Google

Translate blog

lördag 29 november 2025

Europa Clipper med Uranus i synfältet på sin väg mot Jupiters måne Europa

 


Bild https://science.nasa.gov  en annoterad version av bilden på Uranus med flera bakgrundsstjärnor NASA/JPL-Caltech

NASAs Europa Clipper tog bilden ovan av ett stjärnfält och planeten Uranus den 5 november 2025 då den experimenterade med en av Clippers två stjärnreferensenheter. Dessa stjärnspårningskameror används för att hålla kvar rymdfarkostens orientering på sin färd mot Jupiters månar. Inom kamerans synfält  vilket representerar 0,1 % av rymden runt rymdfarkosten i vilken Uranus ses som en större prick nära bildens vänstra sida. Då bilderna  (fler finns på denna sida) togs befann sig Europa Clipper cirka 3,2 miljarder kilometer från Uranus. 

Clipper är på väg till Jupiter med dess månar för att studera den isbelagda månen Europa.

Europa Clipper sköts upp i oktober 2024 och kommer att anlända till Jupiter-systemet 2030 för att där genomföra cirka 50 förbiflygningar av Europa. Uppdragets huvudsakliga  mål är att avgöra om det finns platser under Europas isiga yta som kan stödja liv. 

Uppdragets tre vetenskapliga mål är att bestämma tjockleken på månens is och isens interaktioner med havet under isen och att undersöka isens sammansättning och  karakterisera dess geologi. Uppdragets utforskning av Europa kommer att hjälpa forskarna att bättre förstå den astrobiologiska potentialen för beboeliga världar bortom vår planet och  under isen på månen Europa.

fredag 28 november 2025

Det kommande Nancy Roman Telescope kommer att ge ny kunskap om stjärnorna

 


Bild wikipedia på teleskopet som enligt planerna ska sändas upp senast 2027.

Utifrån NASAs numera pensionerade Kepler-rymdteleskops framgångsrika asteroseismologiska  upptäckter har ett forskarteam nyligen bekräftat att asteroseismologi även kommer att vara möjlig med NASAs kommande Nancy GraceRoman Space Telescope

Deras studie visar olika modeller för att ge en uppskattning av antalet stjärnor som kommer att kunna detekteras med denna metod. Forskningsresultat visar att teleskopet kommer att ge den största asteroseismologiska mängden som någonsin samlats in. Genom att använda Keplerdata som utgångspunkt och anpassa datamängden för att matcha den förväntade kvaliteten från Roman har astronomer nyligen bevisat möjligheten av asteroseismologi med det snart uppskjutna teleskopet och gett ett uppskattat intervall av detekterbara stjärnor.

Det är en extra bonus till Romans huvudsakliga vetenskapliga mål: Eftersom teleskopet utför observationer för sina Galaktisk Bulge Tidsdomänundersökning en kärnundersökning i samhället som kommer att samla in data om hundratals miljoner stjärnor i utbuktningen av vår Vintergata  kommer den också att ge tillräckligt med information för att astronomer ska kunna fastställa stjärnmätningar via asteroseismologi.

"Asteroseismologi med Roman blir möjligt eftersom vi inte behöver få teleskopet att göra något det inte redan är planerat för," sade Marc Pinsonneault från The Ohio State University i Columbus, medförfattare till en artikel som beskriver forskningen (se nedan). "Styrkan i det romerska uppdraget är anmärkningsvärd: Det är delvis utformat för att främja exoplanetforskning, men forskare kommer också att få mycket rik data för andra vetenskapliga områden som sträcker sig bortom denna huvuduppgift."

Den galaktiska bulan (tät av stjärnor där av namnet i centrala vintergatan)i centrum av vintergatan vilken är tät med röda dvärgstjärnor och i många fall är dessa ingående i stora stjärnsamlingar som är mer utvecklade än huvudseriestjärnorna. (Huvudseriestjärnor befinner sig i ett liknande stadium som vår sol.) Fördelarna med asteroseismologi med Roman är bland många andra kopplingen till exoplanetforskning. Huvudfokuset för uppdraget och den galaktiska undersökningen av galaxens så kallade bula. Roman kan att upptäcka exoplaneter, planeter utanför vårt solsystem, genom en metod som kallas Mikrolinsning, innebärande att gravitationen från en förgrundsstjärna förstärker ljuset av en bakgrundsstjärna. Närvaron av en exoplanet kan orsaka en märkbar "blixt" i den resulterande ljusförändringen. 

"Med asteroseismologiska data kommer vi att kunna få  ny information om exoplaneternas solar och det kommer att ge oss ny kunskap om exoplaneterna själva," beskriver Revor Weiss från California State University, Long Beach, medförfattare till artikeln.   Artikeln om studien publicerades i The Astrophysical Journal

torsdag 27 november 2025

Spiralformade skal runt Wolf-Rayet-stjärnor

 


Bild wikipedia Webbteleskopets MIRI (kombinerat kamera- och spektrografinstrument på James Webb-rymdteleskopet som ser i medel- till långvågig infraröd strålning ) bild av  Apep Star System

Wolf–Rayet-stjärnor är stjärnor med hög yttemperatur och vars spektrum uppvisar mycket breda och kraftiga emissionslinjer.

Forskare vilka använt Webbteleskopet i syfte att bättre kartlägga  banan för två Wolf-Rayet-stjärnor vars banor är 190 år visat att en tredje stjärna karvar på deras pågående koldammutsläpp.

De spiralformade skalen som utkommer från dessa två stjärnor kända som Apep, (namnet efter efter den egyptiska kaosguden Apep), har blivit tydliga: NASAs James Webb Space Telescope har visat dessa spiraler bestående av damm som visar 700 års aktivitet. 

"Webb har observerat liknande system på andra platser. Men denna plats ingen så detaljerad," beskriver Yinuo Han, postdoktoral forskare vid Caltech i Pasadena, Kalifornien huvudförfattare till en ny artikel om Apep. "Det är tillräckligt sällsynt att se en Wolf-Rayet-stjärna, men Apep består av två. När deras stjärnvindar kolliderar producerar de stora mängder kolhaltigt damm under de 25 år ederas bana om varandra tar."

Genom att kombinera dessa nya mellaninfraröda observationer med en serie bilder från European Southern Observatorys Very Large Telescope (VLT), begränsade Han och hans medarbetare hur ofta stjärnorna passerar varandra. Resultat en gång vart 190:e år och bekräftade även att en tredje stjärna i form av en massiv superjätte, "skär" hål i de dammiga skalen.

onsdag 26 november 2025

Nu förstår vi mer om hur grundämnen blir till i stjärnor.

 


Bild https://newscenter.lbl.gov/  experimental physicist Mathis Wiedeking är en  fysiker vars arbete hjälper till att avmystifiera den intermediära neutroninfångningsprocessen vid tunga grundämnes bildande. (Kredit: Marilyn Sargent/Berkeley Lab)

Runt oss finns element konstruerade i stjärnor, ex nickel, koppar, guld och silver. Forskare har numera en god förståelse för hur dessa grundämnen bildas. I många fall fångar en kärna tyngre än järn neutroner tills en av dem sönderfaller, vilket förvandlar dem till ett tyngre grundämne. Det finns en långsam version av denna neutroninfångning s-processen och en snabb version, r-processen. 

Men vissa stjärnor verkar inte följa reglerna. När astronomer analyserar dessa stjärnors ljus ser de oväntade förhållanden av tunga grundämnen som inte enkelt kan förklaras av någon av de två processerna. Avvikelserna pekar på en tredje väg: en "mellanliggande" i-process.

Mathis Wiedeking, experimental physicist vid Department of Energys Lawrence Berkeley National Laboratory (Berkeley Lab), samlar in data från  kärnreaktioner som kan förbättra modellerna för hur grundämnena bildas. Han är också huvudförfattare till en ny artikel i Nature Reviews Physics om det aktuella forskningsläget (vilken rekommenderas för intresserade att läsa) inom i-processforskning, där experiment, teori och astrofysiska observationer möts.

I artikeln från https://newscenter.lbl.gov  Lawrence Berkeley National Laboratory  beskriver Wiedeking hur i-processen passar in i den större bilden av elementbildning, vad som krävs för att studera den och varför den är viktig att studera både för att förstå kosmos och för att utveckla nya teknologier här på jorden.

tisdag 25 november 2025

Satellit för övervakning av havsnivåer är nu igång.

 


Bild https://science.nasa.gov/ Sentinel-6B är en satellit nu flyger på egen hand efter att ha separerats från SpaceX Falcon 9:s andra steg måndagen den 17 november 2025. NASA

Uppdragets kontrollanter för Sentinel-6B mottog full signal från satelliten klockan 01:54 EST måndagen den 17 november.

Efter att ha korskalibrerat sin data kommer Sentinel-6B att ta över efter Sentinel-6 Dess uppdrag är att övervaka havsnivåer, mäta vind- och vågförhållanden samt förbättra både kort- och långsiktiga väderprognoser. Den förväntas vara aktiv åtminstone till 2030.

Copernicus Sentinel-6/Jason-CS (Continuity of Service) är ett samarbete mellan NASA, ESA (Europeiska rymdorganisationen), EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) och National Oceanic and Atmospheric Administration (NOAA). Europeiska kommissionen gav finansieringsstöd, och den franska rymdmyndigheten CNES (Centre National d'Études Spatiales) bidrog med tekniskt stöd.

NASAs Jet Propulsion Laboratory i södra Kalifornien, som drivs för myndigheten av Caltech i Pasadena, Kalifornien, bidrog med tre vetenskapliga instrument för varje Sentinel-6-satellit: Advanced Microwave Radiometer for Climate, Global Navigation Satellite System – Radio Occultation och Laser Retroreflector Array. Myndigheten bidrog också med uppskjutningstjänster, markbaserade system som stödde driften av NASAs vetenskapliga instrument, vetenskapsdataprocessorer för två av dessa instrument samt stöd för det internationella samhället för havsyttopografi.

NASAs Launch Services Program, baserat vid myndighetens Kennedy Space Center i Florida var de som ansvarade för uppskjutningstjänsten till uppdraget.


måndag 24 november 2025

Teleskopet XL-Calibur mätresultat ska avslöja svarta håls hemligheter

 


Bild https://source.washu.edu Det ballongburna teleskopet XL-Calibur sköts upp för en sex dagar lång flygning från Swedish Space Corporations Esrange Space Center i Kiruna i juli 2024. Under den flygningen tog teleskopet mätningar på det svarta hålet Cygnus X-1, som finns cirka 7 000 ljusår bort. Forskare vid Washington University i St. Louis kommer att använda resultatet för att förbättra datormodeller till att simulera och avslöja ytterligare mysterier kring svarta hål. (Foto: NASA/SSC).

I ett internationellt samarbete mellan fysiker och forskare vid Washington University i St. Louis det har gjorts mätningar med syftet att bättre förstå hur materia faller in i svarta hål och hur enorma mängder energi och ljus frigörs vid processen.

Forskarna riktade ett ballongburet teleskop kallat XL-Calibur mot ett svart hål, Cygnus X-1, vilket finns cirka 7 000 ljusår från jorden. "De observationer vi gjorde kommer att användas av forskare för att testa allt mer realistiska, toppmoderna datorsimuleringar av fysiska processer nära detta och andra svarta hål," beskriver forskarna Henric Krawczynski, Wilfred R. och Ann Lee Konneker Distinguished Professor i fysik och fellow vid WashU:s McDonnell Center for the Space Sciences.

 XL-Calibur, mäter polarisationen av ljus innebärande riktningen på elektromagnetiska fältvibrationer. Information om riktningen och vibrationerna ger forskare viktiga ledtrådar för att bestämma formen på den extremt heta gas och det material som i  våldsam fart kretsar omkring svarta hål.

Observationerna och analysen av insamlad data från Cygnus X-1 publicerades nyligen i The Astrophysical Journal och inkluderar den mest precisa mätningen hittills av den hårda röntgenpolarisationen från ovan svarta hålet. Artikeln skrevs i samarbete med flera av Krawczynskis fysikkollegor vid WashU, inklusive doktoranden Ephraim Gau och postdoktorala forskaren Kun Hu, som var mycket involverade i forskningen som korresponderande författare.

söndag 23 november 2025

Detta är högenergikomponenten i den kosmiska strålningen

 


Bild https://english.cas.cn/ Det kosmiska strålprotonenergispektrumet mätt av LHAASO i "knä"-regionen (röda prickar), tillsammans med lågenergikomponenten mätt i det rymdburna AMS-02-experimentet (svarta rutor) och den mellanenergikomponenten som mäts vid det rymdburna DOPE-experimentet (blå rutor). (Bild av LHAASO Collaboration)

Kinesiska forskare identifierar svarta hål som en sannolik källa till högenergikomponenten i kosmisk strålning i  så kallade "knä"

Milstolpesresultat som släpptes av Large High Altitude Air Shower Observatory (LHAASO) den 16 november har löst ett decenniegammalt mysterium kring det kosmiska strålningsenergispektrumet vilket visar en kraftig minskning av kosmiska strålar över 3 PeV, (petaelektronvolt) något som ger det en ovanlig knäliknande form.

Orsaken till "knäet" har varit oklar sedan dess upptäckt för nästan 70 år sedan. Forskare har spekulerat i att det är kopplat till accelerationsgränsen för de astrofysiska källorna till kosmisk strålning och speglar övergången av det kosmiska strålningsenergispektrumet från en potenslagsfördelning till en annan.

Nu beskrivs dock i två nyligen publicerade studier. Publicerade i National Science Review respektive Science Bulletin att mikrokvasarer drivna av svarta håls systemackretion är kraftfulla partikelacceleratorer i Vintergatan och sannolikt är  källan till "knäet". Studierna fördjupar också vår förståelse av de extrema fysiska processerna i svarta hål.

Forskningen genomfördes av forskare från Institutet för högenergifysik vid Kinesiska vetenskapsakademin (CAS), Nanjing universitet, Kinas universitet för vetenskap och teknik vid CAS, La Sapienza-universitetet i Rom  m.fl. institutioner.

Svarta hål, ett av universums mest gåtfulla objekt och genererar relativistiska jetstrålar när de drar till sig material från följeslagare i binära system och bildar "mikro-kvasarer." I denna studie upptäckte LHAASO systematiskt för första gången ultrahögenergetiska gammastrålar från fem mikrokvasarer: SS 433, V4641 Sgr, GRS 1915+105, MAXI J1820+070 och Cygnus X-1.

Särskilt visade sig att ultrahögenergistrålningen från SS 433 överlappade med ett gigantiskt atommoln vilket starkt tyder på att högenergetiska protoner accelereras av det svarta hålet som kolliderar med omgivande materia. Protonenergin i detta system översteg 1 PeV, med en total effekt på cirka 1032 joule per sekund vilket motsvarar den energi som frigörs per sekund av fyra biljoner av de mest kraftfulla vätebomberna. Gammastråleenergin från V4641 Sgr visade sig nå 0,8 PeV, vilket gjorde det till en annan "super PeV-partikelaccelerator", medan de moderpartiklarna som genererade dessa gammastrålar hade energier över 10 PeV.

Dessa resultat bevisar att mikrokvasarer är betydande PeV-partikelacceleratorer i Vintergatan, vilket löser ett långvarigt vetenskapligt problem. Även om supernovarester historiskt erkäns som källor till kosmisk strålning, har både observations- och teoretiska studier visat att de inte kan accelerera kosmiska strålar till de energier som ses vid "knäet" och bortom.

För att fullt ut förstå detta fenomen är precisa mätningar av energispektra hos de olika kosmiska strålartiklarna, inklusive deras respektive "knän", avgörande. Det första steget är att mäta energispektrumet för de lättaste kärnorna, protonerna. Dock är kosmiska strålar i "knä"-regionen sällsynta och satellitdetektorer har begränsad möjlighet att upptäcka dem vilket gör detektering likvärdig med att hitta en nål i en höstack. Vid markbaserade indirekta mätningar av kosmiska strålpartiklar är det omöjligt att undvika atmosfärisk interferens. Detta gör det svårt att skilja protoner från andra kärnor. Under lång tid ansågs denna mätning omöjlig.

I studien hade man hjälp av sin världsledande markbaserade utrustning för observation av kosmisk strålning, utvecklad genom LHAASO multiparametrismätmetoder och valde ut ett stort statistiskt urval av högrena protoner, vilket möjliggjorde noggrann mätning av strålningens energispektrum. Denna mätning avslöjade en energispektrumstruktur som var helt oväntad, och visade tydligt en ny "högenergikomponent" istället för en enkel övergång mellan potenslagsspektra.

LHAASO, designades, byggdes och drivs av kinesiska forskare och har tagit ledningen inom högenergiforskning inom kosmisk strålning tack vare sin känslighet både vid gammastrålningsastronomisk utforskning och precisionsmätning av kosmisk strålning. Den har gjort en rad upptäckter som har global påverkan och därmed bidragit till vår kunskap om universums extrema fysiska processer.

LHAASOS nya fynd, tillsammans med lågenergikomponenten mätt av det rymdburna AMS-02-experimentet och medelenergikomponenten mätt av det rymdburna DArk Matter Particle Explorer(DAMPE)-experimentet, avslöjade existensen av flera acceleratorer inom Vintergatan, där varje accelerator har sin egen unika accelerationsförmåga och energiintervall. "Knäet" representerar accelerationsgränsen för de källor som ansvarar för att generera högenergikomponenten.

Protoners energispektrums komplexa struktur indikerar att kosmiska strålars protoner inom PeV-energiområdet främst härstammar från "källor" såsom mikrokvasarer, vilka har en accelerationsgräns betydligt högre än supernovarester. Detta gör det möjligt för dem att generera högenergetiska kosmiska strålar som överstiger "knäet".

Dessa två upptäckter stöder varandra och presenterar en heltäckande vetenskaplig bild. Detta markerar inte bara ett betydande framsteg i att lösa det långvariga mysteriet kring "knä"-ursprunget, utan erbjuder också avgörande observationsbevis för att förstå svarta håls roll i kosmiska strålars ursprung.