Google

Translate blog

torsdag 6 april 2023

Små stjärnor kan ha stora planeter

 


Gasjättar likt andra planeter bildas från de skivor av material som omger unga stjärnor. Enligt kärnaccelerationsteorin bildas först en kärna av sten, is och andra tunga fasta ämnen som sedan genom gravitation drar till sig gas och damm. Processen börjar då kärnan är tillräckligt massiv (cirka 15 till 20 gånger jordens).

Stjärnor med låg massa (ex röda dvärgstjärnor de vanligaste stjärnorna därute) har enligt teorin skivor (ackretionsskivor) med mindre massa enligt fysiska utsagor och det bör inte vara möjligt att här bilda stora gasjättar av ett slag som är större än stjärnan. 

Men i en nyligen gjord studie, publicerad i Monthly Notices of the Royal Astronomical Society (MNRAS) finansierad av UK Science and Technology Facilities Council (STFC), såg forskare på 91306 stjärnor med låg massa, med hjälp av observationsdata från NASA: s Transiting Exoplanet Survey Satellite (TESS) och i 15 fall hittades tecken på ett stort ljusfenomen som passerar framför en mindre stjärna (misstänkt som gasjätteplanet större än dess sol).

Fem av dessa 15 potentiella jätteplaneter har sedan dess bekräftats som planeter. En av dessa bekräftade planeter kretsar kring en stjärna som är en femtedel av solens massa – vilket inte skulle vara möjligt enligt dagens planetbildningsmodeller. Ska förstås som omöjligt att en sådan stor planet bildats vid en så liten stjärna.

Huvudförfattaren till studien Dr Ed Bryant vid Mullard Space Science initierade Laboratory vid UCL, tidigare University of Warwick, var den som tog initiativ till studien som en del av sin doktorsexamen. Han beskriver det som att ”Stjärnor med låg massa är bättre på att bilda jätteplaneter än vi hittills trodde. Resultatet väcker nya frågor om planetbildningsmodeller. I synnerhet utgör vår upptäckt av gasjättar som kretsar kring stjärnor av 20 % av solens massa en konflikt med nuvarande teori om planetbildning”.

Medförfattare till studien Dr Vincent Van Eylen (Mullard Space Science Laboratory vid UCL) beskriver det med följande ord "Det faktum att, även om det är sällsynt, finns gasjättar runt stjärnor med låg massa vilket är ett oväntat fynd och innebär att modeller om  planetbildning kommer att behöva revideras."

En möjlig tolkning är att gasjättar inte bildas genom kärnacceleration utan genom gravitationell instabilitet, där skivan som omger en stjärna fragmenteras till planetstora klumpar av stoft och gas. Om så är fallet kan stjärnor med låg massa vara värd för mycket stora gasjättar två eller tre gånger större  än Jupiter. Detta anses dock osannolikt, eftersom skivorna runt stjärnor med låg massa inte verkar vara tillräckligt massiva för att fragmenteras på detta sätt. För min del låter det dock troligt att så kan ske. Vi ska inte låsa oss vid hur mycket massa som finns i en ackretionskiva utifrån ett samband med hur stor stjärnan är.

En annan förklaring, säger forskarna, är att astronomer har underskattat hur massiv en stjärnas skiva kan vara, vilket innebär att små stjärnor trots allt kan bilda jätteplaneter via kärnbildning.

Detta kan antingen bero på att vi felaktigt har beräknat massan av skivor vi kan observera genom teleskop eller att skivor har en större massa i början av en stjärnas liv, stadiet då de är mycket utmanande att analysera  (med dagens instrument), jämfört med senare i en stjärnas existens när vi kan observera dem lättare (då dammet inte är så kompakt i skivan).

Medförfattare i studien var även Dr Dan Bayliss (University of Warwick) skrev "Det är möjligt att vi inte förstår massorna av dessa protoplanetära skivor så bra som vi trodde att vi gjorde. Kraftfulla nya instrument som James Webb Space Telescope kommer att kunna studera egenskaperna hos dessa skivor mer detaljerat.

I artikeln beskrivs hur forskarna  försökte identifiera hur ofta jätteplaneter bildas runt stjärnor med låg massa och testade om denna förekomstfrekvens passade med vad kärnaccelerationsmodeller skulle förutsäga.

De använde en algoritm för att identifiera signalerna från transiterande gasjättar i ljus från stjärnor med låg massa. De kontrollerade sedan dessa signaler och diskonterade ett antal falska positiva resultat.

För att avgöra hur sannolik deras metod var att upptäcka gasjättar som kretsar kring dessa stjärnor är satte de in simuleringar av tusentals signaler från transiterande planeter i TESS insamlad stjärnljusdata och körde sedan algoritmen för att se hur många av planeter som skulle detekteras.

Nu arbetar forskarna vidare med att försöka bekräfta om ljusen är stora gasplaneter (eller utesluta) nio av de 15 kandidatplaneter de identifierat (fem har hittills bekräftats som planeter). Dessa kandidater kan potentiellt vara följeslagare till stjärnor eller det kan finnas en annan anledning till nedgångarna i ljusstyrka. Teamet kommer att dra slutsatsen om dessa objekts massor genom att leta efter en anomali i deras sols position, vilket indikerar den möjliga planetens gravitation.

Bild https://phys.org  Illustratörs intryck av soluppgången på planeten NGTS-1b, en gasjätte som tidigare upptäckts kretsa kring en stjärna med låg massa. Upphovsman: University of Warwick / Mark Garlick.

onsdag 5 april 2023

Damm från rymden kan innehålla tecken på liv någonstans i universum

 


Tomonori Totani, astrobiolog vid University of Tokyo föreslår att sökandet efter liv bortom jorden utvidgas till studier av rymddamm. I en artikel publicerad i tidskriften International Journal of Astrobiology nyligen föreslår Totani att rymdstoft kan innehålla spår av liv som sprängts bort från planeter genom meteoritnedslag (ex spår från nuvarande eller tidigare liv på någon måne eller planet i vårt solsystem i det förgångna eller exoplanet långt därute).

Trots många års ansträngningar har tecken på liv bortom jorden aldrig hittats. Det finns två möjliga orsaker till detta; Den första är att det inte finns något liv där ute att hitta. Det andra är att vi saknar tekniken för att hitta det på grund av de stora avstånden. En del av problemet, konstaterar Totani, är utmaningarna att studera mängden av exoplaneter ljusår bort.

Därför föreslår han ett alternativt tillvägagångssätt. Analysera rymddamm som har landat på jorden. Sådant damm finns oförstört av jordiska organismer i isfält runt polerna konstaterar han och eventuellt även i vår atmosfär.

Totani konstaterar att meteoriter  träffar planeter över hela Vintergatan och varje gång det händer kastas en del  skräp efter nedslaget tillbaks ut i rymden. Och om den planet där nedslaget skett råkar hysa liv kan tecken av det kastas ut tillsammans med det damm som flyger ut i universum och efter ljusår hamna på jorden.

Totani föreslår att den optimala storleken för rymdstoft är ungefär 1 mikrometer stora korn stora nog för att innehålla bevis på liv och tillräckligt små för att undkomma sin hemplanet och dess sols gravitation efter ett utkast. Dammet skulle kunna färdas tillräckligt långt för att nå avlägsna planeter som jorden över tid. Totani beräknar att cirka 100000 dammkorn efter ett meteoritnedslag därute hamnar på jorden varje år. Detta damm kan enligt Totani bära spår av liv från andra världar om det kommer från en sådan som har liv där nedslaget skedde. Detta damm kan analyseras efter biosignaturer.

Kanske men hur ska vi veta om spåren av liv i dessa dammkorn inte kommer från jorden efter att vi samlat in dem på jorden? Dammkorn av detta slag bör samlas in på ex Mars eller månen inte på jorden. Om dammet är mycket gammalt kan det även ha kommit från jorden kanske från asteroiden som utplånade dinosauriernas tid. Mycket damm for säkert upp i rymden efter denna händelse. För att vara säker på att damm av detta slag inte kommer från jorden måste biosignaturer som hittas vara av okänt jordiskt slag. Sedan bör vi ta med i beräkningarna att närmaste stjärna med exoplaneter finns ca 4 ljusår bort (Alfa centauri) och dammoln inte färdas med  samma hastighet som ljuset. Många gånger samlas de och blir på kvar på en bestämd plats. Långt ifrån alla moln av detta slag färdas runt i universum och dess hastighet kan vara mycket låg om de gör detta.

Bild pixabay.com

tisdag 4 april 2023

Ett meteoritnedslag för 3,48 miljarder år sedan

 


Geologer har nu upptäckt att ett meteoritnedslag skedde på jorden för cirka 3,48 miljarder år sedan.

Enligt Live Science (varifrån detta inlägg har sitt ursprung)  kan de fragment som hittats ha bildats när meteoriten slog ner i ytan och sprutade det smälta berget upp i atmosfären. Den smälta stenen kyldes sedan av och stelnade till pärlor stora som knappnålshuvuden. Dessa förblev sedan begravda under lång tid innan de i vår tid hittades.

Även om upptäckten ännu inte har granskats fullt ut presenterade forskarna upptäckten under den 54: e Lunar and Planetary Science Conference som hölls i Texas i mars 2023. Forskarna drog slutsatsen att dessa fragment är de tidigaste bevisen på ett meteoritnedslag i jordens geologiska historia.

New Scientist rapporterar att fragmenten borrades upp i en ökenformation i Pilbara Craton i västra Australien. Ökenformationen består av en grupp sedimentära och vulkaniska bergarter. Före denna upptäckt var de äldst kända beviset av meteoritnedslag ca 3,47 och 3,45 miljarder år gamla. Det 3,48 miljarder år gamla nu hittade fanns i Pilbara Craton medan de ca 3,45 miljarder år gamla nedslagsplatserna upptäcktes i Kaapvaal Craton i Sydafrika.

Enligt Chris Yakymchuk, geolog vid University of Waterloo som dock inte deltog i studien registreras att den senaste forskningen som något äldre fragment cirka 10 miljoner år äldre jämfört med de tidigare dokumenterade  fragmenten i Sydafrika. Men  Yakymchuk  beskriver även att det är  viktigt att komma åt hela datauppsättningen för att säkert bekräfta dess betydelse.

Forskarna hittade de nu beskrivna sfärerna i sedimentära bergkärnor 2019. De daterade fynden utifrån isotoper vilket Yakymchuk noterar är en pålitlig och robust dateringsmetod. De kunde även få en bra uppfattning om bergets ålder baserat på zirkonmineralets isotopdatering.

Forskarna drog slutsatsen att fragmenten hade utomjordiskt ursprung på grund av deras sammansättning. De fann högre nivåer av platinagruppelement, såsom iridium än i vad som finns markbundna bergarter på jorden. De upptäckte även nickel-kromspinelmineraler och osmiumisotoper något som är vanligt i meteoriter.

Foto pixabay.com

måndag 3 april 2023

Nya rön släppta från världens kraftfullaste solteleskop.

 


Ny forskning utförd med hjälp av instrumentet Visible Spectropolarimeter (ViSP) vid National Science Foundations Daniel K.Inouye Solar Telescope (världens kraftfullaste solteleskop) är den första forskning där man använt data från detta instrument. Förhoppningen är att arbetet ska bana väg för framtida studier för bättre förståelse av de potentiella riskerna för kraft- och kommunikationsinfrastruktur vid utkast från solen.

Studien publicerades i The Astrophysical Journal Letters och var ett samarbete mellan Storbritannien och National Science Foundation och markerar en viktig milstolpe för detta banbrytande solteleskop.

Daniel K. Inouye Solar Teleskopet är ett fyra meter högt solteleskop på ön Maui på Hawai'i. Det är det största och mest kraftfulla solteleskopet som finns och byggdes som en del av ett multilateralt internationellt samarbete som började för nästan tre decennier sedan. Teleskopet och samarbetet syftar till att förbättra vår förståelse av solen och dess roll i rymdväderhändelser. STFC Rutherford Appleton Laboratory (RAL) Space i samarbetade med Observatory Sciences Ltd / om utformningen av styrsystemet för teleskopet. Styrsystemet är viktigt för att säkerställa korrekt positionering och bildkvalitet.

Att främja vår kunskap om solen är viktigt för att förstå hur rymdväderhändelser som kan påverka nyckelteknologier som el- och kommunikationsnätverk.

Solaktiviteter kan störa viktiga tekniska system som positionerings- och kommunikationstjänster och rymdfarkoster och är numera listade i den brittiska regeringens riskregister.

Forskare under ledning av Dr. Ryan French, tidigare doktorand vid University College Londons Mullard Space Science Laboratory, använde det oöverträffade signal-brusförhållandet i instrumentet Visible Spectro-Polarimeter (ViSP) på Daniel K. Inouye Solar Telescope.

Instrumentet gjorde det möjligt att undersöka utbredningen av ett fenomen som kallas umbralblixtar i den lägre solatmosfären. Umbralblixtar är exempel på ljusskiftning i solens kromosfär som sker i en sekvens av vågor och chockutkast.

ViSP-instrumentet är unikt för Daniel K. Inouye Solar Telescope. Det mäter solaktivitet genom att expandera inkommande ljus till dess komponenter likt ett prisma för att skapa en "regnbåge". Från denna kan den därefter plocka ut nästan vilken kombination av våglängder som helst och studera dessa.

De data som ViSP samlat in till studien ger nya insikter om hur vågor färdas i den lägre solatmosfären.

Det är viktigt att vi bättre förstår soldata och förstå när risken för farliga utkast från solen kan ske.

Bild vikipedia. Bilden visar Daniel K. Inouye Solar Telescope (DKIST)världens kraftfullaste solteleskop som finns på HAwai ön Maui.

söndag 2 april 2023

Dammolnen bestående av silikater viner genom atmosfären på VHS 1256 b

 


Forskare har med hjälp av NASA: s James Webb Space Telescope  identifierat silikatmoln i exoplanet VHS 1256 b atmosfär. Planeten är katalogiserad som VHS 1256 b och är en brun dvärg (misslyckad stjärnbildning) och finns  cirka 40 ljusår bort och kretsar runt två stjärnor under en 10000-årsbana. 

Atmosfären runt exoplanet VHS 1256 b är i ständig rörelse under dess 22-timmars dag vilket innebär att varmare material dras uppåt och trycker ner kallare material på planeten. De resulterande ljusstyrkeförändringarna är så dramatiska att det är den mest variabla planetatmosfärrörelse som känns till.

Teamet som upptäckte fenomenet leddes av Brittany Miles vid University of Arizona, som även upptäckte vatten, metan och kolmonoxid i Webbs data och i planetens atmosfär. Detta är det största antalet skilda molekyler som någonsin identifierats på en gång i en planets atmosfär utanför vårt solsystem.

"VHS 1256 b är ungefär fyra gånger längre bort från sina stjärnor (i dubbelstjärnsystemet) än Pluto är från vår sol vilket gör den till ett bra mål för Webb," sa Miles. "Det betyder att planetens ljus inte blandas med ljus från dess stjärnor." Högre upp i atmosfären, där silikatmoln finns når temperaturen 830 grader Celsius.

I dessa moln upptäckte Webb hade det  finns både större och mindre silikatdammkorn enligt spektra. "De finare silikatkornen i atmosfären kan liknas vid små partiklar i rök", enligt medförfattaren Beth Biller vid University of Edinburgh i Skottland. "De större kornen kan vara mer som mycket heta,  små sandpartiklar."

VHS 1256 b har låg gravitation jämfört med mer massiva bruna dvärgar, vilket innebär att dess silikatmoln kan dyka upp och förbli högre upp i atmosfären där Webb kan upptäcka dem. En annan anledning till att dess himmel är så turbulent är planetens ålder. I astronomiska termer är det ganska ungt. Bara 150 miljoner år har gått sedan den bildades – och den kommer att fortsätta att förändras och svalna under miljarder år framåt.

"Inget annat teleskop har identifierat så många funktioner samtidigt för ett enda mål", säger medförfattare Andrew Skemer vid University of California, Santa Cruz. "Vi ser många molekyler i ett enda spektrum från Webb som beskriver planetens dynamiska moln- och vädersystem."

Teamet kom till dessa slutsatser genom att analysera spektra som samlats in av två instrument ombord på Webb, Near-Infrared Spectrograph (NIRSpec) och Mid-Infrared Instrument (MIRI). Eftersom planeten kretsar på så stort avstånd från sina stjärnor kunde forskarna observera den direkt, snarare än att använda transitmetoden eller en koronagraf för att få data.

Det kommer att finnas mycket mer att lära om VHS 1256 b under de kommande månaderna och åren när detta team - och andra - fortsätter att söka igenom Webbs högupplösta infraröda data. "Det finns en enorm avkastning på en mycket blygsam mängd teleskoptid", tillade Biller. "Med bara några timmars observationer har vi vad som känns som oändlig potential för ytterligare upptäckter."

Vad kan det bli av den här planeten om miljarder år? Eftersom den är så långt från sina stjärnor kommer den att bli kallare med tiden, och dess himmel kan övergå från molnig till klar.

Forskarna observerade VHS 1256 b som en del av Webbs Early Release Science-programmet, som är utformat för att hjälpa till att förändra det astronomiska samfundets förmåga att karakterisera planeter och skivorna där de bildas.

Teamets rapport har titeln  "The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems II: A 1 to 20 Micron Spectrum of the Planetary-Mass Companion VHS 1256-1257 b", och publicerades i The Astrophysical Journal Letters den 22 mars 2023.

Bild en illustration av på exoplaneten VHS 1256 b med stjärnor i bakgrunden från https://webbtelescope.org/

lördag 1 april 2023

Ovanliga radarsignaler från de istäckta månarna runt Jupiter och Saturnus.

 


I en studie vid Southwest Research Institute i San Antonio USA  beskriver Senior Research Scientist Dr. Jason Hofgartner de ovanliga radarsignaturerna från de ishöljda månarna som kretsar kring Jupiter och Saturnus. Deras radarsignaturer skiljer sig avsevärt från icke istäckta världar. Varför frågar sig det vetenskapliga samfundet?

"Sex olika modeller av möjliga lösningar av fenomenet har nu publicerats i ett försök att förklara radarsignaturerna från  istäckta månar. Hur dessa månars radarsignaturer ser ut är  drastiskt annorlunda än från steniga världar som Mars, vår måne och jorden liksom från asteroider och kometer." säger Hofgartner, huvudansvarig till studien som publicerades i Mars 2023 i Nature Astronomy.

Dessa  istäckta månar är  extremt ljusstarka även i spektra där de borde vara mörkare.

– När vi tittar upp på jordens måne ser den ut som en cirkulär skiva, trots att vi vet att den har en sfärisk form. Planeter och andra månar ser på samma sätt ut som skivor genom teleskop, säger Hofgartner. "När du gör radarobservationer är skivans mitt mycket ljus och kanterna betydligt mörkare. Men förändringen från centrum till kant är  annorlunda för de istäckta månarna än för steniga världar."

I samarbete med Dr. Kevin Hand från NASA: s Jet Propulsion Laboratory hävdar Hofgartner att de extraordinära radaregenskaperna hos dessa månar såsom deras reflexerande och polarisering (orienteringen av ljusvågor när de sprider sig genom rymden) med stor sannolikhet kan förklaras av den sammanhängande backscatter oppositionseffekten (CBOE)

"När du är i opposition innebärande att solen är placerad direkt bakom dig på linjen mellan dig och ett objekt verkan ytan mycket ljusare än den annars skulle göra", enligt Hofgartner. – Det här kallas för oppositionseffekten. När det gäller radar står en sändare för solen och en mottagare framför dina ögon.

En isig yta, förklarade Hofgartner i studien har en ännu starkare oppositionseffekt än vad som kan anses normalt. För varje spridningsväg av ljus som studsar genom isen finns det vid opposition en väg i exakt motsatt riktning. Eftersom de två banorna har exakt samma längd kombineras de sammanhängande, vilket resulterar i ytterligare ljusförstärkning. Isen förändrar ljusbanorna genom reflexer.

På 1990-talet publicerades studier som beskrev att CBOE var förklaringen till de avvikande radarsignaturerna hos isiga satelliter. Men även andra förklaringar kan förklara dessa. Hofgartner och Hand förbättrade polarisationsbeskrivningen för CBOE-modellen och visade även att deras modifierade CBOE-modell är den enda publicerade modellen som kan förklara alla isiga satellitradaregenskaper. Egenskaper från radarsignalerna från dessa istäckta månar.

" Jag tror att det säger oss att ytorna på dessa ismånar och dess del under isen ner till flertalet meter är mycket röriga," sa Hofgartner. – De är inte särskilt enhetliga. Isiga stenar dominerar landskapet och ser kanske lite ut som den kaotiska röran efter ett jordskred. Det skulle förklara varför ljuset studsar åt så många olika håll och ger oss dessa ovanliga polarisationssignaturer." Här bör även finnas hav vilket inte nämns .

Radarobservationerna som Hofgartner och Hand använde var från Arecibo-observatoriet, som var ett av endast två teleskop som gjorde radarobservationer av isiga månar tills det skadades allvarligt av en kollaps av dess stödstruktur, antenn- och kupolmontering och därefter avvecklades. Forskarna hoppas kunna göra uppföljningsobservationer när det är möjligt och planerar att studera ytterligare arkivdata som kan kasta ännu mer ljus över isiga månar och CBOE, samt göra radarstudier av is vid polerna på Merkurius, månen och Mars.

Bild Merkurius från vikipedia. Tagen av Mariner 10 då denna kretsade över planeten under 1974.

fredag 31 mars 2023

Vulkanutbrott på Venus.

 


Geologiska bevis på vulkanisk aktivitet har för första gången observerats på Venus yta. Forskare gjorde upptäckten efter att ha analyserat arkiv med radarbilder av Venus tagna för mer än 30 år sedan, på 1990-talet, tagna vid NASA: s Magellan-uppdrag.

Magellans uppdrag var att gå i omloppsbana runt Venus och ta bilder mellan 1990 och 1994. Efter att ha tillbringat drygt fyra år i omloppsbana runt Venus lät man sedan farkosten brinna upp i Venus atmosfär. 

Bilderna avslöjade vulkanisk aktivitet som ändrade form och storlek på mindre än ett år (först nu har dessa bilder upptäckts, analys av bildmassa tar tid och sker inte alltid omedelbart efter att ett uppdrag avslutats, forskare som tar på sig uppdraget och kapital måste först finnas) .

Forskare studerar aktiva vulkaner på jorden för att förstå hur en planets inre kan forma dess yta, driva dess utveckling och påverka en planet.

Ett av NASA:s nya uppdrag till Venus kommer att göra just detta på Venus. Under ledning av byråns Jet Propulsion Laboratory i södra Kalifornien kommer VERITAS - förkortning för Venus Emissivity, Radio science, InSAR, Topography och Spectroscopy - att lanseras inom ett decennium. 

Farkosten ska studera Venus från yta till kärna för att förstå hur en stenig planet ungefär lika stor som jorden utvecklades till en värld täckt av vulkaniska slätter och deformerad terräng under en kraftig, het, giftig atmosfär.

"NASA: s godkännande av VERITAS-uppdraget inspirerade mig att leta efter den senaste vulkaniska aktiviteten i Magellan-data", beskriver Robert Herrick det i studien.  Herrick  är forskningsprofessor vid University of Alaska Fairbanks och medlem i VERITAS-vetenskapsteam och ledde sökningen i datan. Han sa även "Jag förväntade mig inte riktigt att bli framgångsrik, men efter cirka 200 timmars manuell jämförelse av bilderna från olika Magellan-banor såg jag två bilder av samma region tagna med åtta månaders mellanrum som uppvisade tydliga geologiska förändringar orsakade av ett vulkanutbrott."

De geologiska förändringar Herrick hittade inträffade i Atla Regio en stor höglandsregion nära Venus ekvator där två av planetens största vulkaner, Ozza Mons och Maat Mons finns. Regionen har länge ansetts varit vulkaniskt aktiv men det fanns inga direkta bevis på nutida aktivitet. Medan Herrick granskade Magellans radarbilder identifierade Herrick en vulkanisk händelse associerad med vulkanen Maat Mons där miljön förändrades avsevärt mellan februari och oktober 1991.

I februaribilden verkade skeendet nästan cirkulärt och täckte ett område på mindre än 1 kvadratkilometer. Den hade branta inre sidor och visade tecken på dränerad lava nerför sina yttre sluttningar vilket antydde aktivitet. På radarbilder som togs åtta månader senare hade samma skeendel fördubblats i storlek (2,2 kvadratkilometer i storlek) och blivit omformad. Kratern såg också ut att vara fylld till kanten med en lavasjö.

Sökandet och dess slutsatser beskrivs i en ny studie publicerad i tidskriften Science. Resultaten presenterades även vid den 54: e mån- och planetvetenskapskonferensen i Woodlands, Texas, den 15 mars.

Bild vikipedia Nedslagskratrar på Venus yta (ej naturlig färgbild utan rekonstruerad från radardata)