Google

Translate blog

tisdag 31 december 2024

Blue Ghost

 


Bild NASA  Plymen från Apollo Lunar Module slår ner på ett avstånd av 5 m över landningsytan. Bilden visar plymgashastighetsvektorer färgade efter hastighetsstorlek (blå = låg, magenta = hög) samt strömlinjer som indikerar den starka uppåtgående flödesriktningen under vakuumförhållanden. NASA.

För andra gången på mindre än ett år kommer en NASA-teknik som är utformad till att samla in data om interaktionen mellan en månlandares raketplym och månens yta att göra den långa resan till månen i de så kallade Blue Ghost-uppdragen planerat i tre etapper den första i januari 2025.

Stereo Cameras for Lunar Plume-Surface Studies (SCALPSS) har utvecklats vid NASA:s Langley Research Center i Hampton, Virginia och är en uppsättning kameror som placeras runt basen av en månlandare för att samla in bilder under och efter nedstigning och landning. Med hjälp av en teknik som kallas stereofotogrammetri kommer forskare vid Langley att använda de överlappande bilderna från versionen av SCALPSS på Fireflys Blue Ghost – SCALPSS 1.1 – för att skapa en 3D-vy av ytan och den effekt på denna landningen ger.

En tidigare version, SCALPSS 1.0, fanns på Intuitive Machines rymdfarkost Odysseus som landade på månen i februari 2023. På grund av oförutsedda händelser som uppstod under landningen kunde SCALPSS 1.0 inte samla in bilder av interaktionen mellan skeenden från damm med mera som flög ut vid landning och yta. Teamet kunde dock använda nyttolasten under transport och på månens yta efter landning vilket ger förtroende för hårdvaran.

Nyttolasten SCALPSS 1.1 innehåller ytterligare två kameror – sex totalt, jämfört med de fyra på SCALPSS 1.0  och kommer att börja ta bilder på högre höjd, innan den förväntade interaktionen mellan plym och yta börjar för att ge en mer exakt jämförelse före och efter landning.

Dessa bilder av månens yta kommer inte bara att vara en teknisk nyhet. I takt med att resorna till månen ökar och antalet nyttolaster som landar i närheten av varandra ökar måste forskare och ingenjörer kunna förutsäga effekterna av landningar på ett korrekt sätt. Hur mycket kommer ytan att förändras? När en landare slår ner, vad händer med månens jord (regolit) som den kastar iväg? Med den begränsade data som samlats in under nedstigning och landning hittills kommer SCALPSS att vara det första dedikerade instrumentet för att mäta effekterna av interaktion mellan plym och yta på månen i realtid och hjälpa till att besvara dessa frågor.

Inom ramen för Artemis-kampanjen, som är NASA:s nuvarande strategi för utforskning av månen, samarbetar NASA med kommersiella och internationella partners för att etablera den första långsiktiga närvaron på månen. På detta CLPS-initiativ (Commercial Lunar Payload Services) leverans som innehåller över 90 kg NASA vetenskapliga experiment och teknikdemonstrationer, kommer SCALPSS 1.1 att börja ta bilder från innan landarens plym börjar interagera med ytan tills efter att landningen är klar.

De slutliga bilderna kommer att samlas in på en liten datalagringsenhet ombord innan de skickas  för nedladdning tillbaka till jorden. Teamet kommer sannolikt sedan att behöva minst ett par månader för att bearbeta bilderna verifiera data och generera digitala höjdkartor i 3D av ytan.

Månen är en spännande plats och då den finns på ett avstånd som vi kan besöka och undersöka lättast av himlaobjekten. Därför bör vi försöka förstå vad där finns. Säkert finns överraskningar att upptäcka i terräng, under ytan, klippskrevor och grottor.

måndag 30 december 2024

Raviner undersökta på asteroiden Vesta

 


Bild wikipedia tagen av Dawn 17 juli 2011.

Flertalet av asteroiderna, månarna och planeterna i vårt solsystem är fulla av kratrar och ger tydliga bevis på att meteoroider har slagit ner på dem under dess 4,6 miljarder år. Men på vissa världar, inklusive den stora asteroiden Vesta (som finns i asteroidbältet mellan Mars och Jupiter) vilken NASA:s Dawn-uppdrag utforskade, innehåller ytan också djupa kanaler (raviner) vars ursprung inte är helt klarlagt. 

En huvudhypotes är att de bildats av flöden av torrt skräp ur geofysiska processer, såsom meteoroidnedslag och temperaturförändringar på grund av solexponering. En nyligen genomförd NASA-finansierad studie ger dock vissa bevis att påverkan på Vesta kan ha utlöst en mindre uppenbar geologisk process: plötsliga och kortvariga vattenflöden som karvat ut raviner och avsatt sediment. Genom att använda laboratorieutrustning för att efterlikna förhållandena på Vesta beskrivs i studien som publicerats i Planetary Science Journal vad vätskan kunde bestått av och hur länge den flödat innan den frystes.

Även om förekomsten av frusna saltvattenavlagringar på Vesta är obekräftat har forskare tidigare antagit att meteoroidnedslag kan ha exponerat och smält is som legat under ytan på världar som Vesta. I det scenariot kan flöden som ett resultat av denna process ha etsat in raviner och andra ytformationer som liknar dem på jorden. Men hur skulle det på atmosfärfria världar, utsatta för rymdens intensiva vakuum kunna hysas vätskor på ytan tillräckligt länge för att de ska kunna flöda (och karva ut ytan)? En sådan process skulle strida mot förståelsen att vätskor snabbt destabiliseras i vakuum och omvandlas till en gas när trycket sjunker.

"Kollisioner utlöser inte bara ett flöde av vätska på ytan, vätskorna måste vara aktiva tillräckligt länge för att skapa specifika ytegenskaper", beskriver projektledaren och planetforskaren Jennifer Scully vid NASA:s Jet Propulsion Laboratory i södra Kalifornien där experimenten utfördes. "Men hur länge? De flesta vätskor blir snabbt instabila på atmosfärfria kroppar i rymdens vakuum.

Den kritiska komponenten visar sig vara natriumklorid (vanligt bordssalt). Experimenten visade att under förhållanden som de på Vesta fryser rent vatten nästan omedelbart medan salta vätskor förblir flytande i minst en timme. "Det är tillräckligt lång tid för att bilda de flödesassocierade funktioner som identifierades på Vesta, som beräknats tagit upp till en halvtimme att bildas", beskriver huvudförfattaren Michael J. Poston vid Southwest Research Institute i San Antonio.

För mer information om ovan arbete och även en länk för att läsa mer om Dawn-uppdraget som pågick mellan 2007 till 2018 se denna länk från NASA. 

För att en ravin ska bildas på en halvtimma som det påstås ovan måste marken vara mycket porös troligen sandig och vätskans rörlighet snabb och kraftig. I annat fall skulle det kanske ta 1000 tals år. Jag tvekar på att ovan teori om halvtimmesflöden på en atmosfärfri och vindfri asteroid skulle ge raviner. Min teori är att de bildats genom närkontakt av hårda meteoroider som svept nära Vesta i hög hastighet utan  nedslag utan som har skärt in i hög hastighet i ytan och skapat ravinerna genom en knivseggseffekt och farit vidare utan att ha slagit ner.

söndag 29 december 2024

Ny forskningsstudie visar att mörk energi inte existerar

 


Bild https://ras.ac.uk  Grafiken ovan ger en glimt av universums historia, som vi för närvarande förstår den. Kosmos började expandera i och med Big Bang, men cirka 10 miljarder år senare började universum märkligt nog accelerera i sin expansion tack vare ett teoretiskt fenomen som kallas mörk energi enligt nuvarande teori. Credit NASA Licence type Attribution (CC BY 4.0)

I dag är den allmänna uppfattningen att kosmos expanderar lika mycket i alla riktningar. Expansionen sker på grund av den mystiska mörka energin. Energin som kan ses som förklara okänd energi som ännu inte förstås eller bevisats mer än som något som påverkar universum.

Nu utmanar ett team av fysiker och astronomer vid University of Canterbury i Christchurch, Nya Zeeland, status quo genom att använda förbättrad analys av supernovors ljuskurvor för att visa att universum expanderar på ett mer varierat, vis.

De nya bevisen stöder "timescape"-modellen (Inhomogeneous cosmology) för kosmisk expansion, som inte har ett behov av mörk energi eftersom skillnaderna i att sträcka ut ljuset inte är resultatet av ett accelererande universum utan istället en konsekvens av hur vi kalibrerar tid och avstånd.

Modellen tar hänsyn till att gravitationen saktar ner tiden så en klocka i tomma rymden tickar snabbare än en i en galax.

Modellen föreslår att en klocka i Vintergatan skulle vara cirka 35 procent långsammare än samma klocka vid en genomsnittlig position i stora kosmiska tomrum vilket innebär att miljarder fler år skulle ha passerat i tomrum. Detta skulle i sin tur tillåta mer expansion av rymden, vilket får det att verka som om expansionen blir snabbare när sådana stora tomrum växer och  dominerar universum.

Professor David Wiltshire, som ledde studien, beskriver det som att "Våra resultat visar att vi inte behöver mörk energi för att förklara varför universum ses expandera i en accelererande takt.

"Mörk energi är en felaktig identifiering av variationer i den kinetiska expansionsenergin, som inte är enhetlig i ett universum som är så klumpigt som det vi lever i."

Han tillägger: "Forskningen ger övertygande bevis som kan lösa några av de viktigaste frågorna kring egenheterna i vårt expanderande kosmos.

"Med dessa nya data kan universums största mysterium lösas i slutet av decenniet."

Mörk energi anses allmänt vara en svag antigravitationskraft som verkar oberoende av materia och utgör cirka två tredjedelar av universums massa-energitäthet.

Standardmodellen av universum (Lambda Cold DarkMatter, ΛCDM) kräver mörk energi för att förklara den observerade accelerationen av hastighet med vilken kosmos expanderar. 

Forskare baserar denna slutsats på mätningar av avstånden till supernovaexplosioner i avlägsna galaxer som verkar vara längre bort än de borde vara om universums expansion inte accelererade.

Universums nuvarande expansionstakt utmanas dock alltmer av nya observationer.

För det första visar bevis från efterglöden av Big Bang – känd som den kosmiska mikrovågsbakgrunden (CMB) att expansionen i det tidiga universum står i strid med den nuvarande expansionen, en anomali som kallas "Hubbles lag". 

Dessutom har en nyligen genomförd analys av nya data med hög precision av Dark Energy Spectroscopic Instrument (DESI) visat att CDM-modellen inte passar lika bra som modell där mörk energi "utvecklas" över tid utan snarare förblir konstant.

Både Hubbles lag och de överraskningar som avslöjas av DESI är svåra att lösa i modeller som använder en förenklad 100 år gammal kosmisk expansionslag kallad Friedmanns ekvation. 

Ekvationen förutsätter att universum i genomsnitt expanderar likformigt som om alla kosmiska strukturer kunde köras genom en mixer för att göra en soppa utan särdrag utan någon komplicerad struktur. Men det nuvarande universum innehåller i själva verket ett komplext kosmiskt nät av galaxhopar i skikt och filament som omger och väver samman stora tomma tomrum.

Professor Wiltshire tillägger: "Vi har nu så mycket data att vi på 2000-talet äntligen kan svara på frågan om hur och varför det uppstår en enkel genomsnittlig expansionslag ur komplexitet?

"En enkel expansionslag som överensstämmer med Einsteins allmänna relativitetsteori behöver inte vara överens med Friedmanns ekvation."

Forskarna menar att den europeiska rymdorganisationen ESA:s satellit Euclid, som sköts upp i juli 2023, har förmågan att testa och särskilja Friedmanns ekvation från timescape-alternativet. Detta kommer dock att kräva minst 1 000 oberoende observationer av supernovor av hög kvalitet. 

När den föreslagna timescape-modellen senast testades 2017 visade analysen att den bara passade något bättre än ΛCDM som förklaring till kosmisk expansion, så Christchurch-teamet hade ett nära samarbete med Pantheon+-samarbetsteamet som mödosamt hade producerat en katalog med 1535 olika supernovor.

De säger att de nya uppgifterna nu ger "mycket starka bevis" för timescape. Det kan också peka på en övertygande lösning av Hubblespänningen och andra anomalier relaterade till universums expansion.

Ytterligare observationer från Euclid och Nancy Grace Roman Space Telescope behövs för att stärka stödet för timescape-modellen, beskriver forskarna och nu pågår kapplöpningen för att använda denna rikedom av nya data för att avslöja den sanna naturen av kosmisk expansion och mörk energi.

Den nya analysen har publicerats i tidskriften Monthly Notices of the Royal Astronomical Society Letters.

För min del har jag aldrig varit en vän av gåtfulla energier som mörk energi eller materia som mörk materia. Jag är övertygad om att ovan forskare är på rätt spår i sin forskning.

lördag 28 december 2024

Mysterierna under isen i istäckta havsvärldar

 


Bild wikipedia Jupiters måne Europa.

När NASA:s Europa Clipper nu är på  väg ut på sin historiska resa till Jupiters isiga måne, Europa har Dr. Matt Powell-Palm, fakultetsmedlem vid Texas A&M Universitys J. Mike Walker '66 Department of Mechanical Engineering presenterat banbrytande forskningsmöjligheter som kan förändra vår förståelse av istäckta havsvärldar i solsystemet.

Studien där planetforskaren Dr. Baptiste Journaux vid University of Washington, introducerar ett nytt termodynamiskt koncept som de kallar "centotectic" som undersöker stabiliteten hos vätskor under extrema förhållanden  ger information för att bestämma möjligheten av liv i ishöljda månars hav som månen Europa. Utforskningen av istäckta havsvärldar representerar en ny gräns inom planetvetenskap med fokus på att förstå potentialen för dessas miljöer att stödja liv.

Powell-Palms forskning ger en grundläggande fråga som lyder: under vilka förhållanden kan flytande vatten förbli i vätskeform på dessa avlägsna, frusna objekt? Studien kombinerar Powell-Palms expertis inom kryobiologi koncentrat på i första hand vattnets lågtemperaturtermodynamik  som ursprungligen fokuserats på medicinska tillämpningar som organbevarande för transplantation. Med Journauxs expertis inom planetvetenskap och högtryckssystem för vatten och is har de utveckladat ett ramverk som överbryggar discipliner för att ta itu med en av de mest fascinerande utmaningarna inom planetvetenskap.

"Med uppskjutningen av NASA Europa Clipper (som sköts upp 14 okt 2024), det största planetutforskningsuppdraget som någonsin startat går vi in i en flera decennier lång era av utforskning av kalla och istäckta havsvärldar. Mätningar från detta och andra uppdrag kommer att visa hur djupt havet är under isen och vattnets sammansättning, beskriver Journaux. "Laboratoriemätningar av vätskans stabilitet och i synnerhet den lägsta möjliga temperaturen för flytande vatten där och hur livsmöjliga de kalla och djupa haven i vårt solsystem är och även vad deras slutliga öde kommer att bli när månarna eller planeterna har svalnat helt." 

 Studien har publicerats i https://www.nature.com/articles/s41467-024-5462

Själv är jag tveksam till att det hittas liv här även av enkelt slag. Jag tror att om vattnet är flytande är det mycket salthaltigt och mineralrikt och inget annat. Jag misstänker även att det inte finns så mycket vatten under isen som man hoppas.

fredag 27 december 2024

I det tidiga universum har upptäckts ett stort vilande svart hål i en mindre galax

 


Bild https://www.cam.ac.uk  Illustratörs intryck av ett svart hål under en av dess korta perioder av snabb tillväxt. Upphovsman: Jiarong Gu.

Ett internationellt team av astronomer frånUniversity of Cambridge som använt NASA/ESA/CSA James Webb Space Telescope  upptäckte detta svarta hål i det tidiga universum endast 800 miljoner år efter Big Bang.

Det svarta hålet har 400 miljoner gånger större massa än vår sol vilket gör det till ett av de mest massiva svarta hålen som Webb upptäckt vid denna tidpunkt i universums utveckling och historia. Det svarta hålet är så enormt att det utgör ungefär 40 procent av den totala massan i sin galax. Jämförelsevis är de flesta svarta hål i det universum vi har kunskap om ungefär 0,1 procent av sin galax massa.

Men trots storleken drar det till sig enbart cirka 100 gånger mindre än den teoretiska massa den skulle kunna dra till sig vilket gör det i princip till ett vilande svart hål.

Ett så massivt svart hål så tidigt i universum, men som inte växer utmanar befintliga modeller för hur svarta hål utvecklas. Forskarna påtalar att det mest troliga scenariot är att svarta hål går igenom korta perioder av ultrasnabb tillväxt följt av långa perioder av lugn. När svarta hål "är lugna" är de betydligt mindre ljusstarka vilket gör dem svårare att upptäcka även med mycket känsliga teleskop som Webbteleskopet.

Svarta hål kan inte observeras direkt istället detekteras de av det avslöjande skenet från en virvlande ackretionsskiva som bildas nära det svarta hålets kanter. När svarta hål växer aktivt blir gasen i ackretionsskivan extremt het och börjar glöda och utstråla energi i det ultravioletta fältet.

– Även om det här svarta hålet är vilande har dess enorma storlek gjort det möjligt för oss att upptäcka det, beskriver Ignas Juodžbalis, huvudförfattare vid Kavliinstitutet för kosmologi i Cambridge. I det tidiga universum skapades även mycket stora hål  även i relativt små galaxer.

Enligt standardmodeller bildas svarta hål från kollapsade rester av döda stjärnor och drar till sig materia upp till en förutspådd gräns, känd som Eddington-gränsen där strålningstrycket på materia övervinner gravitationskraften från det svarta hålet. Blotta storleken på detta svarta hål tyder dock på att standardmodellen kanske inte förklarar hur dessa jättehål bildas och växer. 

– Det är möjligt att svarta hål "är stora från början vilket skulle kunna förklara varför Webb har upptäckt enorma svarta hål i det tidiga universum, beskriver medförfattaren professor Roberto Maiolino vid Kavliinstitutet och Cavendish Laboratory i Cambridge. "Men en annan möjlighet är att de går igenom perioder av hyperaktivitet, följt av långa perioder av dvala."

I samarbete med kollegor från Italien genomförde Cambridgeforskarna en rad datorsimuleringar för att modellera hur detta vilande svarta hål kunde ha vuxit till en så massiv storlek så tidigt i universum. De fann att det mest troliga scenariot är att svarta hål kan överskrida Eddingtongränsen under korta perioder, under vilka de växer mycket snabbt, följt av långa perioder av inaktivitet: forskarna säger att svarta hål som detta sannolikt växer i fem till tio miljoner år

Observationerna gjordes som en del av JWST Advanced Deep Extragalactic Survey (JADES). Forskningen stöddes delvis av Europeiska forskningsrådet och Science and Technology Facilities Council (STFC), som är en del av UK Research and Innovation (UKRI). Studien redovisas i tidskriften Nature.

Vi ska även ha i åtanke att i det tidiga universum fanns stora mängder gas och damm som kan ha hjälpt till att skapa mastodontstora svarta hål även i områden där små galaxer bildades. Det kan ha varit en inflation av påväxt till dessa utan att stjärnor påverkats. Kanske några stjärnor under denna tid sprängdes som supernovor då de misslyckades i sin bildning och resterna av dessa blev början till svarta hål.

torsdag 26 december 2024

Hjärnceller efter en månad på den internationella rymdstationen.

 


Bild https://www.scripps.edu Hjärnorganoiderna var friska och fortsatte att växa efter att ha tillbringat en månad på den internationella rymdstationen. (Fotograf: Jeanne Loring). 

Mikrogravitation är känt för att förändra muskler, ben, immunsystem och kognition, men inte mycket är känt om dess specifika inverkan på hjärnan. För att ta reda på hur hjärnceller reagerar på mikrogravitation skickade forskare vid Scripps Research, i samarbete med New York Stem Cell Foundation, små klumpar av hjärnceller bestående av stamceller så kallade "organoider" till den internationella rymdstationen (ISS) (studier med organoider har till syfte att hitta botmedel mot ex parkinssons sjukdom). 

Överraskande nog var organoiderna fortfarande friska när de återvände från ISS en månad senare. Men cellerna hade däremot mognat snabbare jämfört med identiska organoider som odlats på jorden. De blev snabbare färdiga neuroner och började visa tecken på specialisering.

"Det faktum att dessa celler klarade rymden så bra var en stor överraskning", beskriver medförfattaren till studien Jeanne Loring, PhD, professor emeritus vid institutionen för molekylär medicin och grundare av Center for Regenerative Medicine vid Scripps Research. Det lägger grunden för framtida experiment i rymden där vi kan inkludera andra delar av hjärnan som påverkas av neurodegenerativa sjukdomar.

Resultaten, som kan kasta ljus över potentiella neurologiska effekter av rymdresor, publicerades den 23 oktober 2024 i Stem Cells Translational Medicine. Arbetet stöddes finansiellt från National Stem Cell Foundation. Förutom Loring är författarna till studien "Effects of microgravity on human iPSC-derived neural organoids on the International Space Station" Jason Stein från Scripps Research; Davide Marotta, Laraib Ijaz, Lilianne Barbar, Madhura Nijsure, Nicolette Pirjanian, Ilya Kruglikov, Scott A. Noggle och Valentina Fossati från New York Stem Cell Foundation Research Institute; Twyman Clements och Jana Stoudemire från Space Tango; och Paula Grisanti från National Stem Cell Foundation.

onsdag 25 december 2024

NASA uppdrag DAVINCI ner på Venus yta

 


Bild https://science.nasa.gov  En illustratörs visualisering av DAVINCI:s nedstigningssond liggande på Venus yta. NASA:s studio för vetenskaplig visualisering

DAVINCI är planerad att skjutas upp i början av 2030-talet och kommer att utforska Venus med både en rymdfarkost och en nedstigningssond. DAVINCI:s sond kommer att vara den första under 2000-talet som trotsar Venus atmosfär då den sjunker ner genom moln ner till ytan. Två andra uppdrag, NASA:s VERITAS och ESA:s (European Space Agency) Envision, kommer också att utforska Venus på 2030-talet då från planetens omloppsbana.

Rymdsonden DAVINCI som sänds upp under 2030 talet kommer att studera Venus moln och högland under två förbiflygningar. Den kommer också att släppa ut en sfärisk sond, cirka 3 meter bred som ska sjunka genom planetens tjocka atmosfär och frätande moln göra mätningar och ta högupplösta bilder av Venus yta då den sjunker ner under molnen.

DAVINCI-uppdraget kommer att vara det första som på nära håll utforskar Alpha Regio, en region som är känd som en "tessera". Tesserae som Alpha Regio tros vara uråldriga kontinenter och kan vara bland de äldsta ytorna på planeten vilket ger forskare tillgång till sten som är miljarder år gammal.

Genom att studera dessa stenar från ovan över Alfa Regio kan DAVINCI-forskarna ta reda på om Venus hade kontinenter och hav i det förflutna och hur eventuellt vatten då kan ha påverkat ytan. DAVINCI:s sond kommer att sjunka ner genom atmosfären för att ge en klar bild av bergen och slätterna. Den kommer att ta bilder som kan jämföras med ett flygplans landningsvy över jordens yta.

Forskare kommer att använda bilderna för att sammanställa 3D-kartor över Alpha Regio för att ge detaljer om Venus terräng vilket hjälper dem att leta efter stenar som vanligtvis bara blivit formade i  vattenströmmar.

 DAVINCI-uppdraget kommer att vara det första som analyserar den kemiska sammansättningen av Venus lägre atmosfär genom mätningar som görs med jämna mellanrum under nedfärden. Till exempel kan svavelföreningar som upptäcks här indikera om Venus vulkaner för närvarande är aktiva eller var aktiva nyligen. Ädelgaser (som helium eller xenon) däremot förblir kemiskt inerta och upprätthåller stabila koncentrationer vilket ger ovärderliga ledtrådar om Venus forntida historia, såsom planetens tidigare vatteninventering.

NASA:s Goddard Space Flight Center i Greenbelt, Maryland, är den huvudsakliga forskarinstitutionen i DAVINCI-uppdraget och kommer att utföra projektledning för uppdraget, tillhandahålla vetenskapliga instrument samt projektsystemteknik för att utveckla sondflygsystemet som går in i Venus atmosfär. Goddard leder också den övergripande vetenskapen för uppdraget med ett externt vetenskapsteam från hela USA. Lockheed Martin Space i Denver, Colorado. Colorado, kommer att bygga hangarfartyget/reläfarkosten. DAVINCI är ett uppdrag inom Discovery-programmet, som drivs av NASA:s Marshall Space Flight Center i Huntsville, Alabama, för myndighetens Science Mission Directorate i Washington

tisdag 24 december 2024

Antropologer vill att vi bevarar av mänskliga artefakter (ex landare) på Mars

 


Bild wikipedia NASA:s Curiosity-rover, selfie, 2015.

Antropologi är studiet av mänskligheten, dess beteende, biologi, kulturer, samhällen, lingvistik, både i nuet och det förflutna.

I ett nytt forskningsprojekt av antropolog Justin Holcomb vid University of Kansas hävdar denne att fysiska artefakter från mänsklig utforskning av Mars bör katalogiseras för bevarande och med omsorg för att skildra mänsklighetens första försök till interplanetär utforskning.

"Vårt huvudargument är att Homo sapiens för närvarande genomgår en spridning som först började i Afrika, nådde andra kontinenter och nu har börjat i utomjordiska miljöer", beskriver Holcomb huvudförfattare till en nyligen publicerad artikel "The Emerging Archaeological Record of Mars" i den vetenskapliga tidskriften Nature Astronomy.

 – Vi har börjat befolka solsystemet. Och precis som vi använder artefakter och funktioner för att spåra vår rörelse, evolution och historia på jorden kan vi göra det i yttre rymden genom att följa sonder, satelliter, landare och olika material som lämnats kvar. Det finns ett materiellt fotavtryck i den här spridningen,"beskriver Holcomb.

På samma sätt som arkeologer använder "kökkenmödding" (forntida soptippar) för att avslöja hemligheter om tidigare samhällen här på jorden, hävdar Holcomb att mycket av det material som anses vara "rymdskräp" faktiskt har stort arkeologiskt och miljömässigt värde.

"Det här är de första materiella dokumenten om vår närvaro och det är viktigt för oss", påtalar han. – Jag har sett många forskare referera till det här materialet som rymdskräp, galaktiskt skräp. Vårt argument är att det inte är skräp. Det är viktigt material för berättelsen om kulturarv. Lösningen på skräp är att kasta eller återvinna men lösningen på kulturarv är bevarande. Det är stor skillnad.

Holcombs medförfattare var Beth O'Leary från New Mexico State University; Alberto Fairén från Centro de Astrobiología i Madrid, Spanien, och Cornell University; KU:s Rolfe Mandel; och Karl Wegmann från North Carolina State University.

måndag 23 december 2024

Planetbildning i universums första tid.

 


Bild https://webbtelescope.org/ Protoplanetära skivor i NGC 346 (NIRCam-bild)

Känsligheten och upplösningen av Webbteleskopet har nu löst ett mysterium som är mer än två decennier gammalt. År 2003 upptäckte Hubbleteleskopet en massiv planet runt en uråldrig stjärna. Detta förbryllade astronomerna som ansåg att sådana stjärnor i det tidiga universum saknade många av de tyngre grundämnen som ses nödvändiga för att bygga upp planeter. Nuvarande modeller förutspår att skivorna runt den här typen av stjärnor har kort livslängd, så kort att planeter inte kan bli stora eller kanske ens bildas. Men fyndet visar att det var fel slutledning

Astronomerna vände sig  till ett närliggande område av det unga universum – det stjärnbildande området NGC 346. Där upptäckte Hubbleteleskopet tecken på att planetbildande skivor existerade runt stjärnor som var 20 till 30 miljoner år gamla mycket äldre än vad teorierna förutspådde att sådana skivor kunde bestå. 

Hubble-fynden var spännande, men utan ett sätt att få fram spektra kunde forskarna inte vara säkra på att de bevittnade en  ackretionkiva. Nu har forskare med hjälp av Webb bekräftat att det finns ackretionskivor i NGC 346 där planetbildning sker och att dessa skivor är långlivade. Upptäckten bekräftar Hubble-resultatet och det får forskare att ompröva nuvarande modeller för planetbildning.

Studien om fyndet har rubriken Protoplanetary Disks around Sun-like Stars Appear to Live Longer When the Metallicity is Low* Författare är Guido De Marchi, Giovanna Giardino, Katia Biazzo, Nino Panagia, Elena Sabbi, Tracy L. Beck, Massimo Robberto, Peter Zeidler, Olivia C. Jones, Margaret MeixnerShow full author list Published 2024 December 16 • © 2024. The Author(s). Published by the American Astronomical Society.

The Astrophysical Journal, Volume 977, Number 2

Citation Guido De Marchi et al 2024 ApJ 977 214

DOI 10.3847/1538-4357/ad7a63 

söndag 22 december 2024

Almaobservatoriet har upptäckt en plats med nybildade planeter

 


Bild wikipedia Den protoplanetära skivan vid den endast ca 10 miljoner år gamla stjärnan  PDS 70 med den nya planeten PDS 70b (höger).

ALMA-observatoriet i Chile (Atacama Large Millimeter/submillimeter Array) har  upptäckt och observerat en plats där planeter bildas genom att teleskopet upptäckte en hög koncentration av stoftkorn (planetbildande materia) runt de nybildade planeternas banor.

En internationell forskargrupp under ledning av Kiyoaki Doi, som då var doktorand vid National Astronomical Observatory of Japan (NAOJ)/Graduate University for Advanced Studies, SOKENDAI, och för närvarande postdoktor vid Max Planck-institutet för astronomi utförde högupplösta observationer av en protoplanetär skiva runt en ung stjärna kallad PDS 70 vid en våglängd på 3 mm med ALMA. Objektet är värd för två kända planeter och de nya observationerna med ALMA och avslöjade en lokal ansamling av stoftkorn utanför planeternas banor.

Fyndet tyder på att redan bildade planeter ackumulerar materia för en planet och underlättar samtidigt den potentiella bildningen av nästa planet. Detta arbete bidrar till att avslöja bildningsprocessen av planetsystem som består av flera planeter som i vårt solsystem. PDS 70 är det enda kända objektet med redan bildade planeter, bekräftade genom optiska och infraröda observationer, inuti en protoplanetär skiva. Att avslöja fördelningen av stoftkorn i detta objekt kommer att ge insikt i hur de redan bildade planeterna interagerar med den omgivande protoplanetära skivan och potentiellt påverkar efterföljande planetbildning.

Tidigare observationer med ALMA på 0,87 mm har avslöjat ringformade utsläpp från stoftkornen utanför planeternas banor. Utsläppskällan kan dock vara optiskt dold (ogenomskinlig då det finns stoftkorn på den till oss närmaste sidan som skymmer de bakomliggande), och den observerade emissionsfördelningen kanske inte korrekt återspeglar fördelningen av stoftkornen.

Resultaten av detta arbete publicerades i Astrophysical Journal Letters av Doi et al., "Asymmetric Dust Accumulation of the PDS 70 Disk Revealed by ALMA Band 3 Observations".

lördag 21 december 2024

Nyligen sågs hur ett svart hål slukade en stjärna

 


Bild https://www.iac.es/en  Recreation of a burst, identified as CSS161010, in which a small black hole swallows a star. Credits: Gabriel Pérez (IAC).

Ett internationellt forskarlag under ledning från Institute of Space Studies of Catalonia (IEEC) med Dr. Claudia Gutiérrez från Institute of Space Sciences (ICE-CSIC) upptäckte ett exceptionellt snabbt och ljusstarkt kosmiskt utbrott i en liten galax som ligger 500 miljoner ljusår bort.

Explosionen, identifierad som CSS161010 (galax), nådde sin maximala ljusstyrka på endast 4 dagar och sjönk sedan till halva ljusstyrkan efter 2,5 dag vilket innebar att både upptäckten och de efterföljande observationerna av dess utveckling blev en vetenskaplig milstolpe och en utmaning för forskargruppen.

Huvudförfattaren till studien om fenomenet var Dr. Claudia Gutiérrez, forskare vid IEEC och ICE-CSIC. Hittills har endast ett dussin kosmiska explosioner med dessa egenskaper i  ljusstyrka och utveckling upptäckts och ännu är deras ursprung ett fullständigt mysterium. Forskargruppen under ledning av Claudia Gutiérrez tror dock att de unika spektrala egenskaperna hos CSS161010  ger viktiga ledtrådar om dess fysikaliska ursprung och deras analys tyder på att det  är resultatet av ett litet svart hål som sväljer en stjärna. Utbrottet inträffade i en liten galax 400 gånger mindre än vår Vintergata. Om dvärggalaxen är värd för ett massivt svart hål, måste dess massa också vara liten vilket motsvarar ett svart hål med medelstor massa (100 - 100 000 solmassor).

– Hittills har den här typen av svarta hål varit extremt svåra att identifiera och astronomerna känner bara till ett  litet antal, beskriver professor Seppo Mattila vid Åbo universitet i Finland som är en av huvudförfattarna till artikeln.

– Att identifiera och karakterisera svarta hål med medelhög massa är avgörande för att förstå hur svarta hål bildas och utvecklas. I själva verket är de grundläggande byggstenarna i supermassiva svarta hål som finns i centrum av galaxer, såsom vår Vintergata, och som man har observerat existerar även i det unga universum, tillägger professor Mattila. Professor Peter Lundqvist från Stockholms universitet, som också ingick i forskargruppen. Han tillägger: – Linjestrålningen utvecklad i det här objektet liknar den som observerats i aktiva galaxkärnor där man vet att supermassiva svarta hål finns. Denna likhet ger stark trolighet  att CSS161010 också  har ett svart hål, även om det inte är ett särskilt stort hål.

Lundqvist påpekar: "När en stjärna splittras av en stjärna som kommer för nära ett svart hål med medelmassa avslöjas det svarta hålet som annars skulle vara vilande. Det är troligt att det finns andra sådana svarta hål i andra dvärggalaxer, och vi måste spåra händelser som liknar CSS161010 för att kunna bestämma egenskaperna hos dessa svarta hål bättre än idag.

Min tolkning av  CSS161010 i två artiklar är att det är namnet både på explosionen och galaxen. Men det kan vara fel.

fredag 20 december 2024

En galax som ser ut som Vintergatan gjorde under sin första tid

 


Bild https://webbtelescope.org/  Firefly Sparkle Galaxy och följeslagare i galaxhopen MACS J1423

I bilden ovan ses 10 distinkta stjärnhopar (se you tubefilm här om fenomenet) som rör sig likt eldflugor i bilden från NASA:s James Webb Space Telescope. De ses ingå i en kokong av diffust ljus som sänds ut av andra stjärnor som är utspridda runt dem. Galaxen har beteckningen Firefly Sparkle och blev till cirka 600 miljoner år efter big bang.

Forskare som analyserade Webbs bilder och data drog slutsatsen att Firefly Sparkle har samma massa som vår galax Vintergatan skulle haft om vi kunde "vrida tillbaka tiden" för att väga den när den höll på att bildas.

Analysen är möjlig genom en naturlig effekt som kallas gravitationslinsning som gör det möjligt för forskare att "zooma in" på extremt avlägsna objekt som är perfekt anpassade till Webbs vy. I kombination med teleskopets bilder och data i kortvågigt infrarött ljus kan astronomer studera avlägsna objekt i häpnadsväckande detalj.

Gravitationslinsing innebär att ett massivt föremål förstorar eller förvränger ljuset från föremål som ligger bakom det. Till exempel kan det kraftfulla gravitationsfältet i en massiv galaxhop böja ljusstrålarna från mer avlägsna galaxer, precis som en kameralins böjer ljus för att bilda en bild. 

”Utan den här gravitationslinsingen skulle vi inte kunna se galaxdetaljer i teleskopet", beskriver Kartheik Iyer, en av huvudförfattarna vid NASA Hubble Fellow vid Columbia University i New York.

"Vi visste att vi kunde förvänta oss det baserat på nuvarande fysik, men det är förvånande att vi faktiskt såg det." Beskriver en av medförfattarna till artikeln Lamiya Mowla biträdande professor vid Wellesley College i Massachusetts det.  En artikel publicerades den 11 december 2024 i tidskriften Nature om fyndet.

torsdag 19 december 2024

En jetstråle från ett svart hål träffar ett okänt objekt

 


Bild https://chandra.si  Källa C4 i Centaurus A-galaxen. (Källa: NASA/CXC/SAO/D. Bogensberger et al.; Bildbehandling: NASA/CXC/SAO/N. Wolk)

Även materia som kastas ut från svarta hål kan stöta på något i mörkret därute. Med hjälp av NASA:s Chandra X-ray Observatory har astronomer upptäckt ett ovanligt fenomen från ett stort svart håls kraftfulla jetstråle då strålen träffar ett oidentifierat objekt på dess väg i universum.

Centaurus A (Cen A) är en galax som finns cirka 12 miljoner ljusår från jorden. Astronomer har länge studerat Cen A eftersom galaxen har ett supermassivt svart hål i sitt centrum vilket skickar ut jetstrålar som sträcker sig ut över hela galaxen. Det svarta hålets jetstrålar består inte av högenergipartiklar från det svarta hålet själv utan från det starka gravitations- och magnetfältet runt detta.

Bilden ovan visar röntgenstrålar med låg energi som Chandra ser i ett rosa sken, röntgenstrålar med medelhög energi i lila och röntgenstrålar med högst energi i blått.

I den senaste studien har forskarna kommit fram till att jetstrålen åtminstone på vissa ställen rör sig nära ljusets hastighet. Med hjälp av den djupaste röntgenbilden som någonsin gjorts av Cen A fann de även ett område där strålningen är V-formad i ett ljusstarkt område av röntgenstrålningen något som inte hade setts tidigare i galaxen.

Denna källa, kallas C4 och finns nära jetstrålens väg från det svarta hålet och är markerat i den infällda bilden. V:ets armar är minst 700 ljusår långa.

Forskarna har en aning om vad som händer men identiteten på det objekt som sprängs i området är ett mysterium eftersom det är för avlägset för att dess detaljer ska kunna ses. Inte ens i bilder från dagens mest kraftfulla teleskop kan man utröna vad det är.

Det okända objektet som rammas kan vara en massiv stjärna, antingen en ensam sådan eller ett dubbelstjärnsystem. Röntgenstrålningen från C4 skulle kunna orsakas av kollisionen mellan partiklarna i jetstrålen och gasen i en vind som blåser ut från stjärnan (stjärnorna). Kollisionen kan generera turbulens vilket orsakar en ökning av densiteten hos gasen i jetstrålen. Detta antänder i sin tur röntgenstrålningen som Chandra registrerar. Men än är allt teori. Funderar på om det kan vara ett gasmoln som strålen träffat på och som ger skenet då det antänds.

En artikel som beskriver dessa resultat finns i det senaste numret av The Astrophysical Journal. Författarna till studien är David Bogensberger (University of Michigan), Jon M. Miller (University of Michigan), Richard Mushotsky (University of Maryland), Niel Brandt (Penn State University), Elias Kammoun (University of Toulouse, Frankrike), Abderahmen Zogbhi (University of Maryland) och Ehud Behar (Israel Institute of Technology).

NASA:s Marshall Space Flight Center i Huntsville, Alabama, förvaltar Chandra-programmet. Smithsonian Astrophysical Observatorys Chandra X-ray Center kontrollerar den vetenskapliga verksamheten från Cambridge, Massachusetts, och flygverksamheten från Burlington, Massachusetts.

onsdag 18 december 2024

Små asteroider kan nu hittas lättare i Asteroidbältet

 


Bild https://news.mit.ed En  illustration av NASA:s James Webb Space Telescope som i infrarött ljus visar upp en population av små asteroider i asteroidbältet. Bild: Ella Maru och Julien de Wit.

Asteroiden som släckte ut dinosaurierna beräknas ha varit cirka 10 kilometer i diameter. Det är ungefär lika stort som Brooklyn i New York. Ett sådant massivt nedslag förutspås ske  en gång på 100 miljoner till 500 miljoner år.

Däremot kan mycket mindre asteroider i storlek som en buss slå ner på jorden oftare kanske bara med några års mellanrum. Dessa mindre asteroider på tiotals meter i diameter är mer benägna att ta sig ur asteroidbältet och migrera in mot jorden. Om de slår ner kan dessa små asteroider skicka chockvågor genom hela regioner som skedde vid nedslaget 1908 i Tunguska i Sibirien och asteroiden 2013 som bröts sönder på himlen över Tjeljabinsk i Ural. Att kunna observera dessa asteroider i asteroidbältet då de tar kurs mot oss skulle ge en inblick i varifrån de kommer och ge oss tid att försvara oss.

Nu har ett internationellt forskarlag lett av fysiker vid MIT (Massachusetts Institute of Technology) hittat ett sätt att upptäcka de minsta asteroiderna i asteroidbältet (bältet där miljontals asteroider finns ligger mellan Mars och Jupiter). Hittills har de minsta asteroiderna som forskare kunnat urskilja där varit ungefär en kilometer i diameter. Med teamets nya metod kan forskare nu upptäcka asteroider i asteroidbältet som är så små som 10 meter i diameter.

"Vi har kunnat upptäcka jordnära objekt ner till 10 meter i storlek", beskriver studiens huvudförfattare, Artem Burdanov, forskare vid MIT:s Department of Earth, Atmospheric and Planetary Sciences. "Vi har nu ett sätt att upptäcka dessa små asteroider när de är mycket längre bort, så att vi kan göra mer exakt spårning av dess omloppsbana vilket kan hjälpa oss att hindra nedslag på jorden."

Studiens medförfattare inkluderade MIT-professorerna i planetvetenskap Julien de Wit och Richard Binzel, tillsammans med medarbetare från flera andra institutioner, inklusive universitetet i Liège i Belgien, Karlsuniversitetet i Tjeckien, Europeiska rymdorganisationen och institutioner i Tyskland inklusive Max Planck-institutet för utomjordisk fysik och universitetet i Oldenburg.

I artikeln som publicerats nyligen  i tidskriften Nature rapporterar forskarna att då de har använt sin metod  upptäckt mer än 100 tidigare okända  mindre asteroider i asteroidbältet. Rymdstenarna varierar från storleken av en buss och uppåt och är de minsta asteroiderna inom asteroidbältet som hittills har upptäckts. I den nya studien letade forskarna efter asteroider av mindre storlekar med hjälp av data från världens mest kraftfulla observatorium – NASA:s James Webb Space Telescope (JWST), som är särskilt känsligt i det infraröda fältet snarare än synligt ljus. Det råkar vara så att asteroider som kretsar i asteroidbältet är mycket ljusare vid infraröda våglängder än vid synliga våglängder och är därför mycket lättare att upptäcka med JWST:s infraröda kapacitet.

tisdag 17 december 2024

Universum kan ses designat för att passa oss (eller har vi designats för att passa in)

 


Den antropiska principen är inom kosmologi, fysik och filosofi, ett begrepp som sammanfattar den åsikten att universums grundläggande naturlagar måste ha fått en specifik utformning för att liv ska kunna uppstå. 

I en banbrytande studie om axion mörk materia av Dr. Nemanja Kaloper, fysiker vid Institutionen för fysik och astronomi vid University of California, Davis, och Dr. Alexander Westphal, professor vid Deutsches Elektronen-Synchrotron (DESY) i Tyskland, föreslår dessa en metod för att testa den antropiska principen vilket potentiellt kan skaka grunden för hur vi förstår vår plats i kosmos.

Studien publicerades i The Journal of Cosmology and Astroparticle Physics här beskriver den framstående astronomen Dr. David Kipping och astrofysikern Dr. Geraint Lewis att mänskligheten ännu inte upptäckt intelligent utomjordiskt liv eftersom Jorden existerar i en ficka i rymden dit avancerade utomjordingar ännu inte har nått fram. Kritiker hävdar däremot att antropiska resonemang är en icke vetenskaplig förklaring utan mer en filosofisk krycka och förlitar sig på multiversumhypotesen för att rättfärdiga sina antaganden. Om det finns oräkneliga universum, vart och ett med olika fysiska konstanter är det inte förvånande att ett av dem skulle tillåta liv.

Multiversum förblir spekulativt, vilket lämnar den antropiska principen på ostadig grund och kritiseras ofta för sitt cirkelresonemang och sin icke-falsifierbarhet. Forskarna fördjupar sig i axion mörk materia – en svårfångad kandidat för universums saknade massa – och då inga bevis finns av att multiunvers eller den antropiska principen finns är det inte vetenskap utan något som varken kan bevisas eller motbevisas. Deras resultat presenterar en väg för att testa principen och väcker kritiska frågor om dess vetenskapliga giltighet.

Centralt i studien är begreppet "suddig" mörk materia, en form av ultralätta axioner med mycket liten massa. Om dessa partiklar existerar, teoretiseras om att de för att bilda ett kvantvågsliknande fält på galaktiska skalor. Fuzzy Dark Matter har dykt upp som ett lönsamt alternativ till traditionella modeller, och erbjuder potentiella förklaringar till skillnader i teori om hur galaxer bildas.

I Dr. Kaloper och Dr. Westphals ramverk antas axioner uppstått från kvantfluktuationer under universums expansiva första epok. Dessa partiklar skulle ha de "guldlocksegenskaper" som behövs för att förklara förekomsten av mörk materia och deras beteende styrs av det subtila samspelet mellan inflationsdynamik och kvantmekanik.

Det som gör denna hypotes revolutionerande är dess koppling till den antropiska principen. Studien illustrerar på ett levande sätt hur antropiska resonemang interagerar med begreppet multiversum. Om suddiga axioner upptäcks med massor och densitet som är perfekt anpassade till livsuppehållande förhållanden, skulle det tyda på att universum är "precis rätt" för människan och allt liv på jorden. Dr. Kaloper och Dr. Westphals studie kan representera en vändpunkt av vår förståelse av universum och vår plats i det. Genom att knyta den antropiska principens öde till observerbara fenomen utmanar de oss att ompröva den vetenskapliga förklaringens natur.

Är universum finjusterat för liv eller är vi bara ett slumpmässigt utfall bland många? Svaret kan finnas i den svårfångade världen av suddig mörk materia – och med den väntar ett nytt kapitel i historien om kosmiska upptäckter.

Läs gärna mer om detta spännande sätt att förstå och se på verkligheten här vid The Debrief https://thedebrief.org. 

Men jag vill även tipsa om en bok av Sabine Hossenfelder som är teoretisk fysiker vid Frankfurt Institute for advanced studies med titeln Existentiell Fysik utgiven på svenska 2023. Här beskriver hon bland annat hur multiversum och den antropiska principen bör förstås. Det finns mycket ovetenskap inom psudovetenskap inom dessa begrepp.

måndag 16 december 2024

Hubbles väderobservationer på is- och gasplaneterna i vårt solsystem

 


Bild https://hubblesite.org/ Ett montage av Hubbleteleskopets bilder av vårt solsystems fyra yttre planeter: Jupiter, Saturnus, Uranus och Neptunus, var och en visad i förbättrade färger.

Rymdteleskopet Hubble observationsprogram som kallas OPAL (Outer Planet Atmospheres Legacy) samlar in långsiktiga observationer av Jupiter, Saturnus, Uranus och Neptunus väder för att förstå deras atmosfäriska dynamik och utveckling.

Jupiters molnband visar ett ständigt föränderligt kalejdoskop av form och färg. Det är alltid stormigt väder på Jupiter: cykloner, anticykloner, vindförändringar plus den kraftigaste stormen i solsystemet, den stora röda fläcken. Jupiter är till stor del  täckt av ammoniak-iskristallmoln ovan atmosfären som är tiotusentals mil djup.

Det tar mer än 29 år för Saturnus att kretsa runt solen, så OPAL har följt den i ungefär en fjärdedel av ett Saturnusår (med början från 2018 vilket var slutet av Cassini-uppdraget). Eftersom Saturnus lutar 26,7 grader går den igenom mer djupgående säsongsförändringar än Jupiter. Saturnus årstider varar i ungefär sju år. Detta innebär också att Hubble ser det spektakulära ringsystemet i en sned vinkel på nästan 30 grader och ringarnas lutning från kanten där de försvinner nästan helt eftersom de ses som papperstunna.

Uranus lutar på sidan så att dess rotationsaxel nästan är i samma plan som planetens omloppsbana. Detta resulterar i att planeten går igenom radikala årstidsväxlingar under sin 84 år långa vandring runt solen. Konsekvensen av planetens lutning innebär att en del av halvklotet är helt utan solljus, under tidsperioder som varar upp till 42 år. OPAL har följt den norra polen som för tillfället tippar mot solen.

När Voyager 2 flög förbi Neptunus 1989 blev astronomerna förbryllade över en stor mörk fläck lika stor som Atlanten som tornade upp sig i atmosfären. Var den lika långlivad som Jupiters stora röda fläck frågade man sig. Frågan förblev obesvarad tills Hubble 1994 kunde visa att sådana mörka stormar var övergående på Neptunus de dök upp och försvann efter två till sex år. Under OPAL-programmet upptäckte Hubble även slutfasen av en mörk fläck och hela livscykeln för en annan – båda migrerade mot ekvatorn innan de försvann. OPAL-programmet gör att astronomer inte missar framtida stormar.

För än mer utförligt om klimat och väder på dessa planeter följ denna länk från NASA:s Hubbletelekops egen sida.  

söndag 15 december 2024

Månens största och äldsta krater

 


Bild wikipedia. Aitkenkratern, vy av Apollo 17 från 121 km höjd.

Baserat på vissa egenskaper hos Aitken-kratern ansåg astronomer att kratern var oval eller ellipsformad. I åratal trodde forskare att denna enorma krater bildats av ett nedslag som träffade månen i en flack vinkel, möjligen så extrem som då en sten hoppar över en vattenyta i den så kallade leken ”kasta smörgås” 

Enligt denna teori skulle mycket lite skräp från nedslaget som bildat kratern ha kastats ut på månens sydpol (kratern finns på månens sydpol) landningsområdet för de kommande Artemis-uppdragen då människan återvänder till månen.

I en ny studie under ledning från University of Maryland (UMD) och publicerad i tidskriften Earth and Planetary Science Letters visas att nedslaget kan ha varit mycket mer direkt än man tidigare ansett vilket resulterade till en mycket rundare krater än man tidigare ansett formen se ut som.

"Det är utmanande att studera Aitken-kratern holistiskt på grund av dess enorma storlek vilket är anledningen till att forskare fortfarande försöker förstå dess form och storlek. Dessutom har det gått fyra miljarder år sedan kratern bildades och många andra nedslag har dolt dess ursprungliga form förklarar studiens huvudförfattare, Hannes Bernhardt, biträdande forskare vid UMD:s geologiska institution. "Vårt arbete utmanar många befintliga idéer om hur detta massiva nedslag inträffade och kastade ut material men vi är nu ett steg närmare för att bättre förstå månens tidiga historia och utveckling över tid.”

Med hjälp av högupplöst data från NASA:s Lunar Reconnaissance Orbiter utvecklade Bernhardt och hans team ett innovativt tillvägagångssätt för att förstå Aitken-kraterns komplexa struktur. De identifierade och analyserade över 200 bergsformationer utspridda runt bassängen, geologiska egenskaper som teamet misstänkte var uråldriga rester från det ursprungliga nedslaget. Från fördelningen och formen på dessa bergsliknande stenar insåg teamet att nedslaget borde ha skapat en cirkulär krater från vilken betydande bitar av materia spreds ut över månens yta på månens sydpol (där kraterns finns).

"En rundare, mer cirkulär form indikerar att ett föremål träffade månens yta i en mer vertikal vinkel, möjligen liknande som att släppa en sten rakt ner på marken", beskriver Hannes Bernhardt, biträdande forskare vid UMD:s geologiska institution.

Artikeln "Numeric Ring-Reconstructions based on Massifs favor a Non-oblique South Pole-Aitken-forming Impact event" publicerades i Earth and Planetary Science Letters den 28 november 2024. Studien stöddes av NASA-projektet Lunar Reconnaissance Orbiter Camera (LROC) och initierades av Jessica Walsh från Northern Arizona University, som tragiskt gick bort innan studien publicerades. Medförfattare var Jaclyn Clark, biträdande forskare vid UMD, Leon Schröder från AlgebraX gmbH, Megan Henriksen från Intuitive Machines och Christopher Edwards och Jessica Walsh från Northern Arizona University

lördag 14 december 2024

Hubbleteleskopet tar en närmare titt på en kvasar som är en blasar

 


Bild https://hubblesite.org  Kvasar 3C 273 som finns i riktning mot stjärnbilden jungfrun. En kvasar är en extremt ljusstark och avlägsen aktiv galaxkärna. Den överglänser sin värdgalax så denna inte tidigare har kunnat observeras. Just denna kvasar är klassificerad som blasar vilket är en typ av kvasar, dvs en mycket kompakt, ytterst ljusstark och snabbt variabel galaxkärna. Det som utmärker en blazar är att en av dess jetstrålar är riktad mer eller mindre rakt mot jorden.

Astronomer har nyligen använt NASA:s rymdteleskop Hubble för att se närmare på ett energirikt stort svart hål som är en kvasar. En kvasar är ett galaktiskt centrum som lyser starkt när det svarta hålet konsumerar materia i sin omedelbara omgivning och överglänser den galax där den finns i ljusstyrka.

De nya Hubble-bilderna av miljön runt kvasaren visar en del "konstiga saker", enligt Bin Ren vid Côte d'Azur-observatoriet och Université Côte d'Azur i Nice, Frankrike. "Man ser några klumpar i olika storlekar och en mystisk L-formad trådstruktur. Allt detta inom 16 000 ljusår från det svarta hålet.

En del av objekten kan vara små satellitgalaxer runt det svarta hålet och på så sätt skulle de kunna förlora material till det svarta hålet och driva den ljusstarka fyren (som kallas kvasar). – Tack vare Hubbles observationsförmåga öppnar vi en ny inkörsport till att förstå kvasarer, beskriver Ren.

Kvasarer ser ut som stjärnor eller punktkällor av ljus i rymden (därav namnet kvasistellära objekt). Kvasaren i den nya studien, kvasar3C 273, identifierades 1963 av astronomen Maarten Schmidt och var den första kvasar som upptäckts. På ett avstånd av 2,5 miljarder ljusår var den för långt bort för att tolkas som en stjärna. Den har en ljusstyrka som är mer än 10 gånger starkare än de ljusaste elliptiska jättegalaxerna. Detta öppnade dörren till en ny gåta inom kosmologin. Frågan vad som driver denna massiva energiproduktion? Det troliga  är material som dras in i ett svart hål.

År 1994 avslöjade Hubbles starka teleskop att miljön kring kvasarer är mycket mer komplex än man först trott. Bilderna tolkades som galaktiska kollisioner och sammanslagningar mellan kvasarer och materia och gas som for ner på supermassiva svarta hål. Detta får de svarta hålen att bli kvasarer.

Att se in i kvasaren 3C 273 är för Hubble som att se rakt in i en bländande bilstrålkastare och försöka se en myra krypa på kanten runt den. Kvasaren strålar ut tusentals gånger mer energi än stjärnorna från en galax. 3C 273 finns 2,5 miljarder ljusår bort och är en av de närmsta till oss. Om den varit alldeles i närheten, några tiotals ljusår från jorden, skulle den se lika ljus ut som solen på himlen!)

Hubbles STIS-instrument kan fungera som en koronagraf för att blockera ljus från centrala källor inte olikt hur månen blockerar solens bländning under en total solförmörkelse. Astronomer har använt STIS (Space Telescope Imaging Spectrograph) för att avslöja stoftskivor runt stjärnor för att förstå hur planetsystem bildas och nu kan de använda STIS för att bättre förstå kvasarernas närliggande värdgalaxer. Coronografen på Hubble gjorde det möjligt för astronomer att se åtta gånger närmare det svarta hålet än någonsin tidigare. 

Forskarna fick en sällsynt inblick i kvasarens 300 000 ljusår långa extragalaktiska jetstråle av material som for genom rymden med nästan ljusets hastighet. Genom att jämföra STIS-korondata med arkivbilder från STIS med 22 års mellanrum drog forskarlaget under ledning av Ren slutsatsen att jetstrålen rör sig snabbare när den är längre bort från det svarta hålet.

I framtiden kan vi få fler ledtrådar om kvasarer genom att titta närmare på 3C 273 i infrarött ljus med James Webb Space Telescope, beskriver Ren. (observationstid med detta teleskop är svårt att få)

Minst 1 miljon kvasarer är utspridda över himlen. De är användbara bakgrundsstrålkastare för en mängd olika astronomiska observationer. Kvasarer var vanligast cirka 3 miljarder år efter big bang, då galaxkollisioner var vanligare.

Rymdteleskopet Hubble har varit i drift i över tre decennier och fortsätter att göra banbrytande upptäckter som formar vår grundläggande förståelse av universum. Hubble är ett internationellt samarbetsprojekt mellan NASA och ESA (European Space Agency). NASA:s Goddard Space Flight Center i Greenbelt, Maryland, sköter teleskopet och uppdragsverksamheten. Lockheed Martin Space, baserat i Denver, stöder också uppdragsverksamheten vid Goddard. Space Telescope Science Institute (STScI) i Baltimore, som drivs av Association of Universities for Research in Astronomy, bedriver Hubble-vetenskaplig verksamhet för NASA.