Google

Translate blog

tisdag 16 juni 2020

En gång för länge sedan hade troligen Mars en ring


Forskare från SETI Institute och Purdue University har funnit att det enda sättet att förklara månen Deimos ovanligt lutande omloppsbana vid Mars är  att Mars för flera miljarder år sedan hade en ring.

Medan några av de stora planeterna i vårt solsystem har jätteringar och många stora månar (ex Saturnus väl synliga) har Mars bara två små, missbildade månar, Phobos och Deimos. Dessa månar är små med svårförklarliga banor. Banor som visar på ett märkligt förflutet. Deimos lutande omloppsbana visar på en händelse för länge sedan.

En ny idé som förklaring till denna händelse lades fram 2017 Matija Cuk, en forskare vid SETI Institute av Cuks medförfattare David Minton, professor vid Purdue University och hans dåvarande doktorand Andrew Hesselbrock. Cuk själv var huvudförfattare till det arbetet.

Hesselbrock och Minton noterade att Mars inre måne, Phobos håller på att förlora höjd och närmar sig Mars. Snart, (i astronomiska termer) kommer Phobos omloppsbana att sjunka till en nivå där Mars gravitation kommer att dra isär den för att av resterna få en ring runt planeten. Phobos blir med andra ord en sten och grusmassa i en ring runt Mars.

Hesselbrock och Minton föreslog i arbetet att under miljarder år generationer av Mars månar förstörts i denna form av ringar. Varje gång har sedan materialet i n ringen gett upphov till en ny mindre måne och händelseförloppet upprepades igen över tid.
Denna teori förklarar Deimos lutning då denna störs varje gång av händelsen. En nyfödd måne skulle flyta bort från ringen och Mars likt ex månen avlägsnar sig från Jorden. Men på grund av Deimos bana som störs blir effekten öven tid att nästa Phobos åter dras in mot Mars och allt återupprepas igen. Hur nästa Phopos eller tidigare Phobos sett ut vet vi inte men säkert har de alla fått och får udda former.

 En utåtgående måne strax utanför ringarna kan stöta på en så kallad orbital resonans. Deimos omloppsbaneperiod är tre gånger högre än Phobos.

Månen Deimos är miljarder år gammal medan Cuk och dennes medarbetare tror nuvarande Phobos är ca 200 miljoner år gammal.

Dessa teorier kan dock förfalskas om ett par år när den japanska rymdorganisationen JAXA planerar att skicka en rymdfarkost till Phobos 2024 för att samla in prover från månens yta och föra dem tillbaka till jorden. Då först kan vi få mer bevis på att ovanstående stämmer eller inte stämmer alls.

Cuk är hoppfull om att detta kommer att ge oss fasta svar om den skumma förflutna Mars månar.

Bild från  från vikipedia på Mars månar Deimos och Phobos.

måndag 15 juni 2020

För 3,5 million år sedan uppstod en mastodontexplosion i vintergatans mitt.


För ungefär 3,5 miljoner år sedan stötte SagittariusA* (det svarta hålet i vintergatans centrum) ut enorma mängder av energi. Det blev ett ljussken som våra primitiva förfäder på de afrikanska slätterna bevittnade i riktning mot stjärnbilden Skytten. Ett sken som kan ha setts från Afrikas slätter  i 1 miljon år och kanske gett upphov till många legender.

I vår tid använde astronomer NASA: s Hubble Space Telescopes unika kapacitet för att avslöja ledtrådar om denna historiska explosion. Med tanke på att vi finns i yttersta utkanten av vår galax (i en spiralarm) visades att skenet likväl nådde så långt ut i rymden att det gav upphov till ett enormt ljussken (som sågs från jorden) och ännu idag kan ses som ett släpande ljus utanför Vintergatan vid stora och lilla Magellanska molnen (dvärggalaxer).

Utbrottet från det svarta hålet orsakades troligen av ett stort vätemoln upp till 100000 gånger solens massa vilket föll in i skivan med material och virvlade runt det svarta hålet drogs in mot det och orsakade explosionen. Utbrottets resultat blev att stora mängder ultraviolett strålning kastades ut över och under galaxens plan och djupt ut i rymden. Strålningskonen som sprängde ut från Vintergatan i södra polen tände upp en massiv bandliknande gasstruktur som kallas Magellanströmmen. Blixten tände upp en del av strömmen och joniserade dess väte (tillräckligt för att ge 100 miljoner solars sken i styrka) genom att skala av  atomer från strålningens elektroner. 

Bild från vikipedia på Magellanska strömmen vilken kan ses vid de Magellanska molnen.

söndag 14 juni 2020

Neutronstjärnor misstänks innehålla en ny form av materia


En finländsk forskargrupp har funnit starka bevis på förekomsten av exotisk kvarkmaterial i kärnorna hos de största neutronstjärnorna. Denna slutsats blev resultatet genom att kombinera de senaste resultaten från teoretisk partikel- och kärnfysik med mätningar av gravitationsvågor från neutronstjärnkollisioner.

All normal materia som omger oss består av atomer vilkas kärnor består av positivt laddade protoner och oladdade neutroner och omges av negativt laddade elektroner och beroende på antal av detta uppstår olika grundämnen. 

Inuti vad som kallas neutronstjärnor är atomär materia känd för att kollapsa till oerhört täta kärnämnen där neutroner och protoner packas ihop så hårt att hela stjärnan kan betraktas som en enda enorm kärna.

Hittills har det varit oklart om kärnorna på de mest massiva neutronstjärnorna kollapsar till ett ännu mer exotiskt material kallat kvarkmateria och kärnorna då enligt ovan inte längre existerar. Forskare från Helsingfors universitet hävdar nu att svaret på denna fråga är ja. De nya resultaten publicerades i den ansedda tidskriften Nature Physics. Men nu bör mer forskning göras för att bevisa vad detta är och om det finns inget säkert bevis finns för det.

Ett spännande resultat (om det stämmer). Man kan tänka än längre och undra om inte heller detta  är slutresultatet utan att  det finns något än tätare och annorlunda ämne kanske det finns gränslöst många ämnen neråt i storlek och täthet. Vi kan ju tänka på uträkning av diametern av en cirkel där pi ingår det finns inget slutligt tal med pi likväl måste pi användas i matematiken vid ex uträkningen av diametern av en cirkel. Med andra ord vet vi inte exakt diametern av cirklar det går inte svara på. Det visar att det finns något vi inte kan förstå med nuvarande kunskap.

Bild på hur en neutronstjärna är uppbyggd från vikipedia.

lördag 13 juni 2020

Planetsystemet vid solen HR8799 kan vara likt vårt enligt ny forskning


Planetsystemet runt stjärnan HR8799, 130 ljusår bort i riktning mot stjärnbilden Pegasus är anmärkningsvärt likt det i vårt solsystem. Där likt här finns fyra gasjättar mellan två asteroidbälten.

En forskargrupp ledd av RuG och SRON använde denna likhet för att simulera samma rörelser av material av asteroider och kometer inom systemet likt det rör sig i vårt solsystem. Deras simulering visade då att de fyra gasplaneterna får material som levereras av mindre kroppar precis som i vårt solsystem. De skapade en rörelsesimulering för systemet runt HR8799 med rörelsemönster som i  vårt solsystem med fyra gasjättar plus ett inre och yttre asteroidbälte (asteroidbältet mellan Mars och Jupiter och Kuiperbältet där bland annat Pluto finns) och möjligen steniga planeter innanför gasjättarna likt här. Just om det finns steniga planeter i de inre av detta solsystem likt på jorden kan vi inte säkert veta då vi inte kan undersöka detta. Kanske vi får bättre möjlighet när James Webbteleskopet kommer upp.

Simuleringen visade att precis som i vårt solsystem får de fyra gasplaneterna material som levereras av mindre kroppar och då bör eller är indicierna på likartat beteende och stenplaneter troligt i det inre av detta system också.

Frantseva en av forskarna säger: "Om teleskop kommer att upptäcka den förväntade mängden fast materia (ej gas, is eller poröst material)  säger vi att dessa upptäckta eldfasta objekt kan förklaras av leverans från bältena som visas i vår modell. Om de upptäcker fler eldfasta ämnen än väntat, säger vi att kanske denna leveransprocess är mer aktiv än vi trodde eftersom HR8799 är mycket yngre än vårt solsystem. HR8799-systemet kan därmed innehålla stenplaneter. Flyktig tillförsel från asteroidbältena kan vara av astrobiologisk relevans för detta."

Jag anser (min anm.) att man här hoppas sig ha funnit ett tvillingplanetsystem till jorden. Ett likartat, men om det finns en planet där som här med liv får framtiden visa.

Bild från vikipedia där en konstnärs intryck av hur planeten HR 8799 b kan se ut från en måne i solsystemet HR8799.

fredag 12 juni 2020

Stjärnexplosioner av vissa slag har gett upphov till all litium som existerar


Ett team av forskare med ledning av astrofysiker Sumner Starrfield vid Arizona State University har kombinerat teori med både observationer och laboratoriestudier och fastställt att den klass av stjärnexplosioner, som kallas klassisk nova (den vanligaste formen av nova inte att förväxla med supernova) är ansvarig för det det litium som finns i universum.

Litium är en viktig metall med användningsområden som värmebeständigt glas, keramik, litiumbatterier, litiumjonbatterier och humörförändrande läkemedel. Teamet har gått vidare för att fastställa att en bråkdel av dessa klassiska novor kommer att utvecklas tills de exploderar som supernovor av typ Ia. Dessa exploderande stjärnor blir ljusare än en galax och kan upptäckas på mycket stora avstånd i universum. Men det är en annan historia.

Klassisk nova är en klass av stjärnor som uppstått från en explosion  av en vit dvärg (en stjärnkvarleva med solens massa men storlek som jorden) och en större stjärna i nära omloppsbana runt den vita dvärgen.

Gas har fallit genom gravitation från den större stjärnan in på den vita dvärgen  som är mycket tät och har stark gravitation vilket gör att den drar till sig materia från den större stjärnan som är en stjärna med gravitation som är normal för just denna klass. När tillräckligt med gas har samlats på den vita dvärgen sker en   en explosion kallad  nova. Det finns cirka 50 explosioner per år i vår galax och de ljusaste på natthimlen observeras av astronomer över hela världen.

Det är då  litium bildas och kastas ut i universum och efterhand ner på planeter och solsystem som är under bildande. Så kom litium till oss en gång från en närliggande novaexplosion.

Bild från vikipedia på en illustration av förstadiet till blivande nova, där den vita dvärgen i stjärnsystemet samlar massa från den röda jätten.

torsdag 11 juni 2020

Varför väger universum olika beroende på vilken metod vi använder?


Lite eget funderande efter att ha läst medföljande artikel som kan ses här.
Som man kan se på rubriken har två accepterade vetenskapliga metoder att mäta massan i universum gett olika resultat. Detta fast man använt samma material men olika ekvationer vilka båda är helt tillförlitliga i andra sammanhang där de ger samma slutresultat.

I mina funderingar ingår att detta kan visa på att vi lever i ett universum som är en spegling av ett universum i en annan dimension och att det därför speglas i ekvationer som är olika just då vi använder dessa på universums massa. Låter konstigt men är möjligt. Något vi inte förstår i fysiken finns eller existerar som vi hittills inte behövt ta hänsyn till.

Men vad? Min teori är ovan men inget säger att den är rätt. Det kan vara något helt okänt som vi inte kan nå med dagens paradigm i vetenskap. Något vi kanske inte kan förstå som människor eller kan förstå varken vi eller våra datorer oberoende av vad vi matar in i dem. Det är något okänt vi har upptäckt. Men kanske något vi aldrig kan få tag på.


onsdag 10 juni 2020

De blå heta stjärnor som har fläckar.


Astronomer har använt Europeiska Sydobservatoriets teleskop (ESO) för att upptäcka jättelika fläckar på extremt heta blå stjärnor belägna i klotformiga stjärnhopar. Dessa stjärnor har  inte bara  magnetiska fläckar utan också extremt energirika utbrott, många miljoner gånger mer energirika än de som sker på solen.

Forskarlaget som gjorde upptäckten leddes av Yazan Momany från INAF-observatoriet i Padua, Italien. De undersökte en typ av stjärnor med omkring hälften av solens massa men fyra till fem gånger hetare (inte att förväxla med de blå stora heta jättestjärnor som är de hetaste stjärnor som existerar).  “Dessa små heta stjärnor är speciella då vi vet att de kommer att undvika en av de slutliga faserna i de flesta stjärnors liv och få slut på sitt kärnbränsle i förtid” säger Momany tidigare  astronom på ESO:s Paranalobservatorium i Chile. “I vår galax hittar vi vanligen dessa stjärnor i täta dubbelstjärnesystem”.  “Efter att ha uteslutit alla andra möjligheter återstod bara en förklaring till ljusstyrkevariationerna” säger Simone Zaggia, medförfattare till studien vid INFA-observatoriet och tidigare ESO-astronom: “Dessa stjärnor måste ha stjärnfläckar!”.

Fläckar på dess stjärnorna verkar vara ganska annorlunda mot fläckarna på vår egen sol, men båda orsakas av magnetiska fält. På de heta stjärnorna är fläckarna ljusare och hetare än den omgivande ytan till skillnad från solens fläckar som är svalare och mörkare än omgivningen. Fläckarna på dessa stjärnor är också betydligt större än solens fläckar och kan täcka upp emot en fjärdedel av stjärnans yta. De är dessutom mycket långlivade och kan förbli kvar i tiotals år medan solens fläckar varar i dagar eller veckor men ibland ett par månader. När stjärnorna roterar förflyttar sig fläckarna på den synliga skivan vilket gör att ljusstyrkan varierar.

Forskarlaget upptäckte också ett par extrema stjärnor som uppvisade kraftiga utbrott - plötsliga explosioner som indikerar förekomsten av starka magnetfält. “Dessa utbrott liknar de vi ser på solen men är tio miljoner gånger mer energirika” säger medförfattaren Henri Boffin, astronom vid ESO:s huvudkontor i Tyskland. “Ett beteende av detta slag var helt oväntat och visar att magnetfält är en nyckelkomponent för att förklara dessa stjärnors egenskaper”.

Efter sex årtionden av studier av  dessa stjärnor har nu astronomerna en ganska god förståelse av dem. Den aktuella forskningen kan också bidra till att förstå orsaken till de starka magnetfälten i vissa vita dvärgar, stjärnor som representerar slutstadiet i sollika stjärnors liv och som har vissa likheter med ovanstående.

Bild: Från ESO På hur en sådan liten blå het stjärna kan se ut enligt en illustration i jämförelse med vår sol. OBS förväxla ej dessa små blå stjärnor med de största som finns i universum de stora blå jättestjärnorna.