Google

Translate blog

Visar inlägg med etikett källa. Visa alla inlägg
Visar inlägg med etikett källa. Visa alla inlägg

tisdag 23 januari 2024

Överraskande gammastrålning kom bortom vår galax

 


Gammastrålning eller γ-strålning är fotonstrålning så kallad joniserande strålning av fotoner.

Fermi Gamma-ray Space Telescope är ett rymdbaserat teleskop avsett för kosmisk gammaastronomi.

Astronomer som analyserat 13 års data från NASA:s rymdteleskop Fermi har upptäckt en oväntad och ännu oförklarlig händelse utanför vår galax.

Det var en helt slumpartad upptäckt, beskriver Alexander Kashlinsky, kosmolog vid University of Maryland och NASA:s Goddard Space Flight Center i Greenbelt som beskrev upptäckten vid American Astronomical Societys 243:e möte i New Orleans. Vi hittade en mycket starkare signal på en annan del av himlen, än den vi letade signaler på, beskrev han.

Intressant nog finns gammastrålningssignalen i en liknande riktning och med en nästan identisk magnitud som en annan oförklarlig egenskap, en som produceras av några av de mest energirika kosmiska partiklar som någonsin upptäckts (i form av de första atomernas ljus).

Teamet letade efter en gammastrålningsegenskap relaterad till CMB (kosmisk mikrovågsbakgrund), det äldsta ljuset i universum. Forskare säger att CMB uppstod när det heta, expanderande universum hade svalnat tillräckligt för att bilda de första atomerna, en händelse som frigjorde en explosion av ljus som för första gången kunde tränga ut kosmos. Utsträckt av den efterföljande expansionen av rymden under de senaste 13 miljarder åren, upptäcktes detta ljus först i form av svaga mikrovågor över hela himlen 1965. 

Forskarlaget ansåg att genom att lägga ihop många års data från Fermis LAT (Large Area Telescope), teleskopet som skannar hela himlen flera gånger dagligen kunde ett relaterat dipoleantennmönster upptäckas i gammastrålningen. Tack vare relativitetsteorins effekter bör gammastrålningsdipolen förstärkas med så mycket som fem gånger jämfört med de för närvarande detekterade CMB:erna.

Forskarna kombinerade 13 års Fermi LAT-observationer av gammastrålning över cirka 3 miljarder elektronvolt (GeV); Som jämförelse har synligt ljus energier mellan cirka 2 och 3 elektronvolt. De tog bort alla upplösta och identifierade källor och skalade bort Vintergatans centralplan för att analysera den extragalaktiska gammastrålningsbakgrunden.

"Vi hittade en gammastråldipol,  dess topp ligger på den södra himlen, långt från CMB:s, och dess magnitud är 10 gånger större än vad vi skulle förvänta oss genom vår rörelse med jorden", beskriver medförfattaren Chris Shrader, astrofysiker vid Catholic University of America i Washington och vid Goddard. "Även om det inte var vad vi letade efter misstänker vi att det kan vara relaterat till det vi sökte. Forskarna tror att  de två fenomenen är kopplade till varandra – att ännu oidentifierade källor producerar både gammastrålning och partiklar. För att lösa denna kosmiska fråga måste astronomer antingen lokalisera dessa mystiska källor eller föreslå alternativa förklaringar till båda egenskaperna. Något man hoppas kunna i framtiden.

En artikel som beskriver ovan fynd publicerades onsdagen den 10 januari i The Astrophysical Journal Letters.

Bild vikipedia NASA:s guide till elektromagnetiskt spektrum som visar överlappning av frekvens mellan röntgen- och gammastrålar.

söndag 9 juli 2023

Det finns mindre av neutrinor i Vintergatan än det finns i andra galaxer

 


Citerat från vikipedia "Neutrinon är en elementarpartikel som tillhör familjen leptoner och saknar elektrisk laddning. Den har halvtaligt spinn ({\displaystyle {\begin{matrix}{\frac {1}{2}}\hbar \end{matrix}}}) och är därför även en fermion. Neutrinon är universums mest (i antal) förekommande partikel. Neutrinon påvisades experimentellt 1956, vilket senare gav de amerikanska fysikerna Martin L. Perl och Frederick Reines nobelpriset i fysik" slut citat.

Högenergirika neutrinor med energi som är miljoner till miljarder gånger större än de som produceras genom de fusionsreaktioner som sker stjärnor, upptäcktes av IceCube Neutrino Observatory, en gigatondetektor som finns vid Amundsen-Scott South Pole Station. Detta observatorium byggdes av och drivs av National Science Foundation (NSF) med finansiering och stöd från de fjorton länder som är värdar och institutionella medlemmar i IceCube Collaboration. Denna unika detektor omfattar en kubikkilometer djup av antarktisk is med instrument bestående av mer än 5 000 ljussensorer. IceCube används som sökinstrument  efter tecken på högenergirika neutrinor från vår galax och bortom denna.

Som så ofta är fallet möjliggörs betydande genombrott inom vetenskapen av nya tekniska framsteg, beskriver Denise Caldwell, chef för NSF: s fysikavdelning. Funktionerna från den mycket känsliga IceCube-detektorn tillsammans med nya dataanalysverktyg har gett en helt ny bild av Vintergatan. Då dessa verktyg fortsätter att förfinas kan vi se fram emot att se den här bilden dyka upp med ständigt ökande upplösning vilket potentiellt avslöjar dolda funktioner i vår galax som aldrig tidigare setts av mänskligheten. Interaktioner mellan kosmisk strålning - högenergi protoner, tyngre kärnor, gas och damm ger både gammastrålar och neutrinor. Med tanke på observationen av gammastrålar i det galaktiska planet förväntades Vintergatan vara en källa till dessa högenergirika neutrinor.

Resultatet har nu mätts upp vilket bekräftar vad vi vet om våra galaxer och kosmiska strålkällor, beskriver Steve Sclafani, doktorand i fysik vid Drexel University, IceCube-medlem och de som ledde analysen. Sökandet fokuserade på södra stjärnhimlen då huvuddelen av neutrinoutsläpp från det galaktiska planet förväntades därifrån nära centrum av Vintergatan. Men hittills har bakgrunden av muoner och neutrinor som produceras genom kosmiska strålinteraktioner med jordens atmosfär inneburit betydande utmaningar. 

Därför utvecklade IceCube-medarbetare vid Drexel University analysmetoder som söker efter stora neutrinointeraktioner i isen på sydpolen då det resulterar i sfäriska ljusduschar. Den deponerade energin från dessa händelser i sydpolens is minskar föroreningen från atmosfäriska muoner och neutrinor. I slutändan gav därför händelsernas högre renhet och en bättre känslighet för astrofysiska neutrinor från södra himlen.

Det slutliga genombrottet kom dock från implementeringen av maskininlärningsmetoder utvecklade av IceCube-medarbetare vid TU Dortmund University, som förbättrar identifieringen av neutrinkaskader för att se varifrån de kommer och dess energirekonstruktion. Observationen av neutrinor från Vintergatan är ett kännetecken för det framväxande kritiska värdet som maskininlärning ger i dataanalys och händelserekonstruktion i IceCube.

De förbättrade metoderna gjorde det möjligt för oss att finna fler neutrinohändelser över en viss storleksordning med bättre vinkelrekonstruktion vilket resulterade i en analys  tre gånger känsligare än tidigare sökningar möjliggjort, skriver IceCube-medlem Mirco Hünnefeld, doktorand i TU Dortmund-fysik en av de som ledde analysen.

Datamängden som användes i studien inkluderade 60000 neutrinerspår som spänner över 10 års IceCube-data, 30 gånger mer händelser än som användes i en tidigare analys av det galaktiska planet med kaskadhändelser. Dessa neutriner jämfördes med tidigare publicerade förutsägelsekartor av platser på himlen där galaxen förväntades lysa av neutriner.

Kartorna inkluderade en extrapolering från FermiLarge Area Telescopav Vintergatan och två alternativa kartor identifierade som KRA-gamma av gruppen teoretiker som producerade dem. Att observera vår egen galax för första gången i partiklar istället för ljus är ett stort steg, beskriver Naoko Kurahashi Neilson, professor i fysik vid Drexel University. När neutrinoastronomin utvecklas kommer vi att ha en ny möjlighet att observera universum.

Observationen ovan av det galaktiska planet med IceCube gav djupgående konsekvenser i kunskap. Halzen och UW-Madison-kollegorna Ke Fang och Jay Gallaghers efterföljande analys av IceCube-resultatet indikerar att Vintergatan har tio till hundra gånger mindre neutrinoinnehåll än genomsnittet i andra galaxer. Detta kan vara en viktig ledtråd i sökningar efter lösningen av mysteriet om exakt var och hur högenergirik kosmisk strålning produceras i universum.

En implikation är att vår galax inte har varit värd för den typ av källa som producerade huvuddelen av högenergirika neutrinor under de senaste miljoner åren, beskriver Fang (IceCube samarbetspartner och biträdande professor vid UW-Madison) vilket är ungefär tiden sedan den senaste  större aktiviteten hos det svarta hålet i Vintergatan. Planerade och framtida uppföljningsanalyser av IceCube kommer att öka vår förståelse av partikelacceleratorerna i vår egen galax.

Med detta kan man möjligen anta att svarta hål kan vara källan till neutrinoutkast.

Bild vikpedia  Den första observationen av en neutrino i en bubbelkammare (1970). En neutrino kommer från höger, träffar en proton och tre laddade partiklar lämnar spår. En myon uppstår och lämnar det långa spåret till det övre vänstra hörnet; protonen lämnar det korta spåret snett uppåt; det tredje spåret är en pimeson som skapats i kollisionen.

tisdag 2 juni 2020

Allt liv i universum kan komma från samma händelseförlopp


Innan djur, bakterier och DNA fanns på jorden utvecklade sig självreplikerande molekyler långsamt (genom evolution) från enkel materia till liv var steget. Detta skedde (teoretiskt) under en konstant strålning av energirika partiklar från rymden. Ännu fanns ex inte det skyddande ozonlagret.

I en nyskriven artikel spekulerar en Stanford-professor och en postdoktor att denna interaktion mellan forntida proto-organismer och kosmiska strålar kan var anledningen till en avgörande strukturell preferens, kallad kiralitet , i biologiska molekyler. Ett objekt eller system kallas "kiralt" om det skiljer sig från sin spegelbild. Kirala objekt förhåller sig till varandra som en högerhand till en vänsterhand. Sådana objekt kommer således i två former vilka är varandras spegelbilder.

Om forskarnas idé är korrekt antyder det att allt liv i hela universum kan dela samma kirala preferens. Kiralitet är förekomsten av spegelbildversioner av molekyler. Liksom vänster och höger hand återspegla i linje om de är staplade. I varje större biomolekyl - aminosyror, DNA, RNA - använder livet bara en form av molekylär räckvidd. Om spegelversionen av en molekyl ersätts av den vanliga versionen (en enda slags) inom ett biologiskt system, kommer systemet ofta att fungera fel eller sluta fungera helt. När det gäller DNA skulle ett enda felaktigt socker störa molekylens stabila spiralformade struktur.

Louis Pasteur var först med att upptäckta den biologiska likartade kiraliteten 1848. Sedan dess har forskare diskuterat om livets upprätthållande drivs av slumpen eller något okänt deterministiskt inflytande. Pasteur ansåg att om livet är asymmetriskt kan det bero på en asymmetri i fysiskt grundläggande interaktioner likartat över hela universum. 

"Vi föreslår att den biologiska räckvidden som vi bevittnar på jorden beror på att evolutionen skett i magnetiskt polariserad strålning, där en liten skillnad i mutationsgraden kan ha främjat utvecklingen av DNA-baserat liv, snarare än dess spegelbild," sa Noémie Globus , huvudförfattare till tidningen och en före detta Koret Fellow vid Kavli Institute for Particle Astrophysics and Cosmology (KIPAC). https://kipac.stanford.edu/
Livets gåta är för den skull inte löst (min anm) utan bara teoretiskt utfunderat enligt den kunskap vi har just nu.


måndag 26 mars 2018

Mysteriet mystiska Gammastrålningskällan från centrala Vintergatan är löst


En signal bestående av gammastrålning från centrala Vintergatan har länge förbryllat astronomer. Källan har sökts länge.

Under en längre tid ansågs den komma från mörk materia. Hur och varför kunde man däremot inte förstå.

Astronomer från ANU  i Australien tillsammans med forskningsinstitutioner i Förenta staterna, Nya Zeeland och Tyskland genomförde en ny studie som leddes av Virginia Tech i USA. Detta med hjälp av Rymdteleskopet Fermi Gamma-Ray  vilket  ligger i en låg omloppsbana kring jorden sedan 2008 och vilket  har gett forskare de tydligaste bilderna någonsin av gammastrålning från rymden.

Resultatet blev att källan i Vintergatans centrum nu hittats.

 Det är snabbt roterande tio miljarder år gamla neutronstjärnor i tusental som är källan. De sänder ut denna signal av gammastrålning gemensamt i tidsintervall. Den mörka materian är därmed oskyldig och gäckar fortfarande vetenskapen i det fördolda.

Bilden är på Fermi Gamma-ray Space Telescope teleskopet som varit till stor hjälp i sökandet efter källan nämnd ovan

lördag 2 december 2017

Överskott av positroner rammar Jorden vilket är elektronens antipol eller antimateria. Var kommer de ifrån?


Antimateria i form av partiklar av atomer eller materia är livsfarliga för jordens materia. Vid krock försvinner båda i en explosion.

I detta fall är positronen en positivt laddad elektron. Elektronen har ju negativ laddning och ingår i all materia eller alla atomer som bildat vår materia inklusive oss.

När då en positron krockar med en elektron blir det för oss en osynlig puff inget allvarligt som påverkar vår materia då det enbart är en liten partikel vilken krockar md sin lilla motpol och inte en hel atom eller materiaklump som krockar med sin motpol.

Men dessa positroner som kommer mot oss är en gåta. Var kommer de ifrån? Var finns dess källa?

Sedan ett bra tag anser man att deras ursprung bör finns inom pulsarernas händelsefront.

 Dessa neutronstjärnors roterande vilket skapar all form av strålning vilken med jämna intervall slungas ut i alla riktningar. En neutronstjärna  är som vi vet slutfasen i en stjärnas liv och en vit dvärg blir slutet på en stjärnas liv och kan ta olika former. En stor stjärnas liv avslutas som en supernova för att ta ett exempel. En liten blir en nova.

Mysteriet med positronens ursprung är däremot inte löst. Inget är helt bevisat att den kommer från dessa pulsarer. En del anser istället att dess ursprung har med den mörka materian att göra.

Men ännu är den första uppfattningen efter det att överskottet på positroner upptäcktes för några år sedan att det är från pulsarerna de kommer och bildas den vanligaste uppfattningen.

Mycket händer däruppe i universum och vi kommer säkert aldrig att förstå allt. Nya rön ger hela tiden nya frågor och dessa frågor och upptäckter är troligast utan gräns.
Bilden föreställer en positrons jakt efter en elektron eller tvärtom vilket kommer att avslutas med en puff och total förintelse där inget finns kvar. 

onsdag 23 mars 2016

Snabba skurar av radiostrålning från okänd källa når oss då och då.

Ett exempel av detta har rapporterats nyligen från bland annat Max Planckobservatoriet i Tyskland. Ett radioastronomobservatorium med blickarna långt ut i universum.

Avståndet till denna nya källa vilken sände ut korta snabba skurar av radiostrålning under 6 dygn innan det bleknade bort är en galax 6 miljarder ljusår bort.

Men vad som sände från denna galax är höljt i dunkel. Inget tyder dock på en källa av intelligent ursprung.

Skurar av detta slag är användbara för mätning av materia i rymden. Vad som kan ligga mellan oss och källans väg genom rymden.


Källan i sig kan vara spännande. Men vi ska ta i beaktande att den källa som sände ut strålningen är en för vår del historisk källa vi inte kan veta något om idag. Utsläppet har taget 6 miljarder ljusår på sig  att nå oss.

söndag 27 december 2015

Sedan ca 10 år tillbaks har astronomer försökt lösa mysteriet med ett slags snabba pulserade kosmiska radiovågor vilka kommer från slumpmässigt håll hela tiden.

Varifrån kommer dessa slumpmässigt utsända radiovågor  tusentals gånger varje dag?  Ingen vet men undersökning har pågått sedan de först upptäcktes 2007.

Att de kommer från avlägsna platser i universum är man nästan säker på. Men källan är okänd.

Funderingarna i dag är att det kan vara en slags jordbävningar på en avlägsen supernova vilken ger effekter av detta slag i en närbelägen stjärna varifrån sedan radiovågorna kommer.


Men det är bara funderingar ännu vet ingen utan teorierna flödar sedan snart 10 år. Men ovanstående teori är den som är populärast just nu. Om lösningen finns får framtida forskare svara på. Men de ger knappast upp om att lösa mysteriet.

fredag 18 september 2015

Panspermi teorin att livet kom hit från rymden och sprids vidare. Men hur och från vilken källa?

Kan livet kommit hit genom kometer eller rymdstoff från galaxerna utifrån vår vintergata eller från dennas miljarder stjärnor och andra objekt?  Sprids det vidare genom att expandera likt universum i övrigt? Men var kom då livets kärna från?

Astrofysiker ställer idag frågan om livet uppstod spontant eller om det kom från rymden. Idag vet vi bara liv finns och det bevisas av att vi finns. Vi och övrigt organiskt material som rör sig  på Jorden klassificeras som liv. Liv är organisk rörelse som lever genom att födas och dö och återuppstå som något annat liv eller omvandlas till oorganiskt material

Men om liv kom från rymden hur transporteras detta  i dessa otroliga avstånd av totalt vakuum och mörker. Vad var källan till att det kunde transporteras? Sändes det ut från någon källa och i vilken hastighet?


Det går att formulera mängder av mer eller mindre fantastiska teorier om detta. Det är vad astrofysiker även gör. De gör allt för att få dessa teorier att verka möjliga. Men ingen av dessa forskare nämner ens det tabubelagda inom vetenskapen att vi kan vara ensamma och är skapade av en Gud. Ett svar inte mer fantastiskt än de teorier vilka florerar bland fysikerna.