Google

Translate blog

söndag 14 december 2025

Vintergatans kemiska historia

 


Bilden från wikipedia  är en  avbildning av bråte i Gaia-Enceladus-galaxen. Gula pilar representerar positioner och hastigheter för stjärnor som härstammar från dvärggalaxen, data är hämtade från en simulerad sammansmältning med Vintergatan med liknande egenskaper som den man tror har ägt rum för 8-10 miljarder år sedan. Krediter: ESA (konstnärens tolkning och komposition); Koppelman, Villalobos och Helmi (simulering)

Ledtrådar om hur galaxer som vår Vintergata bildas och utvecklas och varför stjärnor uppvisar kemiska mönster  avslöjas i en ny studie (se nedan).

Den nya studien, skedde  under ledning av forskare vid Institute of Cosmos Sciences vid Universitetet i Barcelona (ICCUB) och Centre national de la recherche scientifique (CNRS). I arbetet användes avancerade datorsimuleringar (kallade Auriga-simuleringar) för att återskapa troliga bildandet av galaxer som Vintergatan i ett virtuellt universum. Genom att analysera 30 simulerade galaxer letade teamet efter ledtrådar om hur dess kemiska sekvenser bildas.

Att förstå Vintergatans kemiska historia hjälper forskare att förstå hur vår galax och  liknande galaxer kom till. Det inkluderar vår granngalax Andromeda. Historien ger också ledtrådar om förhållandena i det tidiga universum och rollen för kosmiska gasflöden och galaxsammanslagningar.

"Studien visar att Vintergatans kemiska struktur inte är en universell ritning," beskriver huvudförfattaren Matthew Orkney, forskare vid ICCUB och Institut d'Estudis Espacials de Catalunya (IEEC).

"Galaxer kan följa olika utvecklingsvägar för att nå liknande resultat och den mångfalden är nyckeln till att förstå galaxutveckling."

Studien visar att galaxer som Vintergatan kan utvecklas ur två distinkta kemiska sekvenser med olika mekanismer. I vissa fall uppstår två sekvenser från utbrott av stjärnbildning följt av perioder med liten aktivitet, medan den i andra fall beror på förändringar i gasinflödet från galaxens omgivning.

Tvärtemot tidigare antaganden är kollisionen med en mindre galax känd som Gaia-Sausage-Enceladus (GSE) inte en nödvändig förutsättning för att detta kemiska mönster ska uppstå. Istället visar simuleringarna att metallfattig gas från det cirkumgalaktiska mediet (CGM) spelar en avgörande roll i bildandet av den andra stjärnbildningssekvensen.

Dessutom är formen av dessa kemiska sekvenser nära kopplad till galaxens stjärnbildningshistoria.

När nya teleskop som James Webb Space Telescope (JWST) och kommande  som PLATO och Chronos teleskop som kommer att ge mer detaljerade data om stjärnor och galaxer och då kommer forskare att kunna testa ny data och förfina vår bild av kosmos.

"Studien förutspår att andra galaxer kan uppvisa en mångfald av kemiska sekvenser. Något som kommer  att undersökas i 30-metersteleskopens era där sådana studier i yttre galaxer kommer att bli rutin," beskriver Dr Chervin Laporte från ICCUB-IEEC, CNRS-Observatoire de Paris och Kavli IPMU.

Studiens resultat publicerades nyligen i MonthlyNotices of the Royal Astronomical Society och i denna beskrivs ursprunget till en förbryllande egenskap i Vintergatan, förekomsten av två distinkta grupper av stjärnor med olika kemiska sammansättningar kända som "kemisk bimodalitet".

lördag 13 december 2025

Närbilder på novor

 


Bild wikipedia Teckning av en blivande nova där den vita dvärgstjärnan drar till sig  massa från den röda jättestjärnan. 

Astronomer har tagit bilder av två stjärnexplosioner så kallade  novor under några dagar efter deras utbrott i en aldrig tidigare skådad detaljrikedom. Genombrottet ger direkt bevis för att dessa explosioner är mer komplexa än man tidigare trott då de innehåller  flera utflöden av material i utkastningsprocessen.

"Bilderna ger oss en närbild av hur material kastas ur stjärnan under explosionen," beskriver Georgia States Gail Schaefer, chef för CHARA Array vid Georgia state university . "Att fånga dessa tillfälliga händelser kräver flexibilitet och anpassning av vårt nattliga schema vid teleskopet när nya händelser är på gång." 

Novor uppstår när en tät stjärnrest så kallad vit dvärg genomgår en okontrollerad kärnreaktion efter att ha dragit till sig material från en följeslagarstjärna. Fram till nyligen kunde astronomer endast indirekt dra slutsatser om de tidiga stadierna av dessa utbrott, eftersom det expanderande materialet framträdde som en enda olöst ljuspunkt i telekopet.

Att avslöja hur utkastningarna skjuts ut och interagerar är avgörande för att förstå hur chockvågor bildas i novor vilka först upptäcktes av NASAs Fermi Large Area Telescope (LAT). Under sina första 15 år upptäckte Fermi-LAT GeV-emission från mer än 20 novor, vilket etablerade dessa explosioner som galaktiska gammastråleutsändare och lyfte fram deras potential som multibudbärarkällor.

Den internationella studien som nu blivit klar är publicerad i tidskriften Nature Astronomy 

 "Bilderna ger oss en närbild av hur material kastas bort från stjärnan under explosionen," beskriver Georgia States Gail Schaefer, chef för CHARA Array. "Att fånga dessa tillfälliga händelser kräver flexibilitet att anpassa vårt nattliga schema när nya möjligheter upptäcks."

fredag 12 december 2025

Astronomer har upptäckt en av de största roterande strukturerna i universum hittills.

 


Bild https://www.ox.ac.u Bilden illustrerar rotationen av neutralt väte (höger) i galaxer som befinner sig i ett utsträckt filament (mitten), där galaxerna uppvisar en koherent bulkrotationsrörelse som följer det storskaliga kosmiska nätverket (vänster). Källa: Lyla Jung

Ett internationellt team under ledning från University of Oxford har identifierat en av de största roterande strukturerna som någonsin rapporterats i form av en 'rakbladstunn' rad av galaxer inbäddade i en gigantisk snurrande kosmisk tråd, 140 miljoner ljusår bort.

Kosmiska filament är de största kända strukturerna i universum. Det är enorma trådliknande formationer av galaxer och mörk materia som bildar ett kosmiskt mönster. De fungerar även som motorvägar längs vilka materia och rörelse flödar in i galaxer.

 Närliggande filament innehåller många galaxer som snurrar i samma riktning hela strukturer verkar rotera. Något som är idealiska system till att utforska hur galaxer fick det spinn och den gas de har idag. De kan också ge ett sätt att testa teorier om hur kosmisk rotation byggs upp över tiotals miljoner ljusår. I den nya studien fann forskarna 14 närliggande galaxer rika på vätgas, arrangerade i en tunn, utsträckt linje av en längd på cirka 5,5 miljoner ljusår och en bredd av117 000 ljusår. Denna struktur finns inuti en mycket större kosmisk tråd som innehåller över 280 galaxer och som är ungefär 50 miljoner ljusår lång.

 Anmärkningsvärt nog verkar många av dessa galaxer snurra i samma riktning som filamentet självt. Detta utmanar nuvarande modeller och antyder att kosmiska strukturer kan påverka galaxernas rotation starkare och under längre tid än man tidigare trott.

Forskarna fann att galaxerna på vardera sidan av filamentets centrum rör sig i motsatta riktningar vilket tyder på att hela strukturen roterar. Med hjälp av datamodeller av filamentets dynamik drog de slutsatsen  att rotationshastigheten var 110 km/s och uppskattade radien för filamentets centrala region till cirka 163 000 ljusår.

Det internationella forskarteamet använde insamlad data från Sydafrikas MeerKAT-radioteleskop, ett av världens mest kraftfulla radioteleskop, bestående av en uppsättning av 64 sammanlänkade parabolantenner. Det snurrande filamentet upptäcktes genom en djup undersökning av himlen kallad MIGHTEE /  under ledning av astrofysikprofessorn Matt Jarvis (Fysikinstitutionen, University of Oxford). Datan kombinerades med optiska observationer från Dark Energy Spectroscopic Instrument (DESI)   och Sloan Digital Sky Survey (SDSStill att avslöja en kosmisk filament som uppvisar både koherent galaxspinnjustering och bulkrotation.

Resultaten, av  studien har publicerats i Monthly Notices of the Royal AstronomicalSociety. 

Han fick Change Award priset för forskning om universums tyngsta grundämnen

 


Bild https://www.ox.ac.uk/  Professor Stephen Smartt från Oxfords universitets fysikinstitution

Professor Stephen Smartt vid Oxfords universitets fysikinstitution är medlem i ett internationellt samarbete som har uppmärksammats med det första Into Change Award från Danmarks ministerium för högre utbildning och vetenskap. Priset hedrar framstående europeiska forskargrupper vars arbete ger vetenskapliga genombrott, gynnar samhället och speglar kärnvärden som nyfikenhet, samarbete och öppenhet.

Priset erkänner ENGRAVE-samarbetet (elektromagnetiska motsvarigheter till gravitationella vågkällor vid Very Large Telescope) i att spåra ursprunget till universums tyngsta grundämnen, skapade av supernovaexplosioner. Genom att göra detta har det hjälpt till att avslöja själva byggstenarna i vår existens.

Priset hyllar ENGRAVE som en modell för vetenskaplig excellens och samarbete, särskilt för dess gemensamma europeiska samordning av teleskop och datainsamling, öppen vetenskaplig ansats och aktiva engagemang av unga forskare. Professor Smartt var en av grundarna av ENGRAVE-samarbetet och den första ordföranden för styrelsen. I september 2022 började professor Smartt vid Oxford University som Wetton Professor i astrofysik och är direktör för Hintze Centre for Astrophysical Surveys.

Professor Smartt beskriver: 'Det är fantastiskt att få detta pris. Jag är mycket stolt över att det europeiska samfundet samlades 2018 för att kombinera sina talanger och beslutade att arbeta tillsammans med dessa sällsynta källor istället för att konkurrera om teleskoptid. Det har varit fantastiskt att se de yngre forskarna i teamet arbeta entusiastiskt tillsammans och dela idéer och svara på ny data i realtid. Det finns verklig energi och insikt från teamet varje gång vi svarar på en gravitationsvågsvarning.'

'Det är en ny era av multibudsastronomi, där gravitationsvågor och ljus tillsammans hjälper oss att besvara grundläggande frågor om vårt universum och vilka vi är genom ENGRAVE har vi visat vad vi kan uppnå med europeiskt samarbete.'

Into Change Award har en prissumma på 8 miljoner danska kronor (cirka 1 miljon euro). Priset 2025 möjliggjordes tack vare generösa bidrag från Carlsberg Foundation, Novo Nordisk Foundation och Villum Foundation. Den kommer att presenteras den 15 december 2025 på Köpenhamns operahus.

Ytterligare information finns på ENGRAVE:s webbplats 

onsdag 10 december 2025

Våldsamma kollisioner mellan galaxer.

 


Bild wikipedia på Andomedagalaxen vilken en gång i en avlägsen framtid kommer att sammanslås med Vintergatan.

Nästan alla massiva galaxer innehåller ett massivt svart hål (SMBH) i centrum. De flesta döljs i mörkret medan de drar i sig gas, damm och stjärnor från omgivningen. Materia som samlas i det svarta hålets ackretionsskiva innan det oåterkalleligt dras ner i avgrunden och avger strålning som avslöjar det svarta hålets position.

En liten andel av galaxerna har en SMBH som lyser starkt eller till och med trycker ut material från sina poler. Dessa kallas aktiva galaxkärnor (AGN). Vissa astronomer har utarbetat teorier om att våldsamma kollisioner mellan galaxer kan spela en viktig roll i antändningen av AGN. Den resulterande turbulensen kan få det extra materialet att samlas i en SMBH:s ackretionsskiva, där friktion och kompression gör materia  varmt nog för att lysa starkt. I de mest extrema fallen är AGN så ljusstarka att de helt överglänser sina värdgalaxer.

Med användning  av den nya AGN-identifieringsmetoden på en miljon galaxer bekräftar Euclid-konsortiet där huvudförfattarna Antonio la Marca och Lingyu Wang från SRON (Space Research Organisation Netherlands) till artikeln nedan deltar nu hypotesen att galaxsammanslagningar spelar en viktig roll i antändningen av AGN. Den insamlade datamängd är tiotals gånger större än i tidigare studier och bekräftar detta. 'Vi drar också slutsatsen att sammanslagningar mycket sannolikt är den enda mekanismen som kan försörja de mest lysstarka AGN:n,' beskriver La Marca. 'Åtminstone är det den primära utlösaren.

'Innan lanseringen av teleskopet Euclid var det svårt att validera denna hypotes på grund av begränsad datakvalitet och små urvalsstorlekar. Men inom en vecka levererade Euclid bilder av hög kvalitet som täcker ett område nära den totala yta som Hubbleteleskopet observerat under över tre decennier.

För att fullt ut utnyttja kraften i dessa data har Euclid-konsortiet, inklusive huvudförfattarna Berta Margalef-Bentabol och Lingyu Wang från SRON, utvecklat ett nytt AI-verktyg för bilddekomposition som inte bara identifierar AGN utan även kvantifierar deras resultat. 'Detta nya tillvägagångssätt kan till och med avslöja svag AGN som andra identifieringsmetoder missar,' beskriver Margalef-Bentabol.

En artikel om studien och dess resultat finns här arxiv.org. 

tisdag 9 december 2025

Vad är klockan på Mars?

 


Bild wikipedia (engelsk) Topografisk karta över Mars med märkta formationer och Mars-dikotomin synlig (norra låglänta och södra höglandshalvklotet)

Marsianska dagar och år är längre än de på jorden. Planetens dag, eller full rotation runt sin axel är 40 minuter längre än jordens och det tar 687 dagar att fullborda en omloppsbana runt solen, jämfört med jordens 365 dagar. Forskare behöver veta hur snabbt eller långsamt varje sekund passerar på Mars jämfört med på jorden.

Om du skulle landa på Mars yta med en atomklocka skulle den fortfarande ticka på samma sätt som på jorden. Men om du jämför Marsklockan med en på jorden kommer de att vara ur synk. Utmaningen är att avgöra hur mycket Mars tid är förskjuten från jordens.

Det var mycket knepigare än vad NIST:s fysiker (National Institute of Standards and Technology, en amerikansk organisation under handelsdepartementet) hade förväntat sig. Einsteins relativitetsteori säger att gravitationens styrka påverkar tidens gång. Klockor tickar långsammare där gravitationen är starkare, och snabbare där gravitationen är svagare. Hastigheten på en planets bana får även klockorna att ticka antingen långsammare eller snabbare beroende på banans längd.

NIST valde en punkt på Mars yta som referens. Tack vare år av data insamlade från tidigare Marsuppdrag kunde Patla och NIST-fysikern Neil Ashby uppskatta gravitationen på Mars  yta, som är fem gånger svagare än jordens gravitation på ytan.

Men de behövde ta hänsyn till mer än bara Mars gravitation. Vårt solsystem har andra massiva kroppar som drar i varandra. Solen står ensam för mer än 99 % av massan i vårt solsystem. Mars position i solsystemet och avstånd från solen inclusive dess grannplanater som jorden, månen, Jupiter och Saturnus  ger den in i en mer excentrisk bana. Jordens och månens banor är relativt konstanta. Tiden på månen är konsekvent 56 mikrosekunder snabbare än tiden på jorden.

"Men för Mars är det inte så. Dess avstånd från solen och dess excentriska bana gör tidsvariationerna större. Ett trekroppsproblem är extremt komplicerat. Nu har vi att göra med fyra: solen, jorden, månen och Mars," beskriver Patla. "

Efter att ha tagit hänsyn till Marsytans gravitation utifrån Mars excentriska bana, solens, jordens och månens effekt på Mars kom Patla och Ashby fram till ett svar. Just nu är kommunikationen mellan jorden och Mars försenad med allt från fyra till 24 minuter (ibland mer).

Att ha en ram för timing mellan planeter banar väg för att skapa synkroniserade nätverk över enorma avstånd.  Einstein visade oss att klockor inte tickar i samma takt i universum. Klockor går något snabbare eller långsammare beroende på gravitationens styrka i omgivningen, vilket gör det knepigt att synkronisera våra klockor här på jorden, än mindre över det enorma solsystemet. Om människor vill etablera en långsiktig närvaro på den röda planeten behöver forskarna veta: Vad är klockan på Mars?

Nu vet man. I genomsnitt tickar klockor på Mars 477 mikrosekunder (miljondelar av en sekund) snabbare än på jorden. Mars excentriska bana och gravitationen från dess  grannar kan dock öka eller minska detta med så mycket som 226 mikrosekunder per dag under Mars-året.  Studiens resultat publicerades i The Astronomical Journal 

Studien är grundad på en tidigare artikel från 2024 där NIST:s fysiker utvecklade en plan för exakt tidmätning på månen.

måndag 8 december 2025

Jordens tidigaste atmosfärs regn innehöll annorlunda ingredienser än nuvarande regn

 


Bild https://www.publicdomainpictures.net/

Jordens atmosfär kan ha bidragit till livets ursprung mer än man tidigare trott.

Något som beskrivs i en studie publicerad den 1 december i "Proceedings of the National Academy of Sciences" 

 Likt kol är svavel ett essentiellt grundämne som finns i alla livsformer, från encelliga bakterier till människor. Det är en del i vissa aminosyror och byggsten i protein.

Även om den unga jordens atmosfär innehöll svavelelement hade forskare länge trott att organiska svavelföreningar eller biomolekyler som aminosyror uppstod senare som en produkt av levande organismer eller växter.

I tidigare simuleringar av den tidiga jorden misslyckades forskare att upptäcka betydande mängder svavelbiomolekyler. Tiden  innan liv existerade skapades molekyler endast under specialiserade förhållanden.

När James Webb Space Telescope upptäckte dimetylsulfid, en organisk svavelförening som produceras av marina alger på jorden i en exoplanets atmosfär kallad K2-18b  trodde många att det var ett möjligt tecken på liv där.

Men i tidigare arbete har Nate Reed postdoktoral forskare vid NASA  och studiens seniorförfattare Ellie Browne kemiprofessor och CIRES-stipendiat, framgångsrikt framställt dimetylsulfid i sitt laboratorium med endast ljus och vanliga atmosfärers gaser. Detta antyder att denna molekyl kan uppstå på platser där inget liv finns.

Den här gången såg  Browne och Reed och deras team på vad den tidiga jordens atmosfär kunde ha bidragit med. De belyste en gasblandning innehållande metan, koldioxid, vätesulfid och kväve för att simulera jordens atmosfär innan livet uppstod.

Svavel är ett svårt grundämne att arbeta med i laboratoriet, enligt Browne. Det tenderar att fastna på all utrustning, och i atmosfären finns svavelmolekyler ofta i mycket låga koncentrationer jämfört med CO2 och kväve. "Du måste ha utrustning som kan mäta otroligt små mängder av dessa," tillade hon. Med hjälp av ett mycket känsligt masspektrometriinstrument som kan identifiera och mäta olika kemiska föreningar fann  Brownes team att den tidiga jordsimuleringen producerade en hel uppsättning svavelbiomolekyler, inklusive aminosyrorna cystein och taurin, samt koenzym M, en förening som är kritisk för ämnesomsättningen påtalar forskare och samarbetspartners vid CU Boulder (Colorado University) vilket visar att Jordens tidiga atmosfär för miljarder år sedan kan ha producerat svavelhaltiga molekyler som är viktiga för att liv ska uppkomma.

Fyndet utmanar teorin om att dessa svavelmolekyler först uppstod efter att liv redan hade bildats.

"Vår studie kan hjälpa oss att förstå livets evolution i dess tidigaste skeden," beskriver huvudfattaren Nate Reed, postdoktoral forskare vid NASA, som utförde arbetet som postdoktoral forskare vid kemiska institutionen och Cooperative Institute for Research in Environmental Sciences (CIRES) vid CU Boulder.