Google

Translate blog

tisdag 23 april 2024

En uråldrig galax hittades av Webbteleskopet

 


En massiv uråldrig galax som fått beteckningen JWST-ER1g  och som bildades när universum var en fjärdedel av sin nuvarande ålder upptäcktes nyligen av Webbteleskopet.

Fenomenet Einsteinring är förknippad med denna galax. Einsteinring är en term inom astronomin för den deformation i form av en ring som ljuset från en avlägsen källa, ex en galax eller en stjärna, bildar genom att ljuset böjs på grund av påverkan av gravitationen från en stor massa (som en annan galax eller ett svart hål) på sin väg mot oss (något som finns mellan oss och källan). En gravitationslinsning  är ett fenomen som bryter ljuset från en ljuskälla på dess väg till observatören och förstorar källans ljus. Fenomenet förutspåddes i Einsteins allmänna relativitetsteori. 

Den totala massan som är innesluten inom Einsteinringens radie – har två komponenter: stjärnmassa och mörk materia.  Även om mörk materia aldrig har upptäckts i laboratorier är fysiker övertygade om att mörk materia finns och utgör 85 procent av universums materia (jag däremot tvekar på detta och anser att det antingen är en form av vanlig materia vi inte förstår  eller bör vi helt övergå till strängteorin).

"Om vi subtraherar stjärnmassan från den totala massan får vi den mörka materians massa inom Einsteins ring", beskriver Hai-Bo Yu, professor i fysik och astronomi vid University of California,

"När vanlig materia – orörd gas och stjärnor – kollapsar och kondenseras till den mörka materians halo i JWST-ER1g, kan det komprimera halon, vilket leder till en hög densitet", beskriver Demao Kong,  andraårsdoktorand vid UCR, som var den som ledde analysen. – Våra numeriska studier visar att den här mekanismen kan förklara den höga koncentrationen av mörk materia i einsteinringen runt JWST-ER1g. 

Enligt Daneng Yang, postdoktoral forskare vid UCR och medförfattare till artikeln, ger JWST-ER1g, som bildades 3,4 miljarder år efter Big Bang, "en fantastisk möjlighet att lära oss om mörk materia".

"Detta starka linsobjekt är unikt eftersom det är en perfekt Einstein-ring, från vilken vi kan få värdefull information om den totala massan inom Einsteins radie vilket är ett steg för att testa mörk materias egenskaper", beskriver Yang.

"JWST ger oss en aldrig tidigare skådad möjlighet att observera uråldriga galaxer som bildades när universum var ungt", beskriver Yu.

Studien stöddes av John Templeton Foundation och U.S. Department of Energy.

Bild vikipedia (engelsk). Einsteinring.

måndag 22 april 2024

Hur Pluto fick sin hjärtformation

 


Gåtan om hur Pluto fick sin hjärtformation  på sin yta har lösts av ett internationellt team av astrofysiker från universitetet i Bern och medlemmar från National Center of Competence in Research (NCCR) PlanetS.  Enligt deras forskning präglades Plutos tidiga historia av en omvälvande händelse som bildade Sputnik Planitia (den hjärtformade regionen se bild ovan): under en kollision med en mindre kropp med en diameter av cirka 700 km.

Forskarlagets resultat publicerades nyligen i Nature Astronomy och visar hur Plutos inre struktur skiljer sig från hur man tidigare antagit den var och visar även att det troligast inte finns ett hav under ytan av detta kväveisfält. Hjärtformationen är även känt som Tombaugh Regio. Det som fångade forskarnas intresse när formationen först upptäcktes är att den är täckt av ett material med hög albedo vilket betyder att området reflekterar mer ljus än omgivning utanför hjärtformationen vilket ger dess vitare färgtoning.

 "Hjärtat" består dock inte av ett enda element. Sputnik Planitia (den västra delen) täcker en yta på 1200 * 2000 kilometer, vilket motsvarar en fjärdedel av Europa eller USA. Det som är slående är att denna region ligger tre till fyra kilometer lägre ner i Plutos yta än större delen av Plutos övriga yta.

"Sputnik Planitias vitaktiga utseende beror på att det till största delen är fyllt med kväveis som rör sig och konvekterar och ständigt jämnar ut ytan. Denna kväveis ackumulerades troligen snabbt efter kollisionen vilket förklarar att ytan är lägre än omgivningens, beskriver Dr. Harry Ballantyne från universitetet i Bern och huvudförfattare till studien. Den östra delen av "hjärtat" är också täckt av ett liknande men mycket tunnare lager av kväveis, vars ursprung fortfarande är oklart för forskarna, men som troligen är relaterat till Sputnik Planitia." Den långsträckta formen på Sputnik Planitia tyder på att kollisionen inte var en direkt frontalkollision utan snarare en sned sådan", påpekar Dr. Martin Jutzi vid universitetet i Bern.

För ytterligare information om  studien se denna länk från Universitetet i Bern. 

Bild vikipedia Pluto sedd från New Horizons 14 juli 2015.

söndag 21 april 2024

Stjärnvind (solvind) vid tre solliknande stjärnor

 


En internationell forskargrupp under ledning av Kristina Kislyakova, senior forskare vid institutionen för astrofysik vid universitetet i Wien, har upptäckt röntgenstrålning från astrosfären (kan liktydas med atmosfär men kallas astrosfär då det handlar om stjärnors atmosfär med undantag av solen atmosfär som är uppdelad i kromosfär och korona) från tre solliknande stjärnor.

Resultatet, som bygger på observationer med rymdteleskopet XMM-Newton  publicerades nyligen i Nature Astronomy. Forskarna observerade syrejonernas spektrala fingeravtryck (så kallade spektrallinjer) med XMM-Newton och kunde bestämma mängden syre och slutligen den totala massan av stjärnvinden från stjärnorna.

 De tre stjärnorna var 70 Ophiuchi (en dubbelstjärna 16 ljusår bort i riktning mot stjärnbilden Ormbäraren)  , epsilon Eridani (ca 5 ljusår bort mot Epsilon stjärnan kan ses med blotta ögat) och 61 Cygni (en dubbelstjärna 1 0ljusår bort i riktning mot stjärnbilden Svanen). Forskarna uppskattade deras massförlust till 66,5,5±11,1, 15,6±4,4 respektive 9,6±4,1 gånger solmasseförlust. Det betyder att stjärnvindarna från dessa stjärnor är mycket starkare än solvinden från vår sol, vilket kan förklaras av att det är starkare magnetisk aktivitet i dessa stjärnor.

Stjärnvinden (solvinden) är en plasmavind (ett flöde av laddade partiklar, främst elektroner och protoner) som ständigt skickas ut från solen, rakt genom solsystemet. Solvinden fyller solsystemet och utgör därför en huvudbeståndsdel i det interplanetära mediet. Troligen har alla stjärnor har liknande utflöden, i vissa fall tusentals gånger starkare, och stjärnvind är den allmänna benämningen på stjärnors utflöden medan det från solen kallas solvind.

– I vårt solsystem har solvind observerats från ytan från planeter och kometer (av farkoster som landat på dessa obs objekten själva tar emot denna vind sänder inte ut den) och heliosfären och utgör ett naturligt laboratorium för att studera solvindens sammansättning, förklarar studiens huvudförfattare Kristina Kislyakova. – Att observera denna strålning från avlägsna stjärnor är mycket svårare på grund av den svaga signalen. Dessutom gör avståndet till stjärnorna det mycket svårt att särskilja signalen som sänds ut av astrosfären  från  röntgenstrålningen från stjärnan själv, av vilken en del "sprids" över teleskopets synfält på grund av instrumentella effekter.

Kislyakova  påtalar även att ”Vi har utvecklat en ny algoritm för att särskilja stjärnornas astrosfäriska utkast till emissionen och detekterat laddningsutbytessignaler som kommer från stjärnvindar, syrejoner och det omgivande neutrala interstellära mediet från de tre huvudseriestjärnorna som nämns ovan. Detta är första gången som strålning från röntgenladdningsutbyte från astrosfärer från sådana stjärnor har upptäckts. Våra uppskattade massförlusthastigheter kan användas som ett riktmärke för stjärnvindsmodeller och utöka våra begränsade observationsbevis för vindar från solliknande stjärnor.

Medförfattaren Manuel Güdel, vid universitetet i Wien, tillägger: "Det har gjorts världsomspännande ansträngningar under tre decennier för att underbygga närvaron av vindar runt solliknande stjärnor och mäta deras styrka, men hittills har bara indirekta bevis baserade på deras sekundära effekter på stjärnan eller miljön antytt existensen av sådana vindar; Vår grupp har tidigare försökt detektera radiostrålning från vindarna men kunde bara sätta övre gränser för vindstyrkorna utan att detektera vindarna själva. Våra nya röntgenbaserade resultat banar väg för att hitta och avbilda dessa vindar direkt och studera deras växelverkan med omgivande planeter.

Bild https://medienportal.univie.ac.at/ Infraröd bild av chockvågen (röd båge) som skapats av den massiva jättestjärnan Zeta Ophiuchi i ett interstellärt stoftmoln. De svaga vindarna från solliknande stjärnor i huvudserien är mycket svårare att observera C: NASA/JPL-Caltech; NASA och Hubble Heritage Team (STScI/AURA); C. R. O'Dell, Vanderbilt University

lördag 20 april 2024

Nya rön om hur stjärnor utvecklas

 


Forskare vid Kyushu University i Fukuokai Japan har ger ny kunskap över  hur stjärnor utvecklas från sin begynnelse. Med hjälp av radioteleskopet ALMA i Chile upptäckte forskarlaget att den protoplanetära skivan som omger en ung stjärna under bildning  avger plymer av stoft, gas och elektromagnetisk energi. Dessa utkast frigör magnetiska flöden i den protoplanetära skivan. Flöden som man misstänker har en viktig del i stjärnbildning. Stjärnor, inklusive vår sol, utvecklas alla från stora koncentrationer av gas och stoft som så småningom kondenseras och bildar början och fortsättningen  till en ny stjärna. Processen sker i gas och stoft som bildat en ring runt den nya stjärnan (den protoplanetära skivan). 

De här strukturerna av gas och stoft i skivan innehåller även  magnetfält vilket resulterar i ett magnetiskt flöde i skivan. Men om detta magnetiska flöde bibehölls under hela stjärnans utveckling (samtidigt som gas och stoft  minskar i den protoplanetära skivan ) skulle  magnetfältet bli många storleksordningar starkare än de som observerats i någon känd protostjärna, beskriver Kazuki Tokuda vid Kyushu Universitys naturvetenskapliga fakultet och huvudförfattare till studien.

Därför har forskare antagit att det finns något under stjärnutveckling som minskar det magnetiska flödet. Den förhärskande uppfattningen är att magnetfältet gradvis försvagas över tid när skivan till stor del genom gravitation dras in i stjärnan under dess bildande.

För att bekräfta eller förfalska detta påstående tog teamet sikte på MC 27, en stjärna under bildning som finns cirka 450 ljusår från jorden. Observationerna samlades in med hjälp av ALMA-teleskopet i Chile som består av en samling av 66 radioteleskop.

"När vi analyserade våra insamlade data hittade vi något helt oväntat. Det fanns  "spikliknande" strukturer (utkast) som sträckte sig några astronomiska enheter från den protoplanetära skivan. När vi fortsatte analysera utkasten upptäcktes att utkasten bestod av magnetiskt flöde, stoft och gas, beskriver Tokuda.

Utkasten bör vara förklaringen till hur magnetfältet minskar plus en del gas och stoft.

Ett fenomen som kallas "interchange instabilityt" där instabiliteter i magnetfält reagerar utifrån de olika densiteterna av gas i en protoplanetär skiva, vilket resulterar i en utåtriktad utdrivning av magnetiskt flöde som ses som dessa spikliknande strukturer.

Studiens resultat har publicerats i The Astrophysical Journal.

Bild vikimedia https://commons.wikimedia.org/

fredag 19 april 2024

Ännu förstår vi inte norrskenet.

 


De energirika elektroner som driver norrskenet har en rik och mycket dynamisk struktur som vi ännu inte helt förstår. Mycket av det vi vet om dessa elektroners rörelser kommer från instrument som har fundamentala begränsningar i sin förmåga att mäta flera energier samtidigt med hög tidsupplösning. För att övervinna denna begränsning använder NASA ett innovativt tillvägagångssätt för att nu utveckla instrument som kommer att förbättra vår mätkapacitet med mer än en storleksordning – vilket bör avslöja en mängd ny information om vad som fysiskt sker i ett norrsken.

Dagens elektroninstrument förlitar sig på en teknik som kallas elektrostatisk avböjning, vilket kräver att man ändrar spänning för att kunna välja olika energislag av elektronhändelser som ska mätas. Dessa instrument har varit med på många rymduppdrag och har tillhandahållit nästan alla elektronmätningar som gjorts inuti norrsken. De fungerar utmärkt när man observerar på tidsskalor på sekunder eller till och med ner till cirka en tiondels sekund, men de kan i grunden inte observera ner till mindre tidsskalor (millisekunder) på grund av den tid det tar att svepa genom skilda spänningsfält.

Vid utformningen av APES (Acute Precipitating Electron Spectrometer ) (det nya instrument som snart ska börja användas) var man tvungen att göra en stor kompromiss. För att magnetfältsgeometrin ska fungera korrekt kan instrumentet endast observera i en riktning. Detta koncept fungerar bra om målet bara är att mäta de utfällande (nedåtgående) elektronerna i norrskenet som träffar atmosfären. Vi vet dock att elektroner i norrskenet även rör sig i andra riktningar; Faktum är att dessa elektroner innehåller mycket information om andra fysikaliska processer som sker längre ut i rymden.

För att möjliggöra mätning av elektroner i mer än en riktning utvecklade Goddard-teamet instrumentkonceptet APES-360. För att skapa APES-360-designen använde teamet samma funktionsprincip som används i APES, men uppdaterade systemet för att få en riktningsgeometri med flera möjligheter som täcker ett 360-graders synfält över 16 olika sektorer. Teamet var tvunget att övervinna flera tekniska utmaningar för att utveckla APES-360-konceptet. I synnerhet var elektronikkonstruktionen tvungen att rymma många fler anoder (laddningsdetekteringsytor) och tillhörande kretsar på en liten yta.

Prototypen APES-360 som för närvarande byggs kommer att testas och kalibreras vid NASA:s Geophysics Laboratory vid NASA:s Goddard Space Flight Center och kommer att finnas på en sond som ska sändas in i ett aktivt norrsken vintern 2025. Detta uppdrag kommer att ge data inifrån norrskenet som ska användas för att validera instrumentets prestanda och ge information till framtida designförbättringar.

Bild pxhere.com

torsdag 18 april 2024

Så kan jorden bestå när solens tid är ute

 


För närvarande förbränner solen väte i sin kärna, men när detta är förbrukat om ca 5 miljarder år kommer solen att expandera och bli en röd jättestjärna , därefter dras den samman och blir en vit dvärgstjärna till en komprimerad massa och en radie på ca10 km. En massa och där en tesked väger ca en miljard ton.

Om jorden "slukas" av den röda solen eller lyckas undkomma genom att den trycks längre ut får tiden utvisa. Men den blir i båda fallen obeboelig, atmosfären försvinner och ytan förbränns totalt.

De inre planeterna Merkurius och Venus kommer dock med största sannolikhet att krossas och uppslukas av solen vilket beskrivs i en ny artikel som publicerats nyligen i Monthly Notices of the Royal Astronomical Society (MNRAS). 

Forskaren Dr Amornrat Aungwerojwit vid Naresuan University i Thailand beskriver: "Tidigare forskning har visat att då asteroider, månar och planeter kommer nära vita dvärgstjärnor (vår sol slutar som en sådan), sliter den enorma gravitationen från dessa stjärnor sönder små planeters materia till mindre och mindre bitar."

Det innebär att eventuella rester efter solens slukande av dem i dess röda fas försvinner in i den vita dvärgstjärnan efter att materian slitits itu när solen blivit en vit dvärg.

Kollisioner mellan dessa bitar maler dem så småningom till stoft, som sedan faller in i den vita dvärgen, vilket gör det möjligt för forskare att avgöra vilken typ av material de ursprungliga planetkropparna bestod av. De söker svar på detta vid undersökning av redan bildade vita dvärgstjärnor Se tre ex här.

Hur vårt solsystem ser ut om fem miljarder år efter att ha studerat vad som händer med planetsystem som vårt eget när deras värdstjärnor blivit vita dvärgar blev slutsatsen att om jorden uppslukades av solen, tillsammans med Venus och Merkurius, skulle det lämna Mars och de fyra gasjättarna - Jupiter, Saturnus, Uranus och Neptunus - i omloppsbana runt vad som i slutändan skulle bli en vit dvärg.

Bild vikipedia. Jorden, bilden tagen av Apollo 17

onsdag 17 april 2024

En gång vände månen ut och in på sig själv

 


För ungefär 4,5 miljarder år sedan kraschade en liten planet in i den unga jorden och det slungades då ut smält sten från kraschen ut i rymden. Långsamt drogs den smälta stenen samman av gravitation och rörelse, svalnade, stelnade och blev till vår måne. Detta scenario för hur jordens måne kom till är det som de flesta forskare i stort sett överens om (men inte hur processen såg ut, teorin kallas Theiateorin).

Månen bildades enligt teorin relativt snabbt och täcktes av ett hett globalt magmahav. När den smälta stenen gradvis svalnade och stelnade bildades månens mantel och den ljusa skorpa vi ser då månens yta vid fullmåne. Men djupt under ytan var den unga månen helt ur balans. Datamodeller tyder på att det sista av bottensatsen i magmahavet kristalliserades till täta mineraler, exempelvis ilmenit, ett mineral som innehåller titan och järn.

"Då dessa tunga mineraler var massivare än manteln skedde en gravitationell instabilitet och man kan förvänta sig att dessa tunga mineral sjönk djupare in i månens inre", beskriver Weigang Liang, som ledde forskningen som en del av sitt doktorandarbete vid LPL (Lunar planetary laboratory vid university of Arizona).

På något sätt under årtusendena som följde sjönk det täta materialet in i det inre, blandades med manteln, smälte och återvände upp till ytan som titanrika lavaströmmar som vi i dag ser på  ytan.

"Vår måne vände bokstavligen ut och in på sig själv", beskriver medförfattaren till studien  LPL-professorn Jeff Andrews-Hanna. "Men det har funnits få fysiska bevis för  det exakta händelseförloppet under denna  fas av månens historia och det finns en hel del oenighet i detaljerna om vad som hände."

Sjönk detta material när det bildades lite i taget eller på en gång efter det att månen  hade stelnat? Sjönk den in i det inre globalt och steg sedan upp på motsatta sidan? Sjönk det i en stor klump eller i flera mindre blobbar?

I studien jämförde författarna simuleringar av ett sjunkande ilmenitrikt lager med en uppsättning linjära gravitationsanomalier. Anomalier vilka upptäcktes av NASA:s GRAIL-uppdrag, vars två rymdfarkoster kretsade runt månen mellan 2011 och 2012 och mätte små variationer av dess gravitationskraft. Dessa linjära anomalier omger ett vidsträckt mörkt område på månens sida mot oss som täcks av vulkaniska flöden som kallas mare (latin för "hav").

För mer och utförligare redovisning av detta händelseschema se följande länk från University of Arizona 

Bild vikipedia. En illustratörs skildring av den hypotetiska effekten av då planeten Theia och jorden krockade och månen bildades.