Google

Translate blog

fredag 26 oktober 2018

Gravitationsvågor kan användas till framtidens kommunikation.


RUDN matematiker (RUDN är ett universitet i Ryssland) har upptäckt möjligheten att överföra information rumsligt med hjälp av nonmetricity vågor  utan snedvridning. Detta resultat konstaterades efter att  matematikerna analyserade egenskaperna matematiskt av gravitationsvågor.


De för inte så länge sedan upptäckta gravitationsvågorna (vilket  gav nobelpriset i fysik 2017) är vågor av krökning av rumtiden vilket enligt Einsteins allmänna relativitetsteori bestäms helt av rumtiden själv. 


För att beskriva gravitationsvågors möjlighet till användning använde RUDN forskarna matematisk abstraktion - ett affine utrymme, dvs ett vanligt vektorrum men utan en beskärning av koordinater. Dess slutsats blev att det  finns funktioner som förblir oföränderliga i distribution av en våg i en sådan matematisk representation av gravitationsvågor. 


Det är då möjligt att ställa in en godtycklig funktion så att kodade uppgifter framförs på ungefär samma vis som vid överföring av elektromagnetiska vågor likt radiosignaler. 

Det innebär att om du hittar ett sätt att ställa in dessa vågor kommer de att kunna sändas till någon punkt i universum eller  här på Jorden  utan att signalen förändras på vägen.


 Gravitationsvågor kan då användas till dataöverföring ”Vi upptäckte att vågor av denna typ (nonmetricity vågor) ska kunna överföra data genom gravitationsvågornas krökning av rumtiden  eftersom de innehåller godtyckliga funktioner som fördröjd tid vilket kan kodas till vågor (i en perfekt analogi till elektromagnetiska vågor).


Vad man här ska ta till sig är att forskare arbetar med att en gång i framtiden kunna använda gravitationsvågor för dataöverföring. I övrigt behöver man inte försöka förstå alla fackuttryck i detta sökande.


Bild från Wikipedia.  Tvådimensionell framställning av gravitationsvågor som alstras av två neutronstjärnor som kretsar runt varandra.

torsdag 25 oktober 2018

Här dansar två neutronstjärnor vars slut kommer att bli en mätbar krusning i rumtiden.


I en galax 920 miljoner ljusår från oss har astronomer upptäckt hur en stjärna exploderade som en supernova (för förståelse av vad en supernova är följ länken). Den kollapsade till en extremt kompakt stjärna som kallas för neutronstjärna.  En händelse som denna borde resultera i en smäll så kraftig att hela universum skulle skaka. OBS det innebär inte att vi människor skulle känna det utan enbart en mätbar effekt skulle uppstå och synas. 


Kollapsen resulterade till en extremt kompakt stjärna en så kallad neutronstjärna.


Men det var någonting som inte stämde i beräkningen och väntan blev förgäves. Explosionen blev inte så intensiv som supernovor brukar vara. En knappt mätbar effekt blev resultatet och den starka ljuseffekt som väntats falnande snart.


– Det är ett bevis för att stjärnan hade blivit av med stor del av sitt gasfyllda hölje före explosionen, säger Jesper Sollerman astronom vid Stockholms universitet. Han har varit med och studerat den här märkliga supernovaexplosionen.


Astronomer drar nu slutsatsen att stjärnan en längre tid har varit fångad i en nära dans med en neutronstjärna (för förståelse av vad en neutronstjärna är följ länken) som under lång tid har ryckt bort stora delar av stjärnans enorma gashölje. Av den forna lysande stjärnan återstod endast den inre kärnan vid explosionen. Därför blev den supernovaexplosion som inträffade inte lika ljusstark som supernovor brukar bli. 


Det unika nu är att astronomer nu istället fått se födelsen av ett dubbelstjärnsystem bestående av två neutronstjärnor. Den stjärna som exploderade blev en kompakt neutronstjärna och dess följeslagare som dragit bort dess gashölje är redan en neutronstjärna.  Dessa två neutronstjärnors framtid innebär däremot en kollision mellan dem.


En kollision då de här neutronstjärnorna till slut smälter samman med resultatet att det blir ett skalv så stort att det skapar krusningar i själva rumtiden. Dessa krusningar kan numera astronomer fånga upp i form av gravitationsvågor något som bara för några år sedan var omöjligt.


Rumtid  kan förklaras som en matematisk modell vilken kombinerar rummet (bredd, höjd och djup) och tid till ett enda sammanvävt kontinuum. I sin enklaste form utgår rumtiden från ett euklidiskt rum där det finns tre rumsdimensioner och till detta läggs tiden till som en fjärde dimension. Tillsammans bildar detta en mångfald som är känd som Minkowskirummet. En punkt i denna fyrdimensionella rumtid kallas för en händelse.  (för än mer förståelse av vad rumtidbegreppet innebär följ länken).


Bilden visar resterna efter en annan supernova än ovan. Keplers supernova.

onsdag 24 oktober 2018

En dvärggalax har hittats som har visat sig ha haft kannibalbeteende


Ett team på Instituto de Astrofísica de Canarias (IAC) har upptäckt ett nytt fall av vad som kan kallas galaktisk kannibalism. 


Det är inget ovanligt att galaxer uppgår i varandra och därmed bildar en större galax. Det ovanliga i detta fall är att en mycket liten galax har dragit till sig en mycket liten galax och ändå kan ses som en dvärggalax.


Sextans A heter den galax vilken gjort detta och vars massa är några 100.000 gånger mindre än Vintergatans.


Namnet Sextans A kommer från att den är granne med dvärggalaxen Sextans B vilken också är intressant. Denna har nämligen fem planetariska nebulosor vilket innebär att Sextans B är en av de minsta galaxer där planetariska nebulosor har observerats. Att här då finns fem stycken i denna lilla galax är mycket unikt.


Men Sextans A vilken detta inlägg behandlar visar på kannibalism. Kannibalism av en annan dvärggalax och vad som visar att så skett är olikheten av stjärnor i Sextans A.


Vid spektralanalys av stjärnor i galaxen fann man att den rumsliga fördelningen av blå metallfattiga stjärnor låg i regelbundna runda formationer, medan röda metallrika stjärnor fanns i elliptiska och oregelbundna formationer och banor koncentrerade åt nordöstra sidan av galaxen.

Sextans A-B finns i galaxhopen Sextanten. 


Förklaringen till detta bör vara att två galaxer sammanfogats vid en kollision och att de metallrika och metallfattiga stjärnorna inte kommer från samma galax.


Men det är en teori. Vi tolkar utefter det paradigm vi har inom vetenskapsteorin just nu. Men en dag kan som tidigare skett ett nytt paradigm behövas. Inget är säkert utan vi tolkar efter den rimligaste sanning vi just nu upplever verkligheten genom.


Men ännu finns gåtor som inte kan förklaras med det vetenskapsparadigm vi just nu arbetar utefter.  Och fler och fler motsägelser uppkommer hela tiden. Till slut kommer dessa anomalier (motsägelser) att resultera i ett nytt paradigm att arbeta utefter. Det har skett tidigare och kommer säkert att ske igen.


Bilden är på ovannämnda Sextans A galaxen vilken finns i Sextantens stjärnbild i lokala galaxhopen 4,3 ljusår bort.

tisdag 23 oktober 2018

Välkommen till den kanske äldsta Stjärnan i Vintergatan Pristine 221.8781 + 9.7844


Någonstans där uppe i Vintergatan finns stjärnan  Pristine 221.8781 + 9.7844. En av de äldsta stjärnorna i Vintergatan. Kanske den äldsta. Dock har jag inte hittat uppgifter om exakt var man ska söka efter den.


 Efter Big Bang var universum fullt av väte och helium och med mycket lite litium medan inga tyngre element fanns.


Det var en metallfattig tid.  Pristine 221.8781 + 9.7844  är enligt en ny rapport  en stjärna vilken är mycket metallfattig.


Vad som även kan bekräftas är att denna stjärna är mycket äldre än vår sol. Kanske den äldsta eller säkert en av de äldsta stjärnorna i Vintergatan. Vi vet dess ålder bland annat på grund av dess metallbrist.


Denna slutsats blev resultatet efter studier utförda med spektrografen ISIS med William Herschel Telescope och med spektrografen IDS på Isaac Newton teleskop los Muchachos observatorium (Garafía, La Palma).


 Studien av mycket gamla stjärnor, som har katalogiserats och analyserats leddes från Leibniz Institutet för astrofysik (Potsdam, Tyskland) och från universitetet i Strasbourg (Frankrike).


Studien har resulterat i mer förståelse av tillståndet i universums första tid.


Forskarna använde även ett speciellt färgfilter på Kanada-Frankrike-Hawaii-teleskopet i letandet efter de metallfattiga första stjärnorna som bildades i Vintergatan.


Undersökningens syfte var att få ytterligare en pusselbit i förståelsen av vårt tidiga universum och av hur allt utvecklades efter Big Bang. Kanske vi en dag förstår mer om detta men frågan varför Big Bang uppstod och i vad, är en helt annan historia och gåta vi inget vet om. 


Bild på ett av teleskopen som ingår  Isaac newton group. Ovanstående finns på ovannämnda los Muchachos observatorium (Garafía, La Palma).

måndag 22 oktober 2018

Sista steget för flertalet stjärnors liv är att bli en vit dvärg och därefter en svart dvärg. Men vissa kan ha tur och återupplevas om och om igen.


En vit dvärg är en stjärna som varit en normalstor stjärna lik vår sol men kollapsat till en dvärgstjärna och en liten storlek efter att först ha svällt upp till en röd jätte efter det att kärnbränslet i stjärnan tagit slut (ett öde som väntar även vår sol). En vanlig vit dvärg har en radie som är ca 1 procent av solens men har ungefär samma massa vilket innebär en täthet på cirka 1 ton per kubikcentimeter.
  

En vit dvärg kommer därefter efter miljardtals år att ha kylts ner så mycket att den inte längre avger något synligt ljus och antas då bli en svart dvärg.  Eftersom universum uppskattas till 13,7 miljarder år har troligen inte lång tid nog förflutet för att någon vit dvärgstjärna ännu blivit en svart dvärg. Flertalet av stjärnorna kommer dock en gång att sluta på detta vis. 


Undantaget är stjärnor med minst åtta gånger större massa än vår sol. De mest massiva stjärnorna, med åtta gånger massan av solen eller mer slutar sina existenser i en våldsam supernova. Därefter blir de en neutronstjärna alternativt ett svart hål.


Stadiet vit dvärgstjärna däremot föregås av ett uppsvällande till röd jätte innan de krymper ihop till vit dvärgstadiet.


 När en stjärna sväller för att bli en röd jätte slukas de närmsta planeterna.  Men några stjärnor kan fortfarande överleva efter detta stadie. NASA'S Spitzer avslöjade att minst 1 till 3 procent av de vita dvärgstjärnorna har rester av atmosfärer vilket tyder på att stenigt material har fallit in i dem. De flesta vita dvärgarna kommer dock att blekna bort i relativ glömska efterhand som eonerna går och all dess energi försvinner och de slutar som en svart dvärg.


Men ett mindre antal av de vita dvärgarna får ett annat öde. De som har en följeslagare av en annan stjärna. Då kan exempelvis dennas materia dras in i den vita dvärgen och en mycket tät neutronstjärna uppstå. 


Ett mer explosivt skede kan även uppstå om en vit dvärgstjärna reagerar tillsammans med en röd jätte. Då kan en 1a-supernova bli resultatet. 


En supernova typ Ia uppstår när en vit dvärg drar till sig materia från en närbelägen grannstjärna som svällt upp till en röd jätte. När den vita dvärgens massa växt till 1,3 solmassor och närmar sig Chandrasekhargränsen startar kolförbränning i dess inre.


 Om följeslagaren är en annan vit dvärg och den vita dvärgen drar material från dess följeslagare kan den antändas till en nova. Eftersom den vita dvärgen förblir intakt kan det upprepas flertal gånger när den når den kritiska punkten och resultera i att det blåser liv tillbaka till den döende stjärnan om och om igen.

Ett slags återuppståndelse sker.


Bilden visar hur en supernova typ Ia blir till.

söndag 21 oktober 2018

Vad såg munken Anthelme på himlen 1670?


Astronomer har sedan 1670 undrat över vad munken och astronomen Père Dom Anthelme såg i juni detta år på stjärnhimlen. Han beskrev det året hur en stjärna brast inför hans ögon.


Detta skedde strax under huvudet av stjärnbilden Svanen 2200 ljusår från oss. Namnet på fenomenet eller stjärnan som brast blev CKVulpeculae.


Länge antogs att det var en nova han sett. En nova är namnet på en stjärna, vanligtvis en vit dvärgstjärna med nära kontakt med en röd jätte vilken under en period ökar sin ljusstyrka kraftigt. Men något stämde inte och det klassificerades i vår tid istället som en röd nova.


En röd nova är vad som resulteras efter två stjärnors kollision och sammanslagning. De kännetecknas av en distinkt röd färg och en ljuskurva som dröjer sig kvar med återuppväckt ljusstyrka i det infraröda fältet. 


Men nu har ett internationellt team av astrofysiker inklusive två professorer vid University of Minnesota knäckt den 348-årig gåtan. Munken bevittnade något helt annat, nämligen den explosiva sammanslagningen av en vit dvärgstjärna och en brun dvärg något som aldrig bevittnats tidigare och vilkens effekter nu fotograferats i vår tid genom ALMA- teleskopet.


Arbetet leddes av astrofysiker vid Keele University (England) och publicerades i månatliga meddelanden från Royal Astronomical Society. 


Vita dvärgar är rester av stjärnor. Stjärnor likt solen vilka är i slutfasen av sina liv medan bruna dvärgar är ”misslyckade stjärnbildningar vilka har 15 - 75 gånger massan av Jupiter men inte tillräckligt för att antända de termonukleära fusionsreaktioner som tänder upp en stjärna.


De två objekten (den vita stjärnan och den bruna dvärgen) kom alltför nära varandra och vid sammanslagningen for skräp ut vars kemiska sammansättning gav det sken munken såg och vilkets effekter vi än kan se på bilden ovan.


Det är därför en unik bild som visas ovan på CK Vulpeculae tagen av ALMA-teleskopet.

lördag 20 oktober 2018

Centaurerna kretsar i sina banor hotande Jorden då och då.


Centaurer är en asteroidklass av isiga planetoider vilka roterar runt solen mellan Jupiter och Neptunus bana. De ska inte förväxlas med asteroidbältet mellan Mars och Jupiter eller Kuiperbältet bortanför Neptunus i vilket Pluto ingår.


Ännu har ingen centaur blivit fotograferad på nära håll. Däremot finns bevis som pekar på att Saturnus måne Phoebe, som fotograferades av Cassini år 2004 är en infångad centaur.  


Centaurer rör sig bland gasjättarna i det yttre av Solsystemet ibland korsar de Saturnus och Uranus omloppsbanor och i vissa fall även Neptunus. På grund av sin närgångenhet till gasjättarnas gravitation har de en instabil omloppsbana och på sikt gör det att de kan ta en riskfylld ny bana rätt in mot Jorden eller andra planeter vilket historiskt även skett. Minnen från dessa händelser finns i form av nedslagskratrar.


Troligen är dessa objekts ursprung från Kuiperbältet. Objekten i Kuiperbältet med dess asteroider och dvärgplaneter har någon gång störts i sina banor och nu hamnat mellan Jupiter och Neptunus(kanske av den mystiska planet 9). 


Forskare vilka studerat solsystemets tillkomst uppskattar att ett otal nära möten och effekter skett med de jordlika planeterna (från ca 3,8 miljarder år sedan, tills nu) med katastrofala följder.


 Centaurer kan också bli aktiva kometer då förekomsten av vatten finns på ett stort antal av dem och kanske det är från krockar med sådana vatten kom till Jorden.


Forskning om ovanstående har bedrivits bland annat av en forskare med namnet Mattia Galiazzo på universitetet i Wien varifrån rapporten kommer om Centaurernas riskbeteenden för oss nu kommit.
  

Minnen från krockar eller närkontakt finns i form av kratrar i storlekar från hundratals kilometer i diameter till mindre än 10 km diameter på både Jorden, Mars, Venus och månar mm i solsystemet. 


Bild: Fördelningen av asteroider i det yttre solsystemet. De orangea prickarna är centaurer medan de gröna är objekt i Kuiperbältet.