Google

Translate blog

tisdag 11 april 2023

Hur Saturnus ringar värmer planetens atmosfär.

 


Nyligen kunde forskare bekräfta att Saturnus stora ringsystem ger värme till Saturnus övre atmosfär. Den som finns närmst ringarna. Ett fenomen som aldrig tidigare setts bland vårt  solsystems övriga planeter. Det var en oväntad och unik upptäckt. Interaktionen mellan Saturnus och dess ringar kan potentiellt ge ett verktyg för att förutsäga om planeter runt andra stjärnor har Saturnusliknande ringsystem.

Vad som avslöjade  fenomenet var ett överskott av ultraviolett strålning sett som i spektrallinje i hett väte i Saturnus atmosfär. Upptäckten  innebär att något förorenar och värmer den övre atmosfären i atmosfären.

Den mest troliga förklaringen är att isiga partiklar i ringen regnar ner i Saturnus atmosfär och att detta orsakar uppvärmning. Det kan bero på effekter av mikrometeoriter, solvindpartikelbombardemang, solens ultravioletta strålning eller elektromagnetiska krafter som drar till sig elektriskt laddat damm. Skeenden som sker under påverkan av Saturnus gravitation vilken drar partiklar mot planeten. När NASAs Cassini-sond störtade in i Saturnus atmosfär i slutet av sitt uppdrag 2017 mätte den de atmosfäriska beståndsdelarna och bekräftade att många partiklar faller in mot Saturnus från ringarna.

Även om den långsamma upplösningen av ringarna är ett känt fenomen (en dag långt fram i tiden finns de inte) är dess inflytande på planetens atomära väte i atmosfären en överraskning, beskriver Lotfi Ben-Jaffel vid Institute of Astrophysics i Paris och Lunar &; Planetary Laboratory, University of Arizona, det i en rapport publicerad den 30 mars i Planetary Science Journal.

Uppvärmningen beror enligt forskarna på att partiklar i ringarna i kaskader dras in i Saturnus atmosfär på specifika breddgrader. Detta modifierar den övre atmosfären och ändrar kompositionen, beskriver Ben-Jaffel. Ben-Jaffels det som i studiens slutsats vilken hade utarbetas ur arkivobservationer av ultraviolett ljus (UV) från fyra skilda rymduppdrag som studerat Saturnus.

Rymduppdragen inkluderar observationer från de två NASA Voyager-sonder som flög förbi Saturnus på 1980-talet och då mätte UV-överskottet. Vid den tiden avfärdade dock astronomer mätningarna som brus i detektorerna.

Cassini som anlände till Saturnus 2004, samlade också in UV-data i atmosfären. Ytterligare data kom från Hubble och International Ultraviolet Explorer, som lanserades 1978 och var ett internationellt samarbete mellan NASA, ESA (European Space Agency) och Storbritanniens Science and Engineering Research Council.

Men den kvardröjande frågan var innan studien om all denna data kunde vara illusoriska eller ett sant fenomen på Saturnus.

Nyckeln till att sätta ihop pusslet gjorde Ben-Jaffels genom att använda mätningar från Hubbles Space Telescopes instrument Imaging Spectrograph (STIS). Dessa precisionsobservationer av Saturnus användes för att kalibrera arkivets alla UV-data från de fyra andra rymduppdragens insamlade data. Han jämförde STIS UV-observationerna av Saturnus med fördelningen av UV från övriga rymduppdrag och instrument.

När allt var kalibrerat såg vi tydligt att spektrat är konsekvent i alla uppdragen. Denna kalibrering var möjlig eftersom vi har samma referenspunkt från Hubble på överföringshastigheten för energi från atmosfären mätt över årtionden, beskriver Ben-Jaffel det.

Fyra decennier av UV-data täcker flera solcykler och hjälper ger även  astronomer data för att studera solens säsongseffekter på Saturnus. Genom att sammanföra alla olika data och kalibrera dem fann Ben-Jaffel att det inte finns någon skillnad i UV-strålningsnivån beroende på säsong. När som helst, var som helst på planeten, kan vi följa UV-strålningsnivån, beskriver han. Detta pekar på ett stadigt "isregn" från Saturnus ringar som den bästa förklaringen.

Bild vikipedia på Saturnus. Bilden tagen av farkosten Cassini under 2004.

måndag 10 april 2023

Asteroiden Didymos snurrar så snabbt att materia slungas ut från den.

 


Didymos är en asteroid i ett binärt system och klassificeras som en potentiellt farlig asteroid  Apollo-gruppen (jordnära asteroider).  Asteroiden upptäcktes 1996 och har en måne med diametern 160 meter kallad Dimorphos, upptäckt 2003.

Didymos måne, Dimorphos var målet för DART-uppdraget  som innebar att testa om det gick att med en kollision ändra kurs på en asteroid som riskerade träffa jorden. Uppdraget blev lyckat det visade sig fungera.

Ett team av planetforskare vid Universidad de Alicante i Spanien har nyligen upptäckt att asteroiden Didymos snurrar så snabbt att spillror  av den kastas ur den nära dess ekvator. I en artikel publicerad i tidskriften Icarus beskriver forskarna sin studie av asteroidens snurrande och förklarar varför detta kan påverka hur andra rymdobjekt i framtiden bör studeras.

Enligt  tidigare teori har föreslagits att Didymos måne Dimorphos kom till på grund av att skräp  kastades ut från den mycket större asteroiden Didymos. När bitar av material då knoppades av samlades de i närheten och samlades så småningom samman genom gravitation och resultatet blev månen Dimorphos som sedan dess kretsat runt Didymos. Teorin antydde möjligheten att material fortfarande kastas ut från Didymos.

Hittills har forskargruppen kunnat mäta Didymos storlek och massa och har bestämt åtminstone en del av dess sammansättning. De vet också att dess rotationshastighet är så snabb att det kan förklara asteroidens toppliknande form. Gruppen har för studien matat in allt som är känt om asteroiden i en datormodell. Modellen visade att den snurrar tillräckligt snabbt för att kasta ut material från dess ekvator.

När material numera kastas ut tror forskarna att det finns fyra scenarier som kan inträffa; materialet kan helt enkelt falla tillbaka ner på asteroiden, det kan försvinna ut i rymden, fastna i omloppsbana runt asteroiden eller landa på dess måne Dimorphos. De tror att det första alternativet är troligast. 

Men kommer inte att veta säkert förrän förrän Europeiska rymdorganisationens Hera-uppdrag (kommer fram under 2024) då en sond kommer att skickas till Dimorphos och Didymos för att studera dessa och att skicka tillbaka data.

För min del anser jag att båda objekten har bildats samtidigt en gång alternativt har månen Dimorphos fångats in vid en närkontakt av Didymos.

Bild vikipedia Didymos (nere till vänster) och Dimorphos (uppe till höger) fotograferade av rymdsonden DART.

söndag 9 april 2023

Det största svarta hål som upptäckts

 


Astronomer har nyligen upptäckt ett svart hål i en storlek som aldrig tidigare setts.

Detta gigantiska svarta hål har en massa på 30 miljarder solar och finns i centrum av en galax  hundratals miljoner ljusår från jorden. Astronomer kallar det ett ultramassivt svart hål i motsats till de vanliga svarta hålen som väger någonstans mellan några miljoner till några miljarder solmassor.

Astronomer upptäckte det genom gravitationslinsning innebärande att tyngdkraften böjer ljuset runt extremt massiva föremål. Gravitationslinsning fungerar som naturens eget teleskop och hjälper astronomer se avlägsna ljuskällor förstorade än mer än ett specifikt teleskop klarar av. Läs här  hur det fungerar. 

Detta speciella svarta hål är ungefär 30 miljarder gånger mer massivt än vår sol och ett av de största som någonsin upptäckts och på den övre gränsen för hur stora vi tror att svarta hål teoretiskt kan bli, så det är en extremt spännande upptäckt beskriver James Nightingale, astrofysiker vid Durham University i Storbritannien och huvudförfattare till  studien det.

Studien publicerades onsdagen den 29 mars i tidskriften Monthly Notices of the Royal Astronomical Society.

Teamet kom fram till storleken på det svarta hålet genom att analysera förstoringen av förgrundsobjektet i en serie bilder tagna av Hubble Space Telescope. Med hjälp av sofistikerad datormodellering kunde forskarna simulera hur mycket ljus som böjs runt förgrundsgalaxen (genom Gravitationslinsning) där det svarta hålet finns. De testade tusentals svarta hål av skilda storleksmodeller innan de kom fram till en lösning som matchade observationerna.

Det svarta hålet finns i en av galaxerna i galaxhopen Abell 1201 och är det första som upptäckts med denna teknik. Även om det är enormt är det inte särskilt aktivt vilket innebär att det inte sväljer mycket materia och därför inte producerar stark röntgenstrålning.

Bild Vikipedia av  A1201 BCG tagen av MUSE. Multi-unit spectroscopic explorer (MUSE) är en integralfältspektrograf installerad vid Very Large Telescope (VLT) vid Europeiska sydobservatoriet (ESO)

lördag 8 april 2023

Ny vattenkälla hittad på månen

 


Hur mycket vatten det finns på månen är viktigt att veta  vid planering av framtida månutforskningsuppdrag. Nu har en forskargrupp ledd av prof. HU Sen från Institute of Geology and Geophysics (IGG) vid Chinese Academy of Sciences (CAS) upptäckt slagglaspärlor innehållande vatten genom  Chang'e-5 (CE5) insamlade månjord. 

Analysen visar att dessa pärlor sannolikt visar på en vattenreservoar på månen som kommer från den dynamiska in- och utbrytningen av solvindsbildat vatten och är en del av månens ytvattencykel. Tidigare månuppdrag har bekräftat närvaron av fruset vatten på månen. Det mesta av månens yta har vatten även om mängden är mycket mindre än den på jorden.

Ytvattnet på månen visar dagliga cykler och förluster ut i rymden vilket indikerar att det bör finnas ett hydratiserat lager eller en reservoar nere i månjorden för att kunna upprätthålla retention, frisättning och påfyllning av vatten till månens yta. Tidigare studier av vatteninventering av fina mineralkorn i månjord, slagproducerade agglutinater,  vulkaniska bergarter och pyroklastiska glaspärlor har dock inte kunnat förklara retention, utsläpp och påfyllningen av vatten till månens yta (dvs. månens ytvattencykel). Nu först har man förstått att det bör finnas en ännu oidentifierad vattenreservoar i månjorden som har kapacitet att buffra på månens ytvattencykel.

Doktorand HE Huicun under ledning av prof. HU Sen, föreslog att slagglaspärlor, en allestädes närvarande komponent i månjorden med amorf natur som en potentiell kandidat för undersökning.

Hon karakteriserade systematiskt petrografin, huvudelementkompositionen, vattenmängden och väteisotopsammansättningen av slagglaspärlorna som returnerades av CE5-uppdraget i syfte att identifiera och karakterisera den saknade vattenreservoaren på månens yta.

CE5-slagglaspärlorna visade sig ha homogena kemiska kompositioner och släta exponerade ytor. De kännetecknas av en vattenmängd upp till cirka 2 000 ug.g-1, med extrema deuteriumutarmande egenskaper. Den negativa korrelationen mellan vattenförekomst och väteisotopsammansättning återspeglar att vattnet i CE5-slagglaspärlorna kommer från solvinden.

Forskarna analyserade också vattenmängden längs sex transekter i fem glaspärlor, som då visade hydratiseringsprofilerna för solvindsbaserat vatten. Vissa glaspärlor överlappades av en senare vattenavgasningshändelse. Slagglaspärlorna fungerade som en svamp för buffring av månens ytvattencykel. Forskarna uppskattar att mängden vatten som orsakas av slagglaspärlor till månjord varierar från 3,0 + 1011 kg till 2,7 + 1014 kg.

"Dessa fynd indikerar att slagglaspärlor på månens yta och andra atmosfärlösa kroppar i solsystemet kan lagra solvindsbaserat vatten och släppa ut det i rymden", säger professor HU.

Studien ovan var ett samarbete med Nanjing University, The Open University, The Natural History Museum, University of Manchester och University of Science and Technology of China.

Bild vikipedia på en vy av den roterande jorden och månens baksida när månen passerar på sin bana mellan den observerande DSCOVR-satelliten och jorden.

fredag 7 april 2023

Ett svart hål ändrade sin strålning 90 grader och riktade den rakt mot Jorden.

 


I en avlägsen galax har ett supermassivt svart hål som spyr ut strålning med nära ljushastigheten förskjutit sin vinkel med hela 90 grader och pekar nu med sin strålning direkt mot jorden - en stor ögonblicklig förändring som förbryllar fysiker.

Aktiva galaktiska kärnor (AGN) är svarta hål något man tror finns i alla galaxers centrum där de drar till sig materia och varifrån kraftfulla strålar av högenergipartiklar kommer. AGN klassificeras enligt vilken del av AGNs strålning som riktas mot jorden.

PBC J2333.9-2343 som det handlar om här är en stor galax cirka 4 miljoner ljusår i diameter 657 ljusår bort som klassificerats tidigare som en radiogalax, vilket innebär att dess AGN: s gigantiska strålning pekade vinkelrätt mot vår siktlinje.

Men ny forskning publicerad 20 mars i tidskriften Monthly Notices of the Royal Astronomical Society omklassificer galaxen som en blazar då den numera strålar  direkt mot jorden. En blazar eller blasar (blazing quasi-stellar object) är en typ av kvasar, dvs en mycket kompakt, ytterst ljusstark och snabbt variabel galaxkärna. Det som utmärker en blazar är att en av dess jetstrålar är riktad mer eller mindre rakt mot jorden. Det betyder att ovan svarta håls jetstråle förskjutits "dramatiskt" 90 grader och därmed nu ska klassificeras som en blazar, skrev forskarna i studien. 

"Vår hypotes är att  strålen från dess supermassiva svarta hål hade ändrat riktning, och för att bekräfta den idén var vi tvungna att utföra flera observationer", beskrev huvudstudieförfattaren Lorena Hernández-García astrofysiker vid Millennium Institute of Astrophysics, det  i ett uttalande.

Hernández-García med kollegor observerade PBC J2333.9-2343 över nästan hela det elektromagnetiska spektrumet, från radiovågor till gammastrålar. Observationerna visade att galaxens centrum nu hade egenskaper som är typiska för blazarer. Dess ljus ökade och dämpades som en blazar och den hade liknande jetstrålar. Således drogs slutsatsen att objektet troligen var en blazar. Forskarna observerade också två lober - områden där jetstrålar interagerar med omgivande gas och där vissa jetstrålar tidigare hade gjort intrång (innan 90 graders förändringen).

Denna blazars lober är "mycket gamla", beskev Hernández-García och tillade  "de är reliker från tidigare aktivitet, medan strukturerna som ligger närmare kärnan representerar yngre och aktiva strålar."

Dessa vilande lober är bevis på att jetstrålarna har ändrat riktning. Det är inte helt utan motstycke för en galax jetstrålar att dyka upp på olika platser. Men här fanns tidigare det två uppsättningar lober, vilket betyder två separata strålar som slås på och av (inget man tidigare sett). För PBC J2333.9-2343 verkar det som om det bara finns en aktivitetskälla och som nu har ändrat riktning.

Vad orsakade detta stora skifte? Astronomer arbetar fortfarande med att finna en förklaring. Nuvarande teorier inkluderar en galaxfusion, där en annan stor galax en gång kolliderade med PBC J2333.9-2343 vilket störde orienteringen av allt inom den. Fler observationer behövs för att förstå detta mysterium.

Lite tänkande är trevligt ibland. Tänk om. Utomjordisk intelligens som är eller var tekniskt kunniga på nivå vi inte kan föreställa oss idag. En gång för ca 600 miljoner år sedan fick någon på en planet i denna galax ögonen på Jorden som en planet där liv fanns eller kunde uppstå från. De hade teknik nog för att ge ett tecken och förändrade utkasten av strålningen från sitt svarta hål då de förstod att vi skulle förundras på jorden om vi hade astronomer när väl skeendet kunde ses från jorden. Vi ska tänka på att ljuset från jorden färdats ca 600 miljoner år för att nå dit så och tiden de sände tillbaks en signal är även den samma tid så tiden sammanlagt för skeendet är 1200 miljoner år sedan och tiden de sände signalen 600 miljoner ljusår sedan.

 De bestämde då 600 miljoner år tillbaka i tiden från nu att sända en signal mot jorden och hoppades vi hade intelligent liv för att visa att de fanns, De gjorde då något de ansåg vi skulle reagera på om vi fanns. Förändra riktningen på ett svart håls strålning 90 grader mot oss något som skulle få vetenskapen här att häpna (om de fanns) då det inte ska kunna ske. Vi har nu upptäckt det. Kanske riktningen åter ändras senare eller börjar blinka som en signal. Om dessa aliens finns och ovan skett då kan vad helst hända kanske även ett framtida besök av en farkost med information. Men det är kanske bara science fictiontankar.  

Bild pixabay.com

torsdag 6 april 2023

Små stjärnor kan ha stora planeter

 


Gasjättar likt andra planeter bildas från de skivor av material som omger unga stjärnor. Enligt kärnaccelerationsteorin bildas först en kärna av sten, is och andra tunga fasta ämnen som sedan genom gravitation drar till sig gas och damm. Processen börjar då kärnan är tillräckligt massiv (cirka 15 till 20 gånger jordens).

Stjärnor med låg massa (ex röda dvärgstjärnor de vanligaste stjärnorna därute) har enligt teorin skivor (ackretionsskivor) med mindre massa enligt fysiska utsagor och det bör inte vara möjligt att här bilda stora gasjättar av ett slag som är större än stjärnan. 

Men i en nyligen gjord studie, publicerad i Monthly Notices of the Royal Astronomical Society (MNRAS) finansierad av UK Science and Technology Facilities Council (STFC), såg forskare på 91306 stjärnor med låg massa, med hjälp av observationsdata från NASA: s Transiting Exoplanet Survey Satellite (TESS) och i 15 fall hittades tecken på ett stort ljusfenomen som passerar framför en mindre stjärna (misstänkt som gasjätteplanet större än dess sol).

Fem av dessa 15 potentiella jätteplaneter har sedan dess bekräftats som planeter. En av dessa bekräftade planeter kretsar kring en stjärna som är en femtedel av solens massa – vilket inte skulle vara möjligt enligt dagens planetbildningsmodeller. Ska förstås som omöjligt att en sådan stor planet bildats vid en så liten stjärna.

Huvudförfattaren till studien Dr Ed Bryant vid Mullard Space Science initierade Laboratory vid UCL, tidigare University of Warwick, var den som tog initiativ till studien som en del av sin doktorsexamen. Han beskriver det som att ”Stjärnor med låg massa är bättre på att bilda jätteplaneter än vi hittills trodde. Resultatet väcker nya frågor om planetbildningsmodeller. I synnerhet utgör vår upptäckt av gasjättar som kretsar kring stjärnor av 20 % av solens massa en konflikt med nuvarande teori om planetbildning”.

Medförfattare till studien Dr Vincent Van Eylen (Mullard Space Science Laboratory vid UCL) beskriver det med följande ord "Det faktum att, även om det är sällsynt, finns gasjättar runt stjärnor med låg massa vilket är ett oväntat fynd och innebär att modeller om  planetbildning kommer att behöva revideras."

En möjlig tolkning är att gasjättar inte bildas genom kärnacceleration utan genom gravitationell instabilitet, där skivan som omger en stjärna fragmenteras till planetstora klumpar av stoft och gas. Om så är fallet kan stjärnor med låg massa vara värd för mycket stora gasjättar två eller tre gånger större  än Jupiter. Detta anses dock osannolikt, eftersom skivorna runt stjärnor med låg massa inte verkar vara tillräckligt massiva för att fragmenteras på detta sätt. För min del låter det dock troligt att så kan ske. Vi ska inte låsa oss vid hur mycket massa som finns i en ackretionskiva utifrån ett samband med hur stor stjärnan är.

En annan förklaring, säger forskarna, är att astronomer har underskattat hur massiv en stjärnas skiva kan vara, vilket innebär att små stjärnor trots allt kan bilda jätteplaneter via kärnbildning.

Detta kan antingen bero på att vi felaktigt har beräknat massan av skivor vi kan observera genom teleskop eller att skivor har en större massa i början av en stjärnas liv, stadiet då de är mycket utmanande att analysera  (med dagens instrument), jämfört med senare i en stjärnas existens när vi kan observera dem lättare (då dammet inte är så kompakt i skivan).

Medförfattare i studien var även Dr Dan Bayliss (University of Warwick) skrev "Det är möjligt att vi inte förstår massorna av dessa protoplanetära skivor så bra som vi trodde att vi gjorde. Kraftfulla nya instrument som James Webb Space Telescope kommer att kunna studera egenskaperna hos dessa skivor mer detaljerat.

I artikeln beskrivs hur forskarna  försökte identifiera hur ofta jätteplaneter bildas runt stjärnor med låg massa och testade om denna förekomstfrekvens passade med vad kärnaccelerationsmodeller skulle förutsäga.

De använde en algoritm för att identifiera signalerna från transiterande gasjättar i ljus från stjärnor med låg massa. De kontrollerade sedan dessa signaler och diskonterade ett antal falska positiva resultat.

För att avgöra hur sannolik deras metod var att upptäcka gasjättar som kretsar kring dessa stjärnor är satte de in simuleringar av tusentals signaler från transiterande planeter i TESS insamlad stjärnljusdata och körde sedan algoritmen för att se hur många av planeter som skulle detekteras.

Nu arbetar forskarna vidare med att försöka bekräfta om ljusen är stora gasplaneter (eller utesluta) nio av de 15 kandidatplaneter de identifierat (fem har hittills bekräftats som planeter). Dessa kandidater kan potentiellt vara följeslagare till stjärnor eller det kan finnas en annan anledning till nedgångarna i ljusstyrka. Teamet kommer att dra slutsatsen om dessa objekts massor genom att leta efter en anomali i deras sols position, vilket indikerar den möjliga planetens gravitation.

Bild https://phys.org  Illustratörs intryck av soluppgången på planeten NGTS-1b, en gasjätte som tidigare upptäckts kretsa kring en stjärna med låg massa. Upphovsman: University of Warwick / Mark Garlick.

onsdag 5 april 2023

Damm från rymden kan innehålla tecken på liv någonstans i universum

 


Tomonori Totani, astrobiolog vid University of Tokyo föreslår att sökandet efter liv bortom jorden utvidgas till studier av rymddamm. I en artikel publicerad i tidskriften International Journal of Astrobiology nyligen föreslår Totani att rymdstoft kan innehålla spår av liv som sprängts bort från planeter genom meteoritnedslag (ex spår från nuvarande eller tidigare liv på någon måne eller planet i vårt solsystem i det förgångna eller exoplanet långt därute).

Trots många års ansträngningar har tecken på liv bortom jorden aldrig hittats. Det finns två möjliga orsaker till detta; Den första är att det inte finns något liv där ute att hitta. Det andra är att vi saknar tekniken för att hitta det på grund av de stora avstånden. En del av problemet, konstaterar Totani, är utmaningarna att studera mängden av exoplaneter ljusår bort.

Därför föreslår han ett alternativt tillvägagångssätt. Analysera rymddamm som har landat på jorden. Sådant damm finns oförstört av jordiska organismer i isfält runt polerna konstaterar han och eventuellt även i vår atmosfär.

Totani konstaterar att meteoriter  träffar planeter över hela Vintergatan och varje gång det händer kastas en del  skräp efter nedslaget tillbaks ut i rymden. Och om den planet där nedslaget skett råkar hysa liv kan tecken av det kastas ut tillsammans med det damm som flyger ut i universum och efter ljusår hamna på jorden.

Totani föreslår att den optimala storleken för rymdstoft är ungefär 1 mikrometer stora korn stora nog för att innehålla bevis på liv och tillräckligt små för att undkomma sin hemplanet och dess sols gravitation efter ett utkast. Dammet skulle kunna färdas tillräckligt långt för att nå avlägsna planeter som jorden över tid. Totani beräknar att cirka 100000 dammkorn efter ett meteoritnedslag därute hamnar på jorden varje år. Detta damm kan enligt Totani bära spår av liv från andra världar om det kommer från en sådan som har liv där nedslaget skedde. Detta damm kan analyseras efter biosignaturer.

Kanske men hur ska vi veta om spåren av liv i dessa dammkorn inte kommer från jorden efter att vi samlat in dem på jorden? Dammkorn av detta slag bör samlas in på ex Mars eller månen inte på jorden. Om dammet är mycket gammalt kan det även ha kommit från jorden kanske från asteroiden som utplånade dinosauriernas tid. Mycket damm for säkert upp i rymden efter denna händelse. För att vara säker på att damm av detta slag inte kommer från jorden måste biosignaturer som hittas vara av okänt jordiskt slag. Sedan bör vi ta med i beräkningarna att närmaste stjärna med exoplaneter finns ca 4 ljusår bort (Alfa centauri) och dammoln inte färdas med  samma hastighet som ljuset. Många gånger samlas de och blir på kvar på en bestämd plats. Långt ifrån alla moln av detta slag färdas runt i universum och dess hastighet kan vara mycket låg om de gör detta.

Bild pixabay.com