolkningar i framtiden av just liknande signaler. Källan kommer säkert att låta igen. Men visst så långe den inte är funnen kan man inte säkert säga att den inte kom utifrån och från vad eller vem som helst som sände den för 4,24 ljusår sedan. Eller år. Frågan vi alla ställer är om vi är ensamma i ett gränslöst universum med oräkneliga galaxer vilka har oräkneliga solar med oräkneliga planeter.

Bild från vikipedia på Proxima Centauris läge här makerad med röd fyrkant och pil varifrån en signal upptäckts.

söndag 27 december 2020

Glödande tråd av gas med en längd på 50 miljoner ljusår har upptäckts däruppe.

 


Nyligen har en grupp forskare vid Universitetet i Bonn upptäckt en gasglödtråd med en längd av 50 miljoner ljusår 700 ljusår bort från oss.. Dess struktur är slående lik förutsägelserna vid datorsimuleringar om trådar av detta slag.

Forskarna undersökte ett himmelskt objekt som kallas Abell 3391/95, ett system med tre galaxhopar då de upptäckte tråden.

Upptäckten gjordes med hjälp av rymdteleskopet eROSITA. eROSITA-bilderna visar klustren och de många enskilda galaxerna och gastråden som förbinder dessa strukturer (galaxer). Hela glödtråden är 50 miljoner ljusår lång. Men  kan vara ännu längre då vi inte kan  se den från alla vinklar. Forskarna antar att bilderna bara visar ett avsnitt av densamma.

 

Prof. Dr. Thomas Reiprich från Argelander Institutet för astronomi vid universitetet i Bonn sa angående fenomenet, "Enligt beräkningar finns mer än hälften av all baryonic materia i vårt universum i trådar av detta slag som vi antar det finns fler av. Filament av  av materia som stjärnor och planeter är sammansatta av och även vi människor." 

Bild från vikipedia vilken visar en animation av instrumenet eRosita röntgeninstrument som byggts av Max Planck-institutet för utomjordisk fysik (MPE) i Tyskland och som användes ovan.

lördag 26 december 2020

Litium hittat i vita dvärgstjärnor.

 


För första gången har  litium identifierats och mätts i atmosfären på utbrända stjärnor som kallas vita dvärgar enligt en studie ledd från University of North Carolina vilken publicerats online i tidskriften Science.

Litium är en viktig metall för ledning av el till mobiltelefoner och datorer för att stabilisera dessa. Men forskare har undrat över var det litium blev av som uppstodvid Big Bang, en diskrepans som kallas "kosmologiska litiumproblemet."

Forskare tror exploderande stjärnor sänder ut litium i hela galaxen och har levererat det mesta av det litium som finns på Jorden och använder idag i elektronik och medicin.

Den undersökning från  UNC-Chapel Hill, University of Montreal och Los Alamos National Lab ger ledtrådar för att spåra den galaktiska utvecklingen av litium.

Upptäckten ovan (litium i vita dvärgaras corona) möjliggjordes genom användning av Goodman-Spectrograph som är monterad på Southern Astrophysical Research teleskop vilket drivs av Cerro Tololo Inter-American Observatory, en del av National Science Foundations NOIR Lab.

Vita dvärgstjärnor är de överblivna kärnor som finns kvar när stjärnor gjort av med sitt bränsle och faller samman. Big Bang, den ledande förklaringen till hur universum kom till för 13,8 miljarder år sedan producerade tre element i större mängd: väte, helium och litium. Men litiummätningar i solliknande stjärnor har aldrig tidigare gjorts av forskarna eller förutsagt finnas där.

Av de tre elementen väte, helium och litium är litium det största mysteriet. Ännu förstår vi inte helt var detta blev av efter BigBang, Väte och Helium har vi sedan länge hittat i kosmiska gasmoln. Det enda vi säkert vet är att de tre ovannämnda ämnena var i majoritet och kanske de enda som blev till först vid BigBang.

Bild från vikipedia på Stjärnan Sirius A (mitten) och den vita dvärgen Sirius B (nedanför till vänster). Bilden tagen av Hubbleteleskopet.

fredag 25 december 2020

Pulsar PSR J1047−6709 pulserar stort.

 


Pulsarer är  magnetiska roterande neutronstjärnor som avger strålar av elektromagnetisk strålning. Pulsarer upptäcks vanligtvis av radioteleskop då de sänder dessa pulser. Men några av dem observeras också med hjälp av optiska, röntgen och gammateleskop.

Hittills har de flesta pulsarer upptäckts med hjälp av Parkes Observatory i Australien. Med  radioteleskopet Parkes har kinesiska astronomer undersökt en isolerad pulsar som kallas PSR J1047−6709 och upptäckt dussintals jättepulser från denna källa.

Fyndet redovisas i en artikel publicerad 10 december på arXiv pre-print repository. Först fann astronomerna att PSR J1047−6709 växlar mellan svaga och mindre starka utsläpp. De antar att denna tillståndsväxling troligen är relaterad till i magnetfältet i pulsaren.

Pulsarer är spännande och ännu inte helt förklarade objekt däruppe.

Bild från vikipedia som visar en animation över bildandet av en pulsar. En stjärna i ett binärt stjärnsystem har kollapsat till en neutronstjärna och börjar ta material från den kvarvarande stjärnan, även känt som ackretion (tillskott/tillväxt) inom astrofysiken. Materian som överförs får stjärnan att börja rotera snabbare och avge högenergistrålning och så småningom bildas en pulsar med en rotationshastighet på upp till 1000 gånger per sekund. Någon bild på ovanstående pulsar finns inte ej heller dess avstånd från oss har jag lyckats hitta eller riktning.

torsdag 24 december 2020

Radiovågskurar kommer från en planet i riktning mot stjärnbilden Björnvaktaren

 


Ett internationellt forskarlag har upptäckt radiovågskurar som utgår från stjärnbilden Boötes (björnvakten,).  Det kan vara det första radioutsläppet som samlats in från en planet bortom vårt solsystem.

Teamet leds av Cornell postdoktoral forskare Jake D. Turner, Philippe Zarka vid Observatoire de Paris - Paris Sciences et Lettres University och Jean-Mathias Griessmeier vid Université d'Orléans.  "Vi presenterar en av de första rapporterna om en exoplanet varifrån det kommer radiostrålning," säger Turner och tillägger. " Signalen är från Tau Boötes solsystemet som är en stjärna och en exoplanet (kan finnas fler planeter där som vi ännu inte upptäckt min anm.). Vi anar att utsläppet kommer från planeten själv. Från radiosignalens styrka och polarisering och planetens magnetfält är den kompatibel med dessa teoretiska förutsägelser." 

Med hjälp av Low Frequency Array (LOFAR), ett radioteleskop i Nederländerna, upptäckte Turner och hans kollegor utsläppsskurarna från detta stjärnsystem en så kallad het Jupiter och vilken man antar är källan (även Jupiter släpper ut radiostrålning så upptäckten är inte anmärkningsvärd  min anm.) är en gasformig jätteplanet som ligger mycket nära sin sol. Signaturen är dock svag. "Det återstår en viss osäkerhet om att den upptäckta radiosignalen är från planeten. Behovet av uppföljningsobservationer är behövande, säger han.

Bild från vikipedia på Björnvaktarens stjärnor. Synlig på norra halvklotet.

onsdag 23 december 2020

Jämförelser ska göras mellan planetbildande gasskivor

 


Om vi kunde vrida tiden baklänges skulle vi se vårt solsystem bildas. En spännande händelse som skulle ge mycket kunskap om hur allt kom till.  Men även då vi inte kan detta  kan forskare studera andra system som just nu aktivt med gas och damm bildar ett solsystem vid sin sol. Genom detta kan vi lära om hur det går till.

Ett team under ledning av Dr Thomas Henning från Max Planck Institute for Astronomy i Heidelberg, Tyskland ska  använda  NASA: s kommande James Webb Space Telescope för att kartlägga mer än 50 planetbildande skivor i olika stadier av tillväxt för att avgöra vilka molekyler som finns i dessa och leta efter likheter och skillnader i gassammansättning i var och en av dessa för att leta efter olikheter av sammansättning.

Detta forskningsprogram kommer i första hand att samla in data i form av spektra. Spektra är som regnbågesken det sprider ut ljus i alla våglängder och färger beroende av vad slags materia de studsar mot.  

Denna information kommer att göra det möjligt för forskarna att konstruera betydligt mer detaljerade modeller av vad som finns i   dessa planetära skivor (gasmoln, nebulosor) och var i dem.  "Om du använder en modell av dessa spektra kan du ta reda på vad för slags  molekyler det finns och var i skivan de  finns och vad deras temperaturer är”, säger Henning.

Det är många förhoppningar som ställs på det nya James Webb teleskopet, många står på kö för att använda dess resurser. I augusti 2021 är det planerat att det ska sändas upp (min anm.).

Bild från vikipedia på nebulosan NGC 604 i galaxen M33. En nebulosa är en gas och stoffbemängt moln däruppe. I dessa kan stjärnor bildas och då även planetsystem vid dessa stjärnor.

tisdag 22 december 2020

GN-z11 är den äldsta och avlägsnaste galaxen vi känner till.

 


En grupp astronomer med Professor Nobunari Kashikawa från institutionen för astronomi vid Universitetet i Tokyo som ledare använde Keck I-teleskopet för att mäta avståndet till en gammal galax som hittats långt därute. De undersökte galaxen GN-z11 genom den metod som alla astronomer använder i första hand  rödförskjutnings-metoden.  GN-z11 är inte bara den äldsta galaxen utan också den mest avlägsna (egentligen samma sak i detta sammanhang vi mäter i ljusår vilket  är ljusets hastighet från en viss punkt , min anm.)  

"Från tidigare studier av galaxen verkar den vara den längst bort detekterbara galaxen från oss 13,4 miljarder ljusårs bort eller ca 300 år efter BigBang. Ett avstånd som gör det svårt att se tillbaks till.

Kashikawa och hans team mätte som sagt ovan med det som kallas rödförskjutning av GN-z11; detta hänvisar till hur ljuset sträcker ut sig och blir rödare ju längre det färdas. Vissa kemiska signaturer, som kallas utsläppslinjer, präglar distinkta mönster i ljuset från avlägsna objekt.

Genom att mäta hur utsträckta dessa mönstersignaturer är kan astronomer härleda hur långt ljuset ha färdats vilket ger avståndet till mätobjektet. Om efterföljande observationer kan bekräfta mätresultatet ovan kan astronomer  säga säkert att GN-z11 är den galax som finns längst bort från oss som hittills upptäckts i universum.

Se mitt inlägg från den 20 dec för en nästan lika gammal galax som upptäckts på ett avstånd av 500 miljoner år efter BigBang den stora galaxen C1-23152. Men om dessa galaxer fanns redan då visar det egentligen inte när de bildades utan enbart att de fanns då. Om nu inte allt är mätfel och de finns betydligt närmre (min anm.)

Bild från vikipedia Konstnärs uppfattning om hur GN-z11 galaxen ser ut.