Google

Translate blog

Visar inlägg med etikett istäckta. Visa alla inlägg
Visar inlägg med etikett istäckta. Visa alla inlägg

lördag 1 april 2023

Ovanliga radarsignaler från de istäckta månarna runt Jupiter och Saturnus.

 


I en studie vid Southwest Research Institute i San Antonio USA  beskriver Senior Research Scientist Dr. Jason Hofgartner de ovanliga radarsignaturerna från de ishöljda månarna som kretsar kring Jupiter och Saturnus. Deras radarsignaturer skiljer sig avsevärt från icke istäckta världar. Varför frågar sig det vetenskapliga samfundet?

"Sex olika modeller av möjliga lösningar av fenomenet har nu publicerats i ett försök att förklara radarsignaturerna från  istäckta månar. Hur dessa månars radarsignaturer ser ut är  drastiskt annorlunda än från steniga världar som Mars, vår måne och jorden liksom från asteroider och kometer." säger Hofgartner, huvudansvarig till studien som publicerades i Mars 2023 i Nature Astronomy.

Dessa  istäckta månar är  extremt ljusstarka även i spektra där de borde vara mörkare.

– När vi tittar upp på jordens måne ser den ut som en cirkulär skiva, trots att vi vet att den har en sfärisk form. Planeter och andra månar ser på samma sätt ut som skivor genom teleskop, säger Hofgartner. "När du gör radarobservationer är skivans mitt mycket ljus och kanterna betydligt mörkare. Men förändringen från centrum till kant är  annorlunda för de istäckta månarna än för steniga världar."

I samarbete med Dr. Kevin Hand från NASA: s Jet Propulsion Laboratory hävdar Hofgartner att de extraordinära radaregenskaperna hos dessa månar såsom deras reflexerande och polarisering (orienteringen av ljusvågor när de sprider sig genom rymden) med stor sannolikhet kan förklaras av den sammanhängande backscatter oppositionseffekten (CBOE)

"När du är i opposition innebärande att solen är placerad direkt bakom dig på linjen mellan dig och ett objekt verkan ytan mycket ljusare än den annars skulle göra", enligt Hofgartner. – Det här kallas för oppositionseffekten. När det gäller radar står en sändare för solen och en mottagare framför dina ögon.

En isig yta, förklarade Hofgartner i studien har en ännu starkare oppositionseffekt än vad som kan anses normalt. För varje spridningsväg av ljus som studsar genom isen finns det vid opposition en väg i exakt motsatt riktning. Eftersom de två banorna har exakt samma längd kombineras de sammanhängande, vilket resulterar i ytterligare ljusförstärkning. Isen förändrar ljusbanorna genom reflexer.

På 1990-talet publicerades studier som beskrev att CBOE var förklaringen till de avvikande radarsignaturerna hos isiga satelliter. Men även andra förklaringar kan förklara dessa. Hofgartner och Hand förbättrade polarisationsbeskrivningen för CBOE-modellen och visade även att deras modifierade CBOE-modell är den enda publicerade modellen som kan förklara alla isiga satellitradaregenskaper. Egenskaper från radarsignalerna från dessa istäckta månar.

" Jag tror att det säger oss att ytorna på dessa ismånar och dess del under isen ner till flertalet meter är mycket röriga," sa Hofgartner. – De är inte särskilt enhetliga. Isiga stenar dominerar landskapet och ser kanske lite ut som den kaotiska röran efter ett jordskred. Det skulle förklara varför ljuset studsar åt så många olika håll och ger oss dessa ovanliga polarisationssignaturer." Här bör även finnas hav vilket inte nämns .

Radarobservationerna som Hofgartner och Hand använde var från Arecibo-observatoriet, som var ett av endast två teleskop som gjorde radarobservationer av isiga månar tills det skadades allvarligt av en kollaps av dess stödstruktur, antenn- och kupolmontering och därefter avvecklades. Forskarna hoppas kunna göra uppföljningsobservationer när det är möjligt och planerar att studera ytterligare arkivdata som kan kasta ännu mer ljus över isiga månar och CBOE, samt göra radarstudier av is vid polerna på Merkurius, månen och Mars.

Bild Merkurius från vikipedia. Tagen av Mariner 10 då denna kretsade över planeten under 1974.

måndag 12 september 2022

Diamantregn kan vara vanligt på istäckta exoplaneterI

 


I en ny studie visas att "diamantregn", en exotisk typ av nederbörd kan vara vanligt  på   istäckta planeter.

I ett tidigare experiment skapade forskarna de extrema temperaturer och tryck som finns djupt inne i isjättarna Neptunus och Uranus och observerade för första gången hur diamantregn då kunde bildas.

Genom att undersöka denna process i ett material som  liknar Neptunus och Uranus kemiska sammansättning upptäckte forskare från Institutionen för energi SLAC National Accelerator Laboratory och deras kollegor att närvaron av syre då gör diamantbildning  sannolik vilket får dem att bildas och växa vid i  bredare spektrum av förhållanden och på fler planeter.

Studien kan leda till kunskap om ett nytt sätt att tillverka nanodiamonder, som har ett mycket brett spektrum av applikationer inom läkemedelsleverans i kroppen, medicinska sensorer, icke-invasiv kirurgi, och kvantelektronik.

"Det tidiga experimenten var de första som vi direkt såg diamantbildning utifrån några blandningar", säger Siegfried Glenzer, chef för High Energy Density Division på SLAC. – Sedan dess har det varit ganska många experiment med olika rena material. Men inuti planeter är allt mycket mer komplicerat; det finns mycket fler kemikalier i blandningen där. Det vi ville ta reda på här var vilken typ av effekt dessa ytterligare kemikalier har.

Teamet under ledning av Helmholtz-Zentrum Dresden-Rossendorf (HZDR) och Universitetet i Rostock i Tyskland, samt Frankrikes École Polytechnique i samarbete med SLAC, publicerade nyligen sina resultat i Science Advances.

I  tidigare experimentet studerade forskarna ett plastmaterial tillverkat av en blandning av väte och kol vilket är några nyckelkomponenter i den kemiska sammansättningen av Neptunus och Uranus. Men förutom kol och väte innehåller många isjättar även andra element exempelvis stora mängder syre.

I det nya experimentet använde forskarna PET-plast - som ofta används i livsmedelsförpackningar, plastflaskor och behållare - för att reproducera sammansättningen av dessa planeter mer exakt. Något överraskande material anser jag.

"PET har en bra balans mellan kol, väte och syre för att simulera aktiviteten i isplaneter", säger Dominik Kraus, fysiker vid HZDR och professor vid University of Rostock.

Forskarna använde en kraftfull optisk laser kallad Matter in Extreme Conditions (MEC) vid SLAC: s Linac Coherent Light Source (LCLS) för att skapa chockvågor i PET- plasten. Därefter undersökte de vad som då skedde i plasten med röntgenpulser från LCLS. Med hjälp av en metod som kallas röntgendiffraktion såg de hur atomerna i materialet omorganiserades till små diamantregioner.

Samtidigt användes en annan metod som kallas liten vinkelspridning som inte hade använts i den första undersökningen för att mäta hur snabbt och mycket dessa diamantregioner växte. Med hjälp av denna  metod kunde de då se att diamantregionerna växte upp till några nanometer i bredd. De fann att nanodiamanter med närvaro av syre i materialet, kunde växa vid lägre tryck och temperatur än vad som tidigare observerats.

"Effekten av syret blev att påskynda splittringen av kol och väte och därmed öka bildandet av nanodiamanter", sa Kraus. "Det innebar att kolatomerna lättare kunde kombineras och bilda diamanter."

Forskarna förutspår att diamanter på Neptunus och Uranus skulle bli mycket större än de nanodiamanter som producerades i dessa experiment - kanske miljontals karat i vikt (vilket ger 1000 tals kilo tunga diamanter, 1 karat är o,2 gram). Under tusentals år kan diamanterna långsamt sjunka genom planeternas islager och samlas i ett tjockt lager här och där runt den fasta planetkärnan.

Teamet fann även bevis för att det i kombination med diamanterna också kan bildas superjoniskt vatten. Denna nyligen upptäckta vattenfas som ofta beskrivs som "varm, svart is", existerar vid extremt höga temperaturer och tryckförhållanden. Under dessa extrema förhållanden bryts vattenmolekyler isär och syreatomer bildar ett kristallgitter där vätekärnor flyter fritt runt. Eftersom dessa fritt flytande kärnor är elektriskt laddade kan superjoniskt vatten leda elektrisk ström och det kan förklara de mystiska magnetfälten på Uranus och Neptunus.

Forskare tror att isjättar är den vanligaste formen av planeter utanför vårt solsystem.

"Vi vet att jordens kärna huvudsakligen är gjord av järn, men många experiment undersöker fortfarande hur närvaron av lättare element kan förändra förhållandena för smältning och fasövergångar", säger SLAC-forskaren och samarbetspartnern Silvia Pandolfi. – Vårt experiment visar hur dessa element kan förändra de förhållanden under vilka diamanter bildas på isjättar.  Om vi vill modellera planeter exakt måste vi komma så nära den faktiska sammansättningen av planets inre som möjligt.

Forskningen indikerar också en potentiell väg framåt för att producera nanodiamanter genom laserdriven chockkomprimering av billig PET-plast. Även om nanodiamanter redan ingår i slipmedel och polermedel, kan dessa små pärlor i framtiden potentiellt användas till kvantsensorer, medicinska kontrastmedel och reaktionsacceleratorer för förnybar energi.

"Det sätt som nanodiamanter för närvarande tillverkas är genom att ta en massa av kol eller diamant och spränga det med sprängämnen", säger SLAC-forskaren och samarbetspartnern Benjamin Ofori-Okai. – Det här skapar nanodiamanter i olika storlekar och former och är en process som är svår att kontrollera.

 Det vi ser i det här experimentet är en annan reaktivitet som sker under hög temperatur och högt  tryck. I vissa fall verkar diamanterna bildas snabbare än i andra fall beroende av närvaron av slaget av  kemikalier i isjättarna. Laserproduktion skulle kunna erbjuda en renare och mer lättkontrollerad metod att producera nanodiamanter. Om vi kan utforma sätt att ändra vissa saker i processen kan vi förändra hur snabbt de bildas och hur stora de blir.

Nu planerar forskarna liknande experiment med flytande prover som innehåller etanol, vatten och ammoniak – det som Uranus och Neptunus  mest består av – vilket kommer att föra ännu närmare för att förstå exakt hur diamantregn bildas på planeter.

Forskningen stöddes av DOE: s Office of Science och National Nuclear Security Administration. LCLS är en DOE Office of Science användaranläggning.

Bild https://se.depositphotos.com/  på hur det kanske ser ut där regn av diamanter sker.