Google

Translate blog

Visar inlägg med etikett livets. Visa alla inlägg
Visar inlägg med etikett livets. Visa alla inlägg

måndag 10 november 2025

Ute i universum börjar livets byggstenar få form.

 


Bild https://www.colorado.edu/ tagen med James Webb-rymdteleskopet av de så kallade "Skapelsens pelare", en region i Örnnebulosan där moln av gas och stoft kollapsar och bildar nya stjärnor. Bildkälla: NASA, ESA, CSA, STScI; Bildbehandling: Joseph DePasquale (STScI), Anton Koekemoer (STScI), Alyssa Pagan (STScI)

I en ny studie har ett internationellt forskarlag under ledning av forskare vid University of Colorado Boulder gjort experiment på jorden för att återskapa kemin djupt ute i rymden. Gruppens resultat kan ha avslöjat viktiga steg i de processer som formar dessa organiska molekyler över tid.  "Vi är alla gjorda av kol, så det är verkligen viktigt att veta hur kol i universum omvandlas på sin väg till att införlivas i ett planetsystem som vårt eget solsystem", beskriver Bouwman, biträdande professor vid institutionen för kemi och forskare vid laboratoriet för atmosfärs- och rymdfysik (LASP) vid CU Boulder.

Fulleren  är en av de fem kristallina allotroperna av kol (de naturliga är diamant, grafen, nanorör och grafit) och består av kolatomer organiserade i form av en sluten bur. Det mest kända exemplet är buckminsterfulleren (C69)  som fått sitt namn från den berömda futuristen Richard Buckminster Fuller. Dessa molekyler innehåller 60 atomer i form av en sfär och har en slående likhet med en fotboll.

Fullerener, inklusive buckminsterfulleren svävar fritt i det interstellära mediet (i gas, stoft, plasma, magnetfält och kosmisk strålning som finns i rymden mellan stjärnorna i en galax). Men forskare har länge kämpat med att förklara var de kom ifrån och hur de bildats.

Den nya studiens resultat tyder på att strålning i rymden kan bidra till att omvandla PAH:er (polycykliska aromatiska kolväten) till fullerener.

"Det ger oss en ledtråd om att de buckminsterfuller som vi hittar i rymden kan vara kopplad till dessa stora aromatiska molekyler som också de finns i överflöd", beskriver Bouwman. Forskargruppen simulerade kemin i rymden genom att studera två små PAH-molekyler som kallas antracen och fenantren

PAH:er består av kolatomer arrangerade i en serie hexagoner, inte olikt en bikaka. PAH:er är rikligt förekommande på jorden där man kan hitta dem i rök, sot och andra förkolnade material.

Först bombarderade forskarna de två PAH:erna med en elektronstråle. Det liknar vad som händer när strålning i rymden interagerar med molekyler i det interstellära mediet.

Detta bombardemang omvandlade PAH:erna till nya laddade organiska molekyler. Forskarna matade sedan in produkterna i en jonfällningsapparat vid en vetenskaplig anläggning som kallas Free Electron Lasers for Infrared eXperiments vid HFML-FELIX (Forskningsinstitut i Nijmegen, Nederländerna). Denna unika nationella inkluderar flera lasrar som sprider sig över ett stort källarrum. Med hjälp av dessa lasrar kunde forskarna exakt undersöka strukturen hos de nya molekylerna. Bouwman beskriver att när teamet träffade antracen och fenantren med elektroner, förlorade molekylerna en eller två av sina väteatomer.

I processen förändrade de också radikalt sina strukturer och bygga en ny struktur. Istället för att bara inkludera hexagoner, innehöll de resulterande produkterna nu kolatomer arrangerade i form av både hexagoner och pentagoner.

Den radikala reaktionen hade aldrig setts tidigare, beskrev Bouwman. Huruvida den här typen av pentagonbärande molekyler också är vanliga i rymden är inte klarlagt.

"Det var ett mycket överraskande resultat att bara genom att frigöra en eller två väteatomer, omorganiserades hela molekylen", beskriver Sandra Brünken, medförfattare till studien och docent vid Radboud universitet i Nederländerna och gruppledare vid FELIX.

Resultaten var ögonöppnande, delvis eftersom den typen av molekyler också är väldigt enkla att vika ihop. (Tänk dig bara en fotboll, som är uppbyggd av en blandning av både hexagoner och pentagoner).

Med andra ord kan dessa pentagonbärande molekyler vara den saknade länken för att omvandla vanliga PAH:er till buckyballs och andra fullerener.

Bouwman och Brünken hoppas att astrofysiker kommer att lägga märke till deras resultat. Forskare skulle kunna använda teamets resultat för att undersöka om liknande pentagonbärande molekyler existerar djupt ute i rymden med hjälp av verktyg som James Webb-rymdteleskopet vilket är det kraftfullaste teleskopet som någonsin uppskjutits.

"Man kan ta våra resultat från laboratoriet och sedan använda dem som ett fingeravtryck för att leta efter samma signaturer i rymden", beskriver Brünken.

Forskningsresultatet har nyligen publicerades i Journal ofthe American Chemical Society.

 

tisdag 28 oktober 2025

Livets byggstenar hittade i Stora Magellanska molnet

 


Bild wikipedia  på  dvärggalaxen Stora Magellanska molnet i stjärnbilderna Svärdfisken och Taffelberget. En av Vintergatans satellitgalaxer.

Med hjälp av James Webb Space Telescopes (JWST) Mid-Infrared Instrument (MIRI) upptäckte astroforskare fem olika kolbaserade föreningar i det Stora Magellanska molnet.

Teamet identifierade fem komplexa organiska molekyler i is som omger en ung protostjärna i molnet. Molekyler av vilka många kan hittas här på jorden: metanol och etanol, metylformiat och acetaldehyd (som främst används som industrikemikalier på jorden) och ättiksyra (huvudkomponenten i vinäger). Ättiksyra har aldrig tidigare upptäckts i is i rymden medan etanol, metylformiat och acetaldehyd var de första molekyler som upptäcktes i is utanför Vintergatan. Dessutom observerade teamet spektrala egenskaper som liknar ett annat slag av molekyl i isen, glykolaldehyd, en sockerrelaterad molekyl och föregångare till mer komplexa biomolekyler som komponenter i RNA. Det krävs dock ytterligare undersökningar för att bekräfta riktigheten i denna upptäckt.

Teamet leddes från University of Maryland och NASA-forskare Marta Sewilo, och inkluderade astrofysikerna Dr Joana Oliveira och Dr Jacco van Loon vid Keele University. Forskarlaget redogjorde för sina resultat i en artikel som publicerats i Astrophysical Journal Letters.

– Vi har använt James Webb Space Telescope och fann då förstadier till biotiskt material i en närliggande galax i detta fall Stora Magellanska molnet. Ättiksyra, metylformiat och eventuellt glykolaldehyd är alla förknippade med skapande av de första sockerarterna och som utgör grunden för RNA och DNA - livets grundvalar.

Att hitta dessa även i den orörda miljön i det Stora Magellanska molnet tyder på att livet kan ha börjat någon annanstans än på Jorden eller i vår galax och mycket tidigare än det har gjort på jorden.

söndag 1 september 2024

Hur sannolikhet är det att livet har sitt ursprung på jorden?

 


Bild https://negativespace.co/couple-love/

 

Astrobiolog Manasvi Lingam vid Florida Tech  har uppställt modeller för förenklade representationer av verkligheten.  Modellerna har två huvuduppgifter innebärande att hjälpa forskare att göra förutsägelser och erbjuda  alternativa experiment till annars kostsamma eller opraktiska experiment. Så var fallet med Lingams nyligen publicerade analys om livets potentiella ursprung på jorden.

“A Bayesian Analysis of the Probability of the Origin of Life per Site Conducive to Abiogenesis” publicerad den 19 augusti i tidskriften Astrobiology där utöver Lingam Ruth Nichols, nyligen utexaminerad från Florida Tech och astrobiologen Amedeo Balbi från University of Rome visar hur de utarbetat  modellerer över förhållandet mellan hypoteser som förutsäger ett varierande antal potentiella platser för uppkomsten av liv från icke-liv på jorden och sannolikheten för livets uppkomst på platser bortom Jorden.

En Bayesiansk inferens är en analys där tidigare kunskap används för att uppskatta efterföljande sannolikhet. I modellerna fokuserade forskarna på möjligheten att livet på Jorden har sitt ursprung på själva jorden. Så eftersom det är fastställt att det finns liv på jorden, antar denna modell att livet fick sitt ursprung på jorden minst en gång. 

Lingam beskriver att detta är är en av de första gångerna han specifikt studerar livets uppkomst. Han har dock modellerat flera intilliggande frågor som utvecklingen av teknikbaserad intelligens.

Forskarna sammanställde potentiellt det som kan ses som livskraftiga platser där liv kan ses bli möjligt och liv kan uppstå. Platser som har identifierats i tidigare forskning var och en med olika nivåer av gynnsamhet för livets uppkomst. De inkluderade flera olika miljöer allt från undervattensvulkaner till såpbubblor och tjära till naturliga kärnreaktorer liknande den som bildades i Gabon för två miljarder år sedan. 

Två huvudfrågor formade deras modeller: 1. hur många platser på jorden kan liv ha uppstått? 2. Vad är sannolikheten för att liv faktiskt uppstår från en av dessa platser? Målet med studien var inte att direkt svara på frågorna utan att hitta det mest exakta sättet att tolka de data som modellerna visade.

Lingam förutspådde till en början att tillgången till av urable platser  (platser på en planet där liv kan uppkomma))  skulle skapa en högre sannolikhet för att liv skulle uppstå på jorden. Tänk att när du köper fler lotter kommer dina chanser att vinna att öka.

Istället blev resultatet det rakt motsatta i detta scenario. Lingam fann att när man jämförde det större antalet platser med det mindre antalet var sannolikheten för liv per plats nästan omvänt relaterad till antalet platser (ex vatten.

– Det är de två situationerna som finns här. En där det finns många platser, men det är mycket låg sannolikhet [för liv] per plats. Och den andra där det finns väldigt få platser, men det är en väldigt hög sannolikhet per plats.

Ja, det här resultatet var osannolikt beskriver han och är därför en viktig kunskap.

"Normalt sett är 'ju mer, desto bättre' inställningen för många saker i livet", beskriver Lingam. – Men mer är inte alltid bättre. Om det är färre, men det är rätt sorts färre, då kan det faktiskt vara bättre.

Med andra ord, i den modell där jorden hade färre urable sites totalt sett, drog forskarna slutsatsen att sannolikheten för att liv uppstod på en given plats ökade. De fastställde att en större chans att liv bildas kan vara mer sannolik när ureabla platser är sällsynta och rikligt med urabla platser kan minska sannolikheten för liv på en given plats.

Därifrån drog de slutsatsen att det mindre urvalet av platser, som avslöjade en högre sannolikhet för liv på en viss plats, sannolikt innehöll mer gynnsamma miljöer.

Resultatet tyder på att inom det bayesianska ramverket kan begränsningar av tillgången på lämpliga miljöer för livets uppkomst på jorden ge värdefulla insikter om sannolikheten för och frekvensen av liv på andra håll i universum.

Ett oväntat resultat som det är värt att fundera över och fortsätta forska vidare inom. Vår verklighetskunskap och förförståelse ska vi vara försiktiga med att ta som utgångskunskap så länge vi inte vet mer om verkligheten och kosmos.

torsdag 21 april 2022

Livets uppkomst på jorden komplicerat

 


Olika slag av mikrobiologiskt liv fanns enligt en ny studie redan för   3,75 miljarder år sedan på jorden. Detta beskrivs i en ny studie ledd av UCL-forskare (university college London) vilket är betydligt tidigare än man i dag hittills accepterat.

Studien är publicerad i Science Advances och är resultatet av en analys av bland annat en knytnävstor sten från Quebec i Kanada vilken uppskattas vara mellan 3,75 och 4,28 miljarder år gammal. Sedan tidigare har gruppen rapporterat om fyndet av  små filament av kulformer och rör i stenen som verkar ha sitt ursprung från bakterier. Alla forskare var överens om att dessa strukturer - som dateras cirka 300 miljoner år tidigare än vad som är mer allmänt accepterat som det första tecknen på forntida liv bör vara av biologiskt ursprung.

Efter omfattande analys av stenen  har teamet upptäckt en mycket större och mer komplex struktur med parallella grenar på ena sidan som är nästan en centimeter långa samt hundratals förvrängda sfärer, eller ellipsoider tillsammans med rören och filament.

Forskarna säger att även om några av strukturerna kan tänkas ha skapats genom slumpmässiga kemiska reaktioner är  "trädliknande" former av parallella grenar troligtvis biologisk till sitt ursprung då ingen struktur som skapats genom kemi med dessa spår har hittats tidigare.

Teamet ger även bevis på hur bakterier fick sin energi under den tiden. De fann mineraliserade kemiska biprodukter i stenen som överensstämmer med forntida mikrobers näring som man vet levde av järn, svavel och troligen även koldioxid och där ljus genom en form av fotosyntes som inte involverar syre användes.

De nya rönen visar enligt forskarna att en mängd av mikrobiellt liv kan ha existerat på jorden redan 300 miljoner år efter att den bildades.

Dr Dominic Papineau (UCL Earth Sciences, UCL London Centre for Nanotechnology, Centre for Planetary Sciences och China University of Geosciences) sa: "Med många olika bevislinjer tyder vår studie starkt på att ett antal olika typer av bakterier fanns på jorden redan för 3,75 och 4,28 miljarder år sedan."

" Det betyder att livet kan ha börjat redan 300 miljoner år efter att jorden bildades. Geologiskt sett är detta snabbt - ungefär som en runda av solens färd runt galaxen."

– De här fynden får konsekvenser för sökandet efter utomjordiskt liv. Om livet så snabbt kan växa fram under rätt förutsättningar ökar detta chansen att liv finns på andra planeter."

I studien undersökte forskarna sten från Quebecs Nuvvuagittuq Supracrustal Belt (NSB) som Dr Papineau samlade in 2008. NSB var en gång havsbotten och här finns några av de äldsta sedimentära stenarna som är kända på jorden.

Forskargruppen skar stenen i sektioner ungefär lika tjocka som ett pappersark.

I studien ingick forskare från UCL Earth Sciences, UCL Chemical Engineering UCL London Centre for Nanotechnology och Centre for Planetary Sciences vid UCL och Birkbeck College London, samt från U.S. Geological Survey, Memorial University of Newfoundland i Kanada, Carnegie Institution for Science, University of Leeds och China University of Geoscience i Wuhan.

Forskningen fick stöd från UCL, Carnegie of Canada, Carnegie Institution for Science, China University of Geoscience i Wuhan, National Science Foundation of China, Chinese Academy of Sciences och 111-projektet i Kina.

Vi ska dock likväl ha i åtanke att även om livet snabbt fick fäste på jorden betyder det inte att liv säkert fått fäste på fler planeter (min anm.) hur gärna vi än vill tro detta. Det finns ännu inga bevis på att så skett eller att vi någonsin finner liv därute antingen det finns eller inte. Men självklart ska vi likväl söka efter det utanför jorden och det kommer människan att göra så länge den finns som art på jorden som den nyfikna natur denna är.

Bild flickr.com

måndag 16 mars 2020

Någonstans uppstod liv men hur och var är det ingen som vet.


I en ny studie kombineras biologiska och kosmologiska modeller. Professor Tomonori Totani från institutionen för astronomi har sett på hur livets byggstenar spontant kunde bildas i universum. En process som kallas abiogenes.


Livet måste ha börjat någon gång i tiden, någonstans. Men trots allt vi vet från biologi och fysik är de exakta detaljerna om hur och när livet började okända liksom även om det började någon annanstans än på jorden.


Det enda liv vi känner till är baserat på jorden och begränsade till de specifika villkor vi hittar här. Därför tittar de flesta forskare inom detta område på de grundläggande komponenter som är gemensamma för alla kända levande ting här på jorden, ribonukleinsyra, eller RNA. RNA är en mycket enklare och mer viktig molekyl än den mer kända deoxyribonukleinsyra, eller DNA, som definierar hur vi sätts ihop. 


Det observerbara universum har cirka 10 sextillion (10 ^ 22) stjärnor. Statistiskt sett bör det i en sådan volym kunna produceras RNA på cirka 20 nukleotider någonstanns. Det beräknas att universum kan innehålla mer än 1 googol (10 ^ 100) stjärnor och om så är fallet måste enligt forskare mer komplexa, livsuppehållande RNA strukturer inte bara vara troliga utan praktiskt taget oundvikliga där ute.


Min (min anm,) Jag anser inget bevisat för detta det är bara antagen utefter den kunskap vi fått efter att ha studerat förhållandena på jorden.


Bild från på lövsprickning.

tisdag 8 oktober 2019

Stora gasmoln mellan stjärnorna med livets byggstenar inom sig.


Viktiga byggstenar av DNA- föreningar i form av nukleobaser har upptäckts för första gången i en simulerad miljö då man sett på gasformiga moln. De slag av moln som finns varvad mellan stjärnsystemen därute. Resultatet publicerades i tidskriften Nature Communications och syftet med studien var att förstå ursprunget till livet på jorden och hitta möjliga förklaringar till livets ursprung.


"Detta resultat kan vara avgörande för att reda ut grundläggande frågor för mänskligheten såsom var organiska föreningar existerade under bildandet av solsystemet och hur de bidrog till födelsen av livet på jorden," säger Yasuhiro Oba of Hokkaido University's Institute of Low Temperature Science.


Forskare har upptäckt några av de grundläggande organiska molekyler som är nödvändiga för livets begynnelse i kometer, asteroider och i interstellära molekylmoln de gigantiska gasformiga moln som finns och sprids mellan stjärnorna. Man tror att dessa molekyler kan ha nått jorden genom meteoriter förorenade av dessa gasmoln för cirka 4 miljarder år sedan och dessa då hade de viktiga ingredienser av kemisk cocktail med sig som gav upphov till liv. Att lära sig hur dessa molekyler bildades är avgörande för att förstå livets uppkomst.


Nu ser man det som att kometer och asteroider haft detta med sig utifrån de interstellära moln de passerat igen på sin väg hit.


Löser det då gåtan hur livet uppkom här? Jag (min anm) anser att det ställer enbart fler frågor. Frågor som varför finns dessa organiska molekyler därute och hur uppstod de? Det enda eventuella svar vi kanske får av studien om den är korrekt i sin analys är att det finns och fanns molekyler som är viktiga för livets uppkomst mellan stjärnorna i gasmoln. Och att asteroider och kometer förorenades av dessa på sin färd mot vårt solsystem där jorden blev lämpligast för att dessa skulle slå rot. Hur de klarade denna långa resa utanför sina moln på väg hit förklaras inte. Inte heller grundfrågan hur uppstod de där ute och varför där?


Rapporten säger egentligen ingenting om hur organiska molekyler uppstod och om de finns i så stora mängder som det bör finnas om dessa moln med detta finns mellan stjärnsystemen bör rymden svämma över av jordliknande liv överallt. Men inget visar att det är så.

Gratis bild ovan från

söndag 3 december 2017

Damm kan vara förklaringen på livet här på Jorden


Ännu är ingen helt säker på hur livet kom hit till Jorden. Spekulationer om att kometer och asteroider kan ha kraschat på Jorden och haft frön av liv med sig i form av  molekyler etc har florerat och gör så än.

Skapelseberättelsen i bibeln är en annan. En Gud som skapar.

Nu har det börjat diskuteras om inte istället damm är förklaringen. 

Dammoln vilka far genom rymden  med ett skiftande innehåll av  molekyler vet vi existerar. Molekylmoln kan därför vara det som en gång från andra platser i universum och släppte av organiskt material när det svepte förbi i vårt solsystem och var ursprunget till livets att början på Jorden.

Dammoln vilka gått samman med moln i Jordens övre skikt och sedan blivit en utgångspunkt till livets början
Av damm är du kommen och damm ska du åter bli. Stoff är samma sak. 
Bilden är på Hästhuvudnebulosan belägen vid stjärnan Alnitak i Orions stjärnbild. Det röda är vätgas det mörka stoff eller dammoln.

fredag 28 juli 2017

När solen en gång sväller upp och gör livet omöjligt på Jorden finns ett sista djur vilket kommer att finnas längst kvar här

Det finns ett djur vilket överlever alla former av naturkatastrofer och även har överlevt i rymdens vaccum under ett  experiment 2008 av svenska forskare.

En supernova i närområdet med otroliga strålningsskador på Jordens liv och utdöende skulle inte bekomma björndjuret.

När solens tid en gång är slut och den sväller upp o slukar Jorden är Björndjuret det sista djur som försvinner av Jordens liv.

Vi har mycket att lära av detta djurs DNA om livet och dess möjliga uppbyggnader.

Det otroliga är att detta djur kan ligga i dvala under mycket lång tid för att sedan vakna igen. Hur länge vet man inte. Därför vet ingen hur gammalt ett björndjur kan bli. Kan det vara så att det kan leva i evighet?


Släkten Björndjur är små djur från en hundradels millimeter stora till 1 mm.