Google

Translate blog

torsdag 30 mars 2023

Uranus månar Ariel och Miranda kan ha hav

 


I en ny studie under ledning från Johns Hopkins Applied Physics Laboratory (APL) i Laurel, Maryland, analyserade forskare nästan 40 år gamla energirika partikel- och magnetfältdata som sammlats in av NASA: s rymdfarkost Voyager 2 (den enda rymdfarkost som hittills svävat över Uranus).

Teamet presenterade sina resultat vid den årliga Lunar and Planetary Science Conference den 16 mars 2023.

Deras studie har nyligen godkänts för publicering i tidskriften Geophysical Research Letters. Resultatet tyder på att en eller två av Uranus 27 månar - Ariel och/eller Miranda släpper ifrån sig materia i sin omgivning genom en okänd mekanism. En förklaring kan vara att en av dem eller båda har ett hav under sina istäckta ytor och det sker genom gejsrars utbrott.

Det är inte ovanligt att mätningar visar att energirika partiklar är tecken på en havsvärld, beskrev Ian Cohen, rymdforskare vid APL och huvudförfattare till studien.

Till exempel gav partikel- och magnetfältdata några av de första misstankarna som ledde till att identifiera solsystemets två havsmånar. Jupiters måne Europa och Saturnus måne Enceladus. Dessa data gav de första övertygande bevisen för att Europa och Enceladus var källorna till partiklar och plasmautsläpp i sin omgivning som sannolikt härrörde från hav under deras istäcken.

Tiden närmar sig nu för ett återvändandeuppdrag till Uranus och Neptunus och det har fått flera forskargrupper att åter se på gamla flyby-data något som ibland leder till nya fynd. En grupp av planetforskare rekommenderade under våren 2022 att 4,2 miljarder dollar skulle satsas av NASA till ett besök till Uranus under det kommande decenniet.

Cohen och hans kollegor analyserade partikeldata i det APL-byggda LECP-instrumentet (Low-Energy Charged Particle) från Voyager 2 och  hittade då något märkligt: en instängd population av energirika partiklar som Voyager 2 hade observerat när den lämnade Uranus.

Det som var intressant var att dessa partiklar var  extremt begränsade till Uranus magnetiska ekvator, beskriver Cohen i studien. Magnetiska vågor skulle normalt få dem att sprida sig i latitudriktning, förklarade han, men dessa partiklar var alla sammanträngda nära ekvatorn vid månarna Ariel och Miranda.

Forskare tillskrev ursprungligen dessa funktioner till att Voyager 2 möjligen hade flugit genom en slumpström av plasma som kom från den  svansen av Uranus magnetosfär. Men den förklaringen håller inte, sa Cohen. "En sådan förklaring skulle normalt få en mycket bredare spridning av partiklar än vad som observerades.

 Med hjälp av enkla fysiska datamodeller och med nästan 40 års kunskap sedan insamlandet av Voyager 2 försökte teamet nu återskapa Voyager 2 observationerna. De kom fram till att förklaringen måste innehålla både en stark konsekvent källa till partiklarna och en specifik mekanism för att ge dem energi. Efter att ha övervägt flera möjligheter drogs slutsatsen att partiklarna troligen kom från en närliggande måne.

Teamet misstänker nu att partiklarna kommer från Ariel och/eller Miranda genom antingen gejserutbrott av de slag som sker på  månen Enceladus eller genom en process där högenergipartiklar träffar en yta och matar ut andra partiklar i rymden. Just nu handlar det om 50-50 om det är det ena eller det andra, beskrev Cohen det.

Oavsett ses i datamodeller att den energigivande mekanismen skulle vara densamma: En konstant ström av partiklar som strömmar från månarna ut i rymden där de skapar elektromagnetiska vågor.

Forskare misstänker sedan ett tag att Uranus fem största månar  där Ariel och Miranda ingår bland dessa fem kan ha  hav under sina ytor. Uppgifterna överensstämmer med den mycket spännande potentialen att det finns en aktiv havsmåne där som ger ovan effekt enligt Cohen och tillägger att vi kan alltid göra mer omfattande datamodeller men tills vi har nya data kommer slutsatsen att vara begränsad. Därför önskar forskarna att en ny färd till Uranus bör ske inom överskådlig tid för mer data.

Bild på en av de ovan omtalade månarna Miranda.

onsdag 29 mars 2023

En skymningszon på en livsovänlig exoplanet kan ha liv.

 


Vissa exoplaneter har en sida permanent vänd mot sin sol medan den andra sidan är i evigt mörker. Den ringformade gränsen mellan dessa permanenta dag- och nattsidor kan man kalla skymningszonen (min beteckning på engelska kallas den terminator zone). En studie om detta fenomen publicerades nyligen i The Astrophysical Journal där fysik- och astronomiforskare vid University of California Irvine beskriver att detta område har potential att stödja liv.

 Ana Lobo, postdoktor vid UCI-institutionen för fysik och astronomi ledde studien och beskrev hur att sådana planeter är vanliga då majoriteten finns runt de stjärnor som utgör cirka 70 procent av stjärnorna som ses på natthimlen - så kallade M-dvärgstjärnor, Stjärnor som lyser något svagare än vår sol med ett rött sken (röda dvärgstjärnor). 

Skymningszonen är skiljelinjen mellan planetens dag- och nattsida. Här  finns en temperaturzon där liv kan uppstå mellan den iskalla evigt mörka halvan av planeten och den heta dagsidan av planeten.

På den evigt mörka finns eventuellt vatten bara i form av is med kanske temperatur nära den absoluta nollpunkten (-273,15 C). På den evigt solbelysta sidan är eventuellt vatten avdunstat för länge sedan. Här kan temperaturen vara många 100 grader Celcius.

Lobo, tillsammans med Aomawa Shields, UCI-docent i fysik och astronomi, arbetade fram datamodeller med skilda parametrar för  klimat och  skilda planetrotationer.

Studien tros vara första gången som astronomer kunnat visa att planeter med en skymningszon kan upprätthålla klimat där liv kan finnas i skymningszon (i denna zon är det halvdager). Historiskt har forskare mest intresserat sig för havstäckta exoplaneter i sökandet efter eventuella livsvänliga planeter och månar. Men nu har Lobo och hennes team  visat att exoplaneter med en skymningszon kan ha liv, ökar de alternativ som astronomer har att välja mellan i sitt sökande.

Lobo säger även att arbetet ska fastställa exakt vilken typ av skymningszon som kan behålla flytande vatten.

"Ana har visat att om det finns mycket mark på planeten kan möjligheten för liv existera mycket lättare", säger Shields. "Dessa nya och exotiska tillstånd som vårt team visar är inte längre science fiction - Ana har gjort jobbet för att visa att sådana tillstånd kan vara klimatmässigt stabila."

Att erkänna skymningszoner som potentiella livszoner innebär att astronomer kommer att behöva justera hur de studerar exoplaneters klimat efter tecken på liv eftersom de biosignaturer som livet skapar kanske bara finns i specifika delar av planetens atmosfär.

Studiens resultat kommer att hjälpa framtida team som använder teleskop som James Webb Space Telescope eller Large Ultraviolet Optical Infrared Surveyor-teleskopet (som är under konstruktion) vid NASA när de söker efter planeter som kan hysa utomjordiskt liv.

Genom att utforska dessa exotiska klimattillstånd ökar vi våra chanser att hitta och korrekt identifiera en  planet som kan ha liv, säger Lobo.

Men jag undrar hur man ska kunna upptäcka om en exoplanet har en bunden rotation att den alltid vänder samma sida mot sin sol. Under lång tid ansågs att Merkurius hade just detta. Det är inte många år sedan vi upptäckte att så ej är fallet. Hade vi så svårt för att se att Merkurius inte hade en bunden rotation hur svårt eller kanske omöjligt är det att se det på en exoplanet?

Bild www.spacedaily.com Terminator zon (engelskt uttryck på zonen mellan en dag och nattsida på en planet som alltid har samma sida mot sin sol.) på avlägsna planeter kan hysa liv av Staff Writers
Irvine CA (SPX) 17 mars 2023

 

tisdag 28 mars 2023

Exoplanet HD-2047496 b mister sin atmosfär.

 


En  från oss avlägsen mini-Neptunus planet antas ha atmosfär eller  hav eller en kombination av båda även om detta inte blir beständigt just på denna planet. Exoplaneten betecknad HD-2047496 b  finns cirka 77 ljusår från jorden.

Upptäckten av denna kan hjälpa forskare att bättre förstå hur planetsystem utvecklas och varför det saknas neptunuslika världar nära sina moderstjärnor i Vintergatan.

Teamet av planetforskare från hela världen kunde karakterisera exoplanetens egenskaper medan de analyserade data från dess stjärna (sol) insamlat av High Accuracy Radial velocity Planet Searcher (HARPS). De kombinerade dess data med data från Transiting Exoplanet Survey Satellite (TESS) och avslöjade ljusstyrkan och våglängderna för ljuset från stjärnan, HD-207496 (dess sol) avslöjade exoplanetens egenskaper när planeten passerade sin sol från oss sett. 

Astronomerna kunde bestämma att HD-2047496-b (alternativt namn TOI-1099 b), har en diamerter av 2,25 gånger större än jorden, medan dess massa är cirka 6, 1 gånger lägre. Detta innebär att exoplaneten har mindre täthet än jorden vilket ledde till att teamet kategoriserar den som en "mini-Neptunus" - en planet som är mindre massiv än Neptunus men som fortfarande liknar denna.

Teamet kunde också beräkna att HD-2047496-b kretsar kring sin stjärna på 6,4 jorddagar på ett avstånd av bara 9,4 miljoner kilometer avstånd. Men allt med denna  värld är inte helt konstaterat.

HD-2047496-b har sannolikt en stenig kärna täckt av mestadels vatten eller gas, men forskarna vet inte vilket, eller om här finns både ock. Men vad som täcker HD-2047496-b: s steniga kärna, är det sannolikt tillfälligt.

Även om dess sol HD-2047496 endast är cirka 80% av solens massa och 79% av vår sols diameter, är den fortfarande tillräckligt stor för att dess gravitation ska dra till sig exoplanetens atmosfär som består av väte- eller heliumatmosfär, enligt teamets datamodell.

De flesta Neptunusliknande planeter som kretsar kring stjärnor på så litet avstånd skulle ha fått sina atmosfärer avskalade sina eventuella hav kokade bort. Något som kan förklara att Neptunusliknande planeter sällan ses vid detta avstånd från sin sol.

" De Neptunusstora planeterna reduceras i storlek  därför över tid till att bestå enbart av sina steniga kärnor. Då HD-2047496-b undgått detta öde hittills beror det troligast på att dess sol endast är cirka 520 miljoner år gammal vilket innebär att solsystemet  relativt ungt, särskilt jämfört med vårt 4,6 miljarder år gamla solsystem. Därför har dess sol inte ännu hunnit att dra till sig planetens atmosfär (eller kokat bort havet). Men över tid kommer detta troligast att ske.

Astronomerna beräknar att om planetens atmosfär inte redan har avlägsnats och lämnat efter sig ett hav så bör den rivas bort inom de närmaste 500 miljoner åren. Detta kommer att lämna HD-2047496-b antingen som en stenig kärna täckt av hav, eller en helt karg naken planetkärna oberoende av om den har en blandning av hav och atmosfär eller inte. Teamet föredrar en förklaring till planeten som ser den täckt av en blandning av atmosfär och hav snarare än bara ett hav eller bara en atmosfär, men tillade att ytterligare undersökning av denna värld är nödvändig för att förstå dess sammansättning.

Teamets forskning har accepterats för publicering i tidskriften Astronomy & Astrophysics och finns tillgänglig på pappersförvaret arXiv.

Bild från www.pxfuel.com

måndag 27 mars 2023

Dragonfly ska besöka månen Titan under 2027.

 


Saturnus största måne Titan består av en komplex kolrik kemi. Här finns ett hav under isen och tidigare närvaro av flytande vatten på ytan vilket gör månen till en idealisk plats att studera prebiotiska kemiska processer på och potentiell livsvillkor i en utomjordisk miljö.

Dragonfly är en sond som ska sändas upp under 2027 med ett instrument som kallas Dragonfly Mass Spectrometer (DraMS) utformat för att undersöka kemin på Titan. Instrumentet kan också belysa de typer av kemiska steg som inträffade på jorden som resulterade i bildandet av liv så kallad prebiotisk kemi

DraMS kommer att möjliggöra för forskare på jorden att fjärrstudera den kemiska sammansättningen av Titan-ytan. "Vi vill veta om den typ av kemi som troligen var viktig för de tidiga pre-biokemiska systemen på jorden äger rum nu på Titan”, förklarar Dr. Melissa Trainer från NASA: s Goddard Space Flight Center, Greenbelt, Maryland.Trainer planetforskare och astrobiolog som specialiserat sig på Titan och som är en av Dragonfly- uppdragets biträdande huvudutredare. Hon är även ledare för DraMS- instrumentet som kommer att skanna igenom prover från Titans ytmaterial efter prebiotisk kemi.

För uppdraget kommer Dragonfly att dra nytta av Titans låga gravitation och täta atmosfär för att kunna flyga mellan olika intressanta platser på Titans yta, mil från varandra. Detta gör det möjligt för Dragonfly att flytta hela sin uppsättning instrument till en ny plats när en är färdigundersökt och ge tillgång till prover i miljöer med en mängd skilda geologiska historier.

På varje plats kommer prover mindre än ett gram att borras ut ur ytan för att söka efter komplexa organiska ämnen (DrACO) att tas in i landarens huvudkropp, till en plats som kallas "vinden" som rymmer DraMS-instrumentet. Där kommer de att bestrålas av en inbyggd laser eller förångas i en ugn för att analyseras med DraMS. Masspektrometern analyserar  de olika kemiska komponenterna av ett prov genom att separera komponenter ner till deras basmolekyler och leda dem genom sensorer för identifiering.

DraMS är utformat för att se på de organiska molekyler som kan finnas på Titan, sammansättning och fördelning i olika miljöer, beskriver Trainer. Organiska molekyler innehåller kol och används av alla kända livsformer. De är av intresse för att förstå bildandet av liv eftersom dessa molekyler kan skapas i både levande och icke-levande processer.

DraMS och andra vetenskapliga instrument på Dragonfly designas och byggs under ledning av Johns Hopkins Applied Physics Laboratory i Laurel, Maryland, som hanterar uppdraget för NASA och designar och bygger rotorcraft-landern. Teamet inkluderar nyckelpartners vid Goddard, den franska rymdorganisationen (CNES, Paris, Frankrike), varifrån tillhandahålls gaskromatografmodulen för DraMS som kommer att ge en ytterligare separation, Lockheed Martin Space, Littleton, Colorado, NASA Ames Research Center vid Moffett Federal Airfield i Kaliforniens Silicon Valley, NASA Langley Research Center, Hampton, Virginia, NASA Jet Propulsion Laboratory, Pasadena, Kalifornien, Penn State University, State College, Pennsylvania, Malin Space Science Systems, San Diego, Kalifornien, Honeybee Robotics, Brooklyn, New York, German Aerospace Center (DLR), Köln, Tyskland och Japan Aerospace Exploration Agency (JAXA), Tokyo, Japan är andra parners.

Bild vikipedia på Saturnus största måne Titan avbildad 2011 i sin naturliga färg. Den tjocka atmosfären är orange på grund av ett tät dis orsakad av organiska föreningar (föreningar som alla innehåller grundämnet kol).

söndag 26 mars 2023

Upptäckten av rörelser av isen på månen Europa visar på ett hav under isen.

 


Europa är Jupiters fjärde måne i storleksordning. Den ses täckt av is.

Isen på Europa är sannolikt fritt flytande över ett salthav och rör sig i en annan takt än vattnet under isen och Europas steniga inre.

Ny datormodellering tyder på att vattnet troligast trycker isen framför sig vilket eventuellt kan sakta ner rotationen av månens isiga skal över tid. Modellen är den första som visar att Europas havsströmmar kan bidra till rörelsen i dess is.

Att beräkna vilken den horisontella kraft är som månens hav har på isen är svårt. Men studien tyder på att en del av den geologi som observerats på Europas yta kan förklaras av havsflödets kraft på isen. Det frusna ishöljet kan utveckla åsar och sprickor på grund av att havets strömmar trycker och drar i isen.

Hamish Hay, forskare vid University of Oxford och huvudförfattare till studien, skriver: Nu blev det genom laboratorieexperiment och datamodellering känt att uppvärmning och kylning av Europa hav kan driva strömmar. Resultaten visar en koppling mellan havet och rörligheten av det isiga skalet som aldrig tidigare övervägts.

Det blir i framtiden möjligt att göra uppskattningar av hur snabbt det isiga skalet roterar med hjälp av den data som kommer att samlas in av NASA: s planerade Europa Clipper-uppdrag som om några år kommer i drift. 

Forskare kommer då att kunna utvärdera isytans rörelser på skilda platser och kanske avgöra om hur månens isiga skorpa har rört sig över tid när fotografiern som tas av Europa Clipper jämförs med de som tidigare tagits av NASA: s Galileo- och Voyager – stelliter.

Medförfattare och engagerad i Europa Clipper Projectet Scientist Robert Pappalardo från JPL säger med anledning av upptäckten att det är helt oväntat att det som händer i havets cirkulation kan räcka för att påverka det isiga skalet. Det var en stor överraskning. Och att sprickorna och åsarna vi ser på Europas yta kan vara knutna till cirkulationen av havets rörelser under isen .

Forskarna använde vid studien teknik utvecklad för att studera jordens hav - för att göra storskaliga datamodeller av Europas hav på NASA-superdatorer. De undersökte subtiliteterna i vattencirkulationen, inklusive hur uppvärmning och kylning påverkar vattencirkulationen.

I datasimuleringarna sågs cirkulationen röra sig vertikalt. Likväl fick månens övergripande rotation vattnet att röra sig i öst-väst och väst-östströmmar som är mer horisontella. Forskarna drog slutsatsen att om vindar är tillräckligt starka kan det finnas en tillräcklig dragkraft på isen ovan för att påskynda eller sakta ner isens rörelsehastighet. Graden av inre värme, och följaktligen havets cirkulationsmönster kan förändras över tid vilket kan få det frusna skalet ovanför att rotera snabbare eller långsammare.

Hamish Hay, forskare vid University of Oxford och huvudförfattare till studien publicerad i JGR journal planets.

Bild vikipedia på månen Europa

lördag 25 mars 2023

Nya rön om Pluto med flera objekt i Kuiperbältet

 


Kuiperbältet är ett bälte med en stor mängd små objekt i banor runt solen beläget bortom Neptunus bana (där Pluto ingår) 20 astronomiska enheter utåt från Neptunus. Här finns minst 70000 så kallade transneptuner (TNO) med diameter större än 100 kilometer och mindre asteroider.

Mer än 5 miljarder mil från jorden och på sitt nu 17;e år av sitt uppdrag vilket inkluderat bland annat den första närbildsutforskningen av Pluto och det första mötet med ett objekt i Kuiperbältet (2014 MU69), fortsätter NASA: s New Horizon att ge information om dvärgplaneterna och asteroiderna i det yttre av solsystemet. 

New Horizon lanserades i januari 2006 och reste förbi Pluto och dess månar i juli 2015 innan den genomförde den första rekognoseringen av ett Kuiper Belt-objekt (KBO), 2014 MU69 (bild ovan) under nyåret 2019. De data New Horizons samlade in och sände tillbaks till Jorden under dessa historiska möten fortsätter att ge nya insikter i de tidigare outforskade regionerna.

New Horizons teammedlemmar på jorden delade några av dessa upptäckter med media den 14 mars 2023 vid den 54: e Lunar and Planetary Science Conference i The Woodlands, Texas. Bland de nya rönen finns två nya rön om Plutos forntida utveckling och geologi och unika observationer av Uranus och Neptunus som kan förbättra vår kunskap om dessa världar och hur vi tolkar data på liknande planeter i andra solsystem.

I den medföljande länken här  från NASA finns en fil där den intresserade kan hämta en pdf fil  av hela presentationen då det blir för omfattande att ta upp i detta inlägg. 

Bild vikipedia av asteroiden 2014 MU69 som finns i Kuiperbältet bortanför Neptunus. Bilden tagen den 1 januari 2019 av rymdsonden New Horizons.

fredag 24 mars 2023

Den omformsrikaste katalogen hittills över supernovor är klar.

 


Den omformsrikaste katalogen över relativt närliggande supernovor innehållande tre års data från University of Hawaiʻi Institute for Astronomys (IfA) Pan-STARRS-teleskop som finns på Haleakalā på Maui är nu tillgänglig via Young Supernova Experiment (YSE) för allmänheten. 

Projektet som startade 2019  undersökt mer än 1 500 kvadratgrader av skyn var tredje dag och upptäckte tusentals tidigare okända kosmiska explosioner och andra astrofysiska transienter, dussintals av dem bara dagar eller timmar efter att de exploderat från vår synvinkel sett (vi ser händelser som sker eller skett ljusår bort).

De nyligen publicerade uppgifterna innehåller information om nästan 2 000 supernovor och andra lysande variabla objekt i flera skilda färger. Det är också den första katalog som i stor utsträckning använder flerfärgsavbildning för att klassificera supernovor och uppskatta avståndet från oss.

Mer om vilka instrument som användes och arbetsgången kan den intresserade läsa  om i ovan länk.

Denna banbrytande insats till en förteckning är ett samarbete mellan UH, UCSC, DARK, NCSA och University of Illinois - Urbana-Champaign (UIUC) och University of Hawaiʻi. I samarbetet användes Hawaiʻis Pan-STARRS1-teleskop och datapipeline för att samla in och bearbeta bilderna, DARK: s analys av data av sitt datorklusterinsamlande, UCSCs organisation var en part av undersökningen och datahosting genom NCSA och UIUC: s analys.

Bild på resterna efter Keplers supernova, SN 1604.