Google

Translate blog

måndag 29 april 2019

Christina Koch. Astronauten vilken ska tillbringa ca ett år i rymden.


Astronauten Christina Koch åkte upp till rymdstationen ISS den 14 mars 2019  tillsammans med astronaut Nick Hague och den ryske kosmonauten Alexey Ovchinin.


Men i stället för att bo  sex månader på ISS som de flesta av NASAS astronauter gör ska Koch stanna här till februari 2020. Det innebär hon kommer att finnas här 328 dagar, eller nästan ett helt år. Detta är en av den längsta  sammanhängande vistelserna i rymden av någon NASA-astronaut och den längsta för en kvinna. 

Hon missar bara Scott Kellys vistelse på 340 dagar  från mars 2015 till mars 2016 för att bli en som längst varit uppe i en följd av dagar. Den långa vistelsen kan vara till hjälp för NASA att bättre förstå hur långvariga rymdfärder påverkar människokroppen. I vilket fall som helst har ingen kvinna varit uppe en så lång sammanhängande tid som hon nu kommer att tillbringa däruppe.


Det är viktigt att veta hur människokroppar reagerar på långa vistelser innan vi sänder människor till Mars en gång.


söndag 28 april 2019

Nu har de första molekylerna i universum hittats av SOFIA.


Forskare på det luftburna observatoriet SOFIA ( se länk

har upptäckt den första typen av molekyl som  bildades i universum efter BigBang , efter att länge ha misstänkt att den finns därute fortfarande.


De hittade kombinationen av helium och väte och molekylen kallas därför en helium hybrid. 

Vi ska komma ihåg att teorin om universums uppkomst  är att efter BigBang fanns enbart två grundämnen Helium och väte och ur dessa uppstod efter något hundratusental år då ovanstående molekyl (troligen spontant?) Det var början på fortsättningen vilket är en annan historia.


 Det var i en planetarisk nebulosa NGC 7027 nära stjärnbilden svanen upptäckten gjordes. Upptäckten bekräftar en viktig del av vår grundläggande förståelse av det tidiga universum och hur det utvecklats under miljarder år till den komplexa kemin av idag. 


Bilden är på en del av SOFIA.

lördag 27 april 2019

Förvånande stort utbrott på en stjärna som knappt kan kallas stjärna


Ett solutbrott  tio gånger mer kraftfullt än någon sett från vår sol har upptäckts  från en ultrasval stjärna av nästan samma storlek som Jupiter. En stjärna som är på gränsen till en brun dvärg.


En brun dvärg är en stjärna som aldrig blev en stjärna men var på gränsen att bli en sådan. Dess kärnklyvning startade aldrig.


Stjärnan ovan tillhör klass L av stjärnor och är egentligen även denna för liten för att kallas stjärna.


 Upptäckten publicerades i månatliga meddelanden av Royal Astronomical Society den 7 April. Författare var James Jackman, doktorand på University of Warwicks Institution för fysik. Han sade fritt tolkat att det faktum att vi har observerat denna otroligt lågmassastjärna där kromosfären likväl sänt upp en superflamma från en så liten dvärg knappt klassificerad som stjärna visar att stark magnetiska aktivitet fortfarande kvarstår ner till gränsen till brun dvärg.


– Det är precis på gränsen mellan att vara en stjärna och en brun dvärg, en mycket låg densitet finns här. Något lägre och det skulle definitivt vara en brun dvärg. Exakt var gränsen mellan detta går vet vi inte.


Den L dvärgstjärna det handlar om här ligger 250 ljusår bort och har namnet ULAS J224940.13-011236.9. Den är endast en tiondel av radien av vår egen sol och är nästan av samma storlek som Jupiter i vårt solsystem. L dvärgarna har de lägsta massorna av objekt som fortfarande kan anses vara en stjärna. De klassificeras som mellanting av stjärna och brun dvärg.


 Bruna dvärgar är inte massiva nog att sammansmälta väte till helium som stjärnor gör. L dvärgarna är också väldigt svala jämfört med de vanligare huvudseriestjärnorna såsom röda dvärgar och dess strålning sker mestadels i det infraröda fältet vilket kan påverka deras förmåga att stödja skapandet av liv i sitt närområdes eventuella planeter.


Bilden visar en äkta brun dvärgstjärna i detta fall HD 29587 B ca 90 ljusår bort i riktning mot stjärnbilden Perseus.

fredag 26 april 2019

Merkurius kärna är lika fast och stor som Jordens vilket få trodde.


Forskare har genom ett gediget arbete visat att Merkurius kärna är fast. Något man inte trodde tidigare då denna planet ligger nära solen. Merkurius vänder alltid samma sida mot solen. Temperaturen är upp till ca 420C på solsidan.


Resultaten från Messengers data vid besöket över Merkurius 2008 har visat på en fast inre kärna. Resultatet nar publicerad i Agus tidskrift Geophysical Research Letters. 

Genom dessa resultat förstår forskarna bättre Merkurius och ger också ledtrådar om hur solsystemet bildades och hur steniga planeter förändras över tid. Forskare använde radioobservationer från Messengers besök.


Forskare har länge vetat att jorden och Merkurius har metallisk kärna men inte att dessa är ungefär lika stora. Det har i detta nya arbete däremot nu bevisats och även att Merkurius inre kärna är fast. Liksom jorden är den yttre av kärnan (manteln) flytande.  Men man har varit osäker på om en fast kärna fanns längre in i Merkurius.

Resultatet och arbetet för att få fram detta kan man läsa mer om i den medföljande länken. 


Själv undrar jag om alla planeter i vårt solsystem har en solid kärna av ungefär samma storlek. Detta skulle då kunna visa att början på planetbildningen var flytande metallklot av ungefär samma storlek vilka sedan beroende på var de hamnade från solen byggdes på med andra fragment av stelnad materia, damm, grus och gas. Ibland mest gas likt gasplaneterna vilka sedan fick sin beskärda del av damm och sten i form av ringar och flertal månar.


Bild storleksförhållandet mellan Merkurius till vänster och närmst den ej synliga solen. Därefter Venus, Jorden och Mars.

torsdag 25 april 2019

Titans försvunna sjöar


Planetforskare Shannon MacKenzie och hennes  kollegor har upptäckt att sjöar försvinner under Saturnus största måne Titans vår. Titans årscykel är 29,5 jordår.
  

 Mitt i Titans vinter 2006 visades genom rymdfarkosten  Cassinis Radarobservationer att tre sjöar var fyllda med vätska. Men när Cassinis värmekameror försökte hitta sjöarna  2013 under månens vår hade alla tre förvunnit.


Forskare hade tidigare upptäckt att Titans sjöar vilka är  fyllda med kolväten av slaget metan och etan krymper under månens somrar. Men en ny analys av data från Cassini visar att vissa sjöar helt försvinner från månen redan under våren. De torkar upp.

 Troligen beror det på att dessa sjöar enbart blir några cm djupa under vinter och höst och därför till motsatts till andra sjöar på Titan vilka kan vara på upp till  hundra meters djup enbart minskar i storlek.


Men det visar att även på Titan finns en årscykel inte av slaget vattnets kretslopp som på Jorden utan en etan-metankretsloppets cykel. 


Bilden är på Titan.

onsdag 24 april 2019

Det blir inte snabbare resväg genom maskhål.


Maskhålteorin innebär att man kan resa snabbt från en plats till en annan i universum på mycket kort tid. Ja även att det skulle vara möjligt att genom dessa, som man antar finns, maskhål eller skapade sådana,  även ska kunna resa i tiden.


Daniel Jafferis, från Harvard University i samarbete med Ping Gao båda från Harvard och Aron Wall  från Stanford Universitet har teoretiskt visat att maskhål kan existera. Dessa kan ses som tunnlar i den krökta rumtiden och kan eller är anslutna till två från varandra avlägsna platser genom vilken en resa är möjlig.


Men tyvärr! Det visar sig även att det tar längre tid att resa genom dessa maskhål än att resa med färdmedel vi alla kan förstå i form av rymdfarkoster. Dessa maskhål är därför enligt dessa forskare inga genvägar utan istället senvägar. 


”Det tar längre tid att resa genom dessa maskhål än att resa direkt med kända färdmedel så de är inte användbara resor”, säger Jafferis. Han kommer att presentera sina rön vid 2019 American Physical Society i Denver i april.


Det är en missräkning om dessa forskare har rätt då det innebär att vi än mer med den kunskap vi har är låsta i vårt solsystem och aldrig kan besöka något annat solsystem. Men det kan även förklara varför vi inte har upptäckt besökare i vårt solsystem.


Bilden är ett exempel på många hur man kan illustrera idén av maskhål.

tisdag 23 april 2019

Superjordar innehåller kristaller vi vet mycket lite om


Djupt ner i de heta superjordar vi hittat i stort antal i främmande solsystem har bildats kristaller under tryck upp till 40 miljoner gånger intensivare än det atmosfäriska trycket på jorden och så mycket som 10 gånger mer intensivt än trycket i Jordens kärna. 



Forskarna vet nästan ingenting om dessa mystiska kristaller. De vet inte hur och när de bildas (bildats) och ej hur de ser ut eller beter sig. Men svaren på dessa frågor, om de kan lösas, skulle ge bättre förståelse av superjordars beskaffenhet.


Om dess yta under det troliga gaslager och dess yta bestående av flytande magma eller is och om ytan bombarderas med strålning från sin sol. Superjordar ligger nära sin sol då skulle vi förstå mer om dessa exoplaneter.


 Svaret, i sin tur kan påverka möjligheten till om dessa planeter kan hysa liv. Dessa planeter kan ses endast som svagt flimrande ljus från våra teleskop och därmed förblir mystiken kvar. Är de supertäta eller tvärtom? Vad består deras ytor av? Har de magnetiska fält? Svaren på dessa frågor finns inte i dag.


Kan de kemiska egenskaperna påverka beteendet hos hela planeter. Forskarna vet exempelvis att Superjordar kan alstra  en hel del värme. Men de vet inte hur mycket.

 Svaret på denna fråga har stora konsekvenser om dessa planeters eventuella vulkaner och plattektonik. Vid jordens inre tryck kan lättare element blandas med järnkärnan vilket påverkar Jordens magnetfält. Något som kanske inte kan ske vid det höga tryck som finns på superjordar. Den fysiska storleken på superjordar beror på kristallstrukturen av föreningar i deras kärnor.


Vi är utan planeter av detta slag att studera på nära håll i vårt eget solsystem, Just nu utgår vår förståelse av exoplaneter mestadels på erfarenheter och kunskap utifrån de planeter som finns i vårt eget solsystem och det kan resultera i helt fel slutsatser av de vi ser därute.


Dessa ord kommer från Diana Valencia, en planetforskare vid University of Toronto i Kanada en av forskarna om ovanstående.


Jag är helt överens om att vi inte kan vara säkra på någonting om exoplaneter då vi förutsätter att dessa kan ses som likartade i byggnad etc. som planeter i vårt eget solsystem. Planeter vi har begränsad kunskap om.


Bild från vikipedia där två tänkbara exoplanter illustreras tillsammans med Jorden.