Google

Translate blog

fredag 21 maj 2021

Utomjordisk radioaktiv isotop funnen på havets botten.

 


Plutonium–244 är en isotop av plutonium som har en halveringstid på 80 miljoner år. Detta är längre än någon av de andra isotoperna av plutonium och längre än någon annan actinoid isotop förutom de tre naturligt rikligt förekommande  i jordskorpan varav ex uran-235 är 704 miljoner år (det finns de med än längre halveringstid längst har en neodymisotop, Neodym-144 med  halveringstid på 2000000 miljarder år).

Plutonium–244 är den första upptäckten någonsin av en utomjordisk radioaktiv isotop på jorden. Den har fått forskare att ompröva ursprunget till elementen på vår planet. De små spåren av plutonium-244 hittades i havsskorpan tillsammans med radioaktivt järn-60. Dessa två isotoper visar på våldsamma kosmiska händelser i jordens närhet för miljontals år sedan.

 

Stjärnexplosioner så kallade supernovor skapar många av de tunga elementen i det periodiska systemet inklusive de som är viktiga för mänskligt liv, såsom järn, kalium och jod.

Bildningen av ännu tyngre element, som guld, uran och plutonium trodde man länge att de uppkommit ur en än våldsammare händelse som exempelvis att två neutronstjärnor slås samman.

 

En studie med ledning av  professor Anton Wallner vid Australian National University (ANU) tyder dock på att  en mer komplex bild är förklaringen.

"Historien är komplicerad - möjligen producerades detta plutonium-244 i en supernovaexplosion eller kan det blivit över från en mycket äldre men än mer spektakulär händelse som en neutronstjärnas detonation", säger  professor Wallner. Dateringen av provet bekräftar att två eller flera supernovaexplosioner inträffade nära jorden i tidsspannet man sökte i.

 

"Våra data kan vara ett första bevis på att supernovor verkligen producerar plutonium-244", säger professor Wallner. "Men det kan eventuellt redan funnits i det interstellära mediet (rymden) innan supernovor i närområdet skedde och då knuffats in i solsystemet tillsammans med supernovors övriga spridande av damm och gas längre bort."

Om så (min anm.) bör plutonium-244 även i dag finnas i vårt solsystem . Jag tvekar dock på att det funnits där innan en supernovaexplosion i relativ närhet.

Professor Wallner är forskare vid Helmholtz-Zentrum Dresden-Rossendorf (HZDR) och Technical University Dresden i Tyskland, och genomförde detta arbete med forskare från Australien, Israel, Japan, Schweiz och Tyskland.

Till sin hjälp hade forskarna VEGA-acceleratorn vid Australian Nuclear Science and Technology Organization, (ANSTO) i Sydney användes för att identifiera de små spåren av plutonium-244.

Bild flickr.com på havsbotten. Hur mycket ännu oupptäckt finns här.

torsdag 20 maj 2021

Voyager 1 har hört hummanden från plasma därute lyssna och fundera på universums ljud.

 


Voyager 1 är en av två obemannade rymdsonder i Voyagerprogrammet som skickades upp i rymden av Nasa den 5 september 1977. Fortfarande i drift långt utanför vårt solsystem på väg mot okända mål med en hälsning till eventuella okända upphittare från mänskligheten om kanske eoner år eller aldrig.


Voyager 1 är den ena av två. Voyager 2 är den andra som NASA sköt upp för 44 år sedan och efter passage förbi Jupiter och Saturnus är nu Voyager 1 det mest avlägsna människotillverkade objektet i rymden vilket ännu fungerar och sänder information tillbaka. Samma sak men ännu inte lika långt ut i rymden sveper Voyager 2 båda har en hälsning med sig till eventuella upphittare därute. 

 

Voyager 1 som det handlar om här har för länge sedan susat förbi solsystemets yttersta kant och genom heliopausen – solsystemets gräns mot interstellära rymden och finns nu i det interstellära mediet. Nu har dess instrument upptäckt det konstanta ljudet av interstellär gas (plasmavågor), enligt Cornell-ledd forskning publicerad 10 maj i Nature Astronomy.

 

Stella Koch Ocker, doktorand i astronomi harupptäckt utsläppsljudet genom att undersöka data som långsamt skickas tillbaka 14 miljarder mil bort. "Det är väldigt svagt och monotont ljud eftersom det är i ett smalt frekvensbandbredd", säger Ocker. "Vi upptäckte det svaga, ihållande surret av interstellär gas." Detta arbete gör det möjligt för forskare att förstå hur det interstellära mediet interagerar med solvinden, säger Ocker och även hur solsystemets skyddande bubbla formas och modifieras i den interstellära miljön”. Lyssna på ljudet här https://www.youtube.com/watch?v=0dSlb3as9J0

Bild på farkosten och mänsklighetens hälsning ut i det okända som både Voyager 1 och 2 har med sig ut i det okända med information om oss och var vi finns. Vissa anser detta var att utmana ödet att utåt berätta att vi finns och var, till okända eventuella upphittare därute.

onsdag 19 maj 2021

Ytterligare en neptunusliknande planet upptäckt därute.

 


Ett team av astronomer vid bland annat Grenoble Alpes University i Frankrike rapporterar om ytterligare en upptäckt av en sub-Neptune exoplanet (i storlek som  gasplaneten Neptunus, men TOI-269b är dock en stenplanet) som kretsar runt en M- dvärgstjärna. Dess beteckning är  TOI-269 b (bokstaven T efter det teleskop som först upptäckte planeten  i detta fall Tessteleskopet). Planeten är nästan tre gånger större än jorden. Fyndet beskrevs i en artikel publicerad 30 april på arXivs förtrycksarkiv.

Se gärna denna film från youtube för mer information om TOI-269 b och var den finns på natthimlen. 

TOI-269 (även känd som TIC 220479565 stjärnan eller solen i detta solsystem) är en M-dvärgstjärna belägen cirka 186 ljusår från jorden. TOI-269 observerades av rymdfarkosten TESS mellan september 2018 och juli 2019 vilket resulterade i identifiering av en transitsignal i dess ljuskurva. Med hjälp av flera markbaserade teleskop, inklusive Exoplanets in Transits och  Atmospheres (ExTrA) anläggning vid La Silla Observatory i Chile har nu en grupp astronomer med ledning av astronom Marion Cointepas bekräftat den planetariska karaktären hos denna signal som visade sig vara TOI-269 b.

"Vi presenterar bekräftelsen av en ny upptäckt sub-Neptunus  som passerar TOI-269 ", skrev forskarna och fortsätter;  Planeten har  en radie av cirka 2,77 jordradier och är 8,8 gånger mer massiv än jorden och gör ett varv runt sin sol på 3,7 dagar (kan ses som att ett år på planeten är 3,7 dagar).

Observationerna visar att TOI-269 b finns på ett avstånd av 0,0345 AU från moderstjärnan (avstånd beräknat som att 1AU är avståndet vår sol och jorden) och dess medeltemperatur är ca 250 Celcius.

Det intressanta är att TOI-269 b har en ovanligt hög excentricitet i sin omloppsbana runt sin sol – cirka 0,425 (en exakt cirkel är 1). Detta är en av de högsta excentriciteterna bland de kända extrasolära planeterna med perioder under 10 dagar (i omloppsbana) och antyder att objektet nyligen kan ha anlänt till sin position.

Bild finns ej på objektet så det bli en bild på universum och tankar om detta från pixabay.com Men ovan finns däremot en förklarande film från youtube som innefattar all känd kunskap om planeten. Se markering ovan.

tisdag 18 maj 2021

Återfärden från asteroiden Bennu påbörjad.

 


1999 RQ36) eller Bennu är namnet på en jordnära asteroid som upptäcktes den 11 september 1999 av Lincoln Near-Earth Asteroid Research i Socorro, New Mexico. Den är uppkallad efter Bennu i den egyptiska mytologin.

Idag är närmaste avstånd mellan asteroidens och jordens omloppsbanor runt solen ca 500000 kilometer, vilket kan jämföras med avståndet till månen på 380000 km. Men Bennus bana förändras ca 200 meter varje år och den kommer enligt beräkning rätt närma jorden på 2100-talet. En krock med oss då beräknas till ca 0,7 % risk. 

Det var den 3 december 2018 som den amerikanska rymdsonden OSIRIS-REx kom fram till asteroiden och lade sig i omloppsbana. Den 21 oktober 2020 gjorde sonden  en lyckad landning på asteroiden för att ta markprov.

Med markprov från asteroiden avfyrade sedan sonden sina motorer och började den långa resan tillbaka till jorden måndagen den 10 april 2021.

Resan hem för Osiris-Rex tar nu två år.

Innan dess nådde Osiris-Rex asteroiden Bennu 2018 och tillbringade två år med att flyga nära och runt den innan den landade och tog  prover  från ytan.

Dante Lauretta vid University of Arizonas är huvudforskaren i detta projekt och  uppskattar att sonden har mellan 200 gram och 400 gram material med sig tillbaka till jorden.

Bennu  anses vara en bit från en större asteroid. De återvändande proverna kan ge ny kunskap om hur planeterna bildades och hur livet uppstod på jorden.

Även om asteroiden ligger 287 miljoner kilometer bort kommer Osiris-Rex likväl att behöva lägga 2,3 miljarder kilometer på sin färd för att komma ikapp jorden och landa.


Rymdfarkosten i SUV-storlek kommer att cirkla runt solen två gånger innan den levererar sin provkapsel i Utahs öken den 24 september 2023 och då avsluta uppdraget som kostat ca 800 miljoner dollar. Uppskjutningen skedde från Cape Canaveral 2016.

Det blir spännande att få veta vad provet innehåller. Alltid överraskas vi av prover tagna därute. Det vi antar brukar aldrig stämma (min anm.).

Bild från vikipedia på asteroiden Bennu.

måndag 17 maj 2021

Kanske vi ska söka efter konstellationer av utomjordiska satelliter därute

 


Starlink är ett ambitiöst rymdprojekt med ett av målen att placera 12000 kommunikationssatelliter i låg bana runt jorden och i framtiden ytterligare 30000. Ett syfte med dessa är att ge internetkoppling över hela jorden.  Bara att få dem i omloppsbana är en enorm teknisk utmaning och med så många metallbitar i omloppsbana oroar sig många för att det kan leda till en kaskad av kollisioner som riskerar  rymdfarkoster att krocka och nedslag bli vanliga på jorden. Något som kan öka än mer om stora mängder rymdstationer eller större satelliter och farkoster i stor mängd sänds upp i bana runt jorden vilket många tror sker i framtiden. Men möjligen kan säkerhetslösningar finnas likt det börjar finnas bland varningssystem som stoppar en bil som kommer för nära en annan bil.


Det finns de som  undrar om  utomjordiska civilisationer redan har skapat sådana megakonstellationer av satelliter  runt sin planet? Kan vi då upptäcka detta?

 

Detta frgas i en ny artikel publicerad i https://arxiv.org/.

 Artikeln är baserad på en idé om hur civilisationer kan växa över  tid känt som Kardashev-skalan

Att bygga och upprätthålla en  komplex struktur kräver mycket energi och råvaror som  genererar spillvärme som vi  kan upptäcka. Med hjälp av några grova uppskattningar visas i artikeln att en sådan konstellation skulle producera en distinkt infraröd signatur.

Kanske kan sådana upptäckas redan av nuvarande teleskop som Very Large Telescope Interferometer (VLTI) som avsöker i det infraröda fältet. Dock kan vi  inte finna något längre ut än cirka 280 ljusår från oss.  Avstånd över detta ger för svag signal för att finna strukturer av detta slag.

Det finns cirka 1000 solliknande stjärnor inom det avståndet så om typ I-civilisationer (enligt Kardashev-skalan ) är  vanliga skulle vi ha en chans att hitta dessa om de sänt upp strukturer enligt ovan.

Men allt hör framtiden till och allt kostar stora resurser och mycket kapital om vi ska sända upp strukturer enligt ovan. Om allt går igenom får framtiden visa (min anm.). Men söka efter andras kan vi göra nu med exempelvis VLTI.

Bild flickr.com vad det föreställer får var och en tolka men tanken hos mig går till Aliens.

söndag 16 maj 2021

Metanol funnit i en protoplanetär skiva

 


En protoplanetär skiva är en roterande cirkumstellär skiva med tät gas som omger en mycket ung stjärna Den protoplanetära skivan kan anses vara en ackretionsskiva eftersom materia faller ner från de inre delarna av skivan till stjärnans yta. En process som inte ska blandas ihop med ackretionsprocessen som bildar planeter.

I denna skiva har astronomer identifierat molekylen metanol i de "varmare zonerna" av den protoplanetära skiva som finns runt en stjärna cirka 360 ljusår från jorden. Fyndet är betydelsefullt eftersom metanol CH3OH är en av de enklare komplexa kolbaserade molekylerna och en kemikalie som är involverad i bildandet av mer komplexa ämnen som aminosyror och proteiner.

 

Metanol identifierades av ett internationellt team av astronomer, inklusive forskare från University of Leeds då de studerade en stjärna med beteckningen HD 100546 och dess protoplanetära skiva. Det virvlande dammet och gasen. Konstellationen är cirka 10 miljoner år gammal och ligger i riktning mot den södra konstellationen av Flugans stjärnbild.

Astronomerna säger att metanol inte kan ha bildats i skivans varmare zon där temperaturen är 253 grader Celsius. Istället tror de att metanol skapades då den protoplanetära skivan bildades och damm- och gasmolnet var svalare.

Forskarna använde ALMA radioobservatoriumet högt upp i de chilenska Anderna. ALMA-observatoriet känner av elektromagnetisk strålning som avges av molekyler djupt ut i rymden. Astronomerna letade dock efter molekylen svavelmonoxid när de till sin förvåning upptäckte metanol där sådan inte antagits finnas.

Bild från vikipedia. Vy taget av Rymdteleskopet Hubble på gas- och dammskivan runt HD 100546 i synligt ljus (den protoplanetära skivan). Spiralstrukturerna kan ses. Den orange pricken markerar positionen för protoplaneten HD 100546 b som finns här ( bidad ur materia från skivan). Stjärnan själv är digitalt beräknad; De svarta punkterna och de koncentriska "vågorna" nära bildens mitt är inte riktiga objekt, utan bildartefakter som har skapats som ett resultat av bildens framställning.

lördag 15 maj 2021

Mönstersökning av hur universums galaxer med mera är platsbundna

 


Astronomer upptäckte för länge sedan att universum bestod av gigantiska galaxkluster vart och ett innehållande tusen eller fler galaxer. Men det finns också mycket mindre grupper av galaxer och även ensamma galaxer i tomrummen mellan klustren. Observationerna såg ut som om det inte fanns något övergripande mönster för kosmos.

Den kosmologiska principen rådde inom fysiken. Det vill säga att universum är mestadels homogent (ungefär likartat från plats till plats) och isotropiskt (ungefär likartat oavsett vilken riktning du tittar mot). I denna syn passar ett gäng slumpmässiga galaxer och kluster in.

Men i slutet av 1970-talet blev galaxundersökningar sofistikerade nog att avslöja början på ett mönster i arrangemanget av galaxer. Förutom klustren fanns det också långa, tunna filament av galaxer. Det fanns breda väggar. Utöver det fanns tomrummen – stora vidder av ingenting. Ett förslag till lösningen av dessa upptäckter kom från matematikern Benoit Mandelbrot. Teorin om, fractals fars. Fraktaler finns överallt. Om du zoomar in mot centrum av en snöflinga ser du miniatyrer av snöflingor. Om du zoomar in på grenarna i ett träd ser du miniatyrgrenar. Om du zoomar in på en kustlinje ser du miniatyrkustlinjer. Fraktaler omger oss i naturen, och fractals inom matematiken har gjort det möjligt för oss att förstå en mängd olika strukturer i universum.

 

Om fraktaler finns överallt vilket många då trodde, föreslog Mandelbrot att då kanske hela universum är en fraktal. Kanske var det vi såg som mönstret i arrangemanget av galaxer det första av än större fraktaler. Kanske, om vi gjorde sofistikerade undersökningar att vi skulle hitta strukturer - kosmiska vävar inuti kosmiska vävar som fyllde hela universum till oändlighet (det skulle inte finnas något som kunde ses som största eller minsta möjliga objekt och allt kunde ses som större och större eller mindre och mindre fraktaler (mönster av samma slag (min anm).

Efterhand upptäckte astronomer mer i den kosmiska webben lärde sig mer om BigBangs historia och kom på nya sätt att förklara förekomsten av de storskaliga mönstren i universum. De nya  teorierna visade att universum fortfarande var homogent (likartat som man antaget före 1970-talet), bara i mycket, mycket större skala än astronomer hade observerat tidigare.

 

Det ultimata testet av om ett fraktaluniversum var sant skulle komma under detta århundrade, när verkligt gigantiska undersökningar med hjälp av ex Sloan Digital Sky Survey, har kunnat kartlägga platserna för miljontals galaxer och utarbeta ett porträtt av den kosmiska webben på skalor som aldrig observerats tidigare.

 

Om fractal universum idé är sant då borde vi se vår lokala kosmiska webb inbäddad i en mycket större kosmisk webb. Om det är fel bör den kosmiska webben någon gång sluta vara en kosmisk webb och en slumpmässig tillräckligt stor del av universum se ut  som alla andra slumpmässiga bitar.

 Resultatet blev homogenitet. Men man måste gå upp till cirka 300 miljoner ljusår innan universum ses som homogent. Universum är definitivt inte en fraktal konstruktion anses det nu. Men delar av den kosmiska webben har fortfarande intressanta fraktalliknande egenskaper. Klumpar av mörk materia som kallas "halos" som är värdar för galaxer och deras kluster bildar till exempel kapslade strukturer och understrukturer, med halos som har underhalos och sub-under-halos inuti dessa. (låter krystat som teori (min anm. jag tvekar till detta senaste resonemang med mörk materia)

Tomrummen (områden mellan stora galaxhopar eller större galaxer) i vårt universum är dock inte som man tidigare antaget helt tomma. De innehåller svaga dvärggalaxer (små galaxer med kanske några hundratal eller tusental stjärnor).

Bild pxhere.com en blick ut i det okända.