Google

Translate blog

måndag 10 juli 2023

NU är det bevisat att nanohertz-gravitationsvågor finns därute

 


En grupp kinesiska forskare har nyligen hittat viktiga bevis på förekomsten av nanohertz gravitationsvågor vilket markerar en ny era inom nanohertz gravitationsvågforskning. Fyndet baseras på observationer av pulsartiming som utförts med Five-hundred-meter Aperture Spherical radioTelescope (FAST). 

Acceleration av massiva föremål stör den omgivande rumtiden och producerar "krusningar i denna", dvs gravitationsvågor. Även om sådana vågor är extremt svaga erbjuder de en direkt metod för att undersöka massor som inte avger ljus. Av denna anledning har astronomer länge velat använda gravitationsvågor för att hjälpa till att förstå bildandet av universums strukturer och undersöka dess tillväxt, utveckling och sammanslagningen av massiva svarta hål.

Forskning av detta slag hjälper fysiker att få insikt om rumtidens grundläggande fysiska lagar. Teamet använde oberoende utvecklad dataanalysprogramvara och databehandlingsalgoritmer för att uppnå sitt genombrott i samarbete med flera andra internationella forskargrupper. Oberoende pipelines för databearbetning gav kompatibla resultat. Att använda nanohertz gravitationsvågor till observation av kosmos är därför enormt viktigt för att studera nyckelproblemen i samtida astrofysik som ex supermassiva svarta hål, galaxfusionernas historia och bildandet av storskaliga strukturer i universum.

Detektion av nanohertz gravitationsvågor är dock mycket utmanande på grund av dess extremt låga frekvens, där motsvarande period kan vara så lång som flera år och med våglängder upp till flera ljusår. Ännu är långsiktig tidsobservation av millisekundpulsarer med extrem rotationsstabilitet den enda kända metoden för att effektivt detektera nanohertz-gravitationsvågor.

Ovan forskning genomfördes i det kinesiska Pulsar Timing Array (CPTA) -samarbetet, som består av forskare från National Astronomical Observatories of the Chinese Academy of Sciences (NAOC) med flera institut. Resultatet publicerades online 28 juni i tidskriften Research in Astronomy and Astrophysics (RAA). För mer om hur forskningen gick till och filmer i ämnet följ denna länk från https://phys.org/

Bild https://phys.org/ FAST (Five-hundred-meter Aperture Spherical radio Telescope) med dettas stora känslighet används det för att hitta bevis för förekomsten av nanohertz-gravitationsvågor. Upphovsman: NAOC för CAS

söndag 9 juli 2023

Det finns mindre av neutrinor i Vintergatan än det finns i andra galaxer

 


Citerat från vikipedia "Neutrinon är en elementarpartikel som tillhör familjen leptoner och saknar elektrisk laddning. Den har halvtaligt spinn ({\displaystyle {\begin{matrix}{\frac {1}{2}}\hbar \end{matrix}}}) och är därför även en fermion. Neutrinon är universums mest (i antal) förekommande partikel. Neutrinon påvisades experimentellt 1956, vilket senare gav de amerikanska fysikerna Martin L. Perl och Frederick Reines nobelpriset i fysik" slut citat.

Högenergirika neutrinor med energi som är miljoner till miljarder gånger större än de som produceras genom de fusionsreaktioner som sker stjärnor, upptäcktes av IceCube Neutrino Observatory, en gigatondetektor som finns vid Amundsen-Scott South Pole Station. Detta observatorium byggdes av och drivs av National Science Foundation (NSF) med finansiering och stöd från de fjorton länder som är värdar och institutionella medlemmar i IceCube Collaboration. Denna unika detektor omfattar en kubikkilometer djup av antarktisk is med instrument bestående av mer än 5 000 ljussensorer. IceCube används som sökinstrument  efter tecken på högenergirika neutrinor från vår galax och bortom denna.

Som så ofta är fallet möjliggörs betydande genombrott inom vetenskapen av nya tekniska framsteg, beskriver Denise Caldwell, chef för NSF: s fysikavdelning. Funktionerna från den mycket känsliga IceCube-detektorn tillsammans med nya dataanalysverktyg har gett en helt ny bild av Vintergatan. Då dessa verktyg fortsätter att förfinas kan vi se fram emot att se den här bilden dyka upp med ständigt ökande upplösning vilket potentiellt avslöjar dolda funktioner i vår galax som aldrig tidigare setts av mänskligheten. Interaktioner mellan kosmisk strålning - högenergi protoner, tyngre kärnor, gas och damm ger både gammastrålar och neutrinor. Med tanke på observationen av gammastrålar i det galaktiska planet förväntades Vintergatan vara en källa till dessa högenergirika neutrinor.

Resultatet har nu mätts upp vilket bekräftar vad vi vet om våra galaxer och kosmiska strålkällor, beskriver Steve Sclafani, doktorand i fysik vid Drexel University, IceCube-medlem och de som ledde analysen. Sökandet fokuserade på södra stjärnhimlen då huvuddelen av neutrinoutsläpp från det galaktiska planet förväntades därifrån nära centrum av Vintergatan. Men hittills har bakgrunden av muoner och neutrinor som produceras genom kosmiska strålinteraktioner med jordens atmosfär inneburit betydande utmaningar. 

Därför utvecklade IceCube-medarbetare vid Drexel University analysmetoder som söker efter stora neutrinointeraktioner i isen på sydpolen då det resulterar i sfäriska ljusduschar. Den deponerade energin från dessa händelser i sydpolens is minskar föroreningen från atmosfäriska muoner och neutrinor. I slutändan gav därför händelsernas högre renhet och en bättre känslighet för astrofysiska neutrinor från södra himlen.

Det slutliga genombrottet kom dock från implementeringen av maskininlärningsmetoder utvecklade av IceCube-medarbetare vid TU Dortmund University, som förbättrar identifieringen av neutrinkaskader för att se varifrån de kommer och dess energirekonstruktion. Observationen av neutrinor från Vintergatan är ett kännetecken för det framväxande kritiska värdet som maskininlärning ger i dataanalys och händelserekonstruktion i IceCube.

De förbättrade metoderna gjorde det möjligt för oss att finna fler neutrinohändelser över en viss storleksordning med bättre vinkelrekonstruktion vilket resulterade i en analys  tre gånger känsligare än tidigare sökningar möjliggjort, skriver IceCube-medlem Mirco Hünnefeld, doktorand i TU Dortmund-fysik en av de som ledde analysen.

Datamängden som användes i studien inkluderade 60000 neutrinerspår som spänner över 10 års IceCube-data, 30 gånger mer händelser än som användes i en tidigare analys av det galaktiska planet med kaskadhändelser. Dessa neutriner jämfördes med tidigare publicerade förutsägelsekartor av platser på himlen där galaxen förväntades lysa av neutriner.

Kartorna inkluderade en extrapolering från FermiLarge Area Telescopav Vintergatan och två alternativa kartor identifierade som KRA-gamma av gruppen teoretiker som producerade dem. Att observera vår egen galax för första gången i partiklar istället för ljus är ett stort steg, beskriver Naoko Kurahashi Neilson, professor i fysik vid Drexel University. När neutrinoastronomin utvecklas kommer vi att ha en ny möjlighet att observera universum.

Observationen ovan av det galaktiska planet med IceCube gav djupgående konsekvenser i kunskap. Halzen och UW-Madison-kollegorna Ke Fang och Jay Gallaghers efterföljande analys av IceCube-resultatet indikerar att Vintergatan har tio till hundra gånger mindre neutrinoinnehåll än genomsnittet i andra galaxer. Detta kan vara en viktig ledtråd i sökningar efter lösningen av mysteriet om exakt var och hur högenergirik kosmisk strålning produceras i universum.

En implikation är att vår galax inte har varit värd för den typ av källa som producerade huvuddelen av högenergirika neutrinor under de senaste miljoner åren, beskriver Fang (IceCube samarbetspartner och biträdande professor vid UW-Madison) vilket är ungefär tiden sedan den senaste  större aktiviteten hos det svarta hålet i Vintergatan. Planerade och framtida uppföljningsanalyser av IceCube kommer att öka vår förståelse av partikelacceleratorerna i vår egen galax.

Med detta kan man möjligen anta att svarta hål kan vara källan till neutrinoutkast.

Bild vikpedia  Den första observationen av en neutrino i en bubbelkammare (1970). En neutrino kommer från höger, träffar en proton och tre laddade partiklar lämnar spår. En myon uppstår och lämnar det långa spåret till det övre vänstra hörnet; protonen lämnar det korta spåret snett uppåt; det tredje spåret är en pimeson som skapats i kollisionen.

lördag 8 juli 2023

Ljudet av gravitationsvågorna då två svarta hål sammanslås.

 


Efter 15 år av datainsamling i ett stort experiment har forskare för första gången "hört" det eviga ljudet av gravitationsvågor som krusar genom vårt universum och det är högre än man väntat. Upptäckten gjordes av forskare med hjälp av North American Nanohertz Observatory for Gravitational Waves (NANOGrav) då man observerade stjärnor som kallas pulsarer vilka fungerar som himmelska metronomer. 

De nyligen upptäckta gravitationsvågorna - krusningar i rumtidens tyg - är överlägset de mest kraftfulla som någonsin uppmätts: De innehåller ungefär en miljon gånger mer energi än engångsutbrott av gravitationsvågor från svarta håls och neutronstjärnfusioner som upptäckts av  LIGO och Virgo

De flesta av de gigantiska gravitationsvågorna produceras troligen av par av supermassiva svarta hål som i spiraler dras samman för katastrofala kollisioner vilket sker överallt i kosmos, rapporterar NANOGrav-forskarna i en serie nya artiklar som publicerats i The Astrophysical Journal Letters.

Det är som en kör, med alla dessa supermassiva svarta hålpars rörelser  som hörs på olika frekvenser", säger NANOGrav-forskaren Chiara Mingarelli, som arbetade med de nya resultaten tillsammans med forskare vid Flatiron Institute's Center for Computational Astrophysics (CCA) i New York City.

Det är det första beviset någonsin av gravitationsvågbakgrundens ljud. Vi har öppnat ett nytt observationsfönster i universum. Gravitationsvågbakgrundens existens och sammansättning  var länge bara en teori och aldrig hörd. Resultatet är en skattkista till nya insikter i sedan länge långvariga frågor, från ödet för supermassiva svarta hålpar till frekvensen av ljud vid galaxsammanslagningar, beskriver Mingarelli.

För närvarande kan NANOGrav bara mäta den totala gravitationsvågbakgrunden och inte strålning från  enskilda "objekt" (menat dsom från ett enstaka svarta hål-pars sammanförande). Men även detta brus  medförde överraskningar.

Gravitationsvågbakgrundens ljud är ungefär dubbelt så högt som vad jag förväntade mig, skriver Mingarelli biträdande professor vid Yale University. Det är verkligen i den övre änden av vad våra modeller kan detektera från supermassiva svarta hål. Den öronbedövande volymen kan bero på experimentella begränsningar eller tyngre och större supermassiva svarta hål. Men det finns också möjligheten att något annat genererar kraftfulla gravitationsvågor, skriver Mingarelli, till exempel mekanismer som förutsägs av strängteorin eller alternativa förklaringar till universums födelse. Vad som upptäckts  härnäst vet ingen, beskriver hon. Det här är bara början på något nytt.

För mer utförlig och faktatyngd information om detta ämne och möjlighet att lyssna på det insamlade ljudet följ följande länk från https://phys.org 

Bild från  https://phys.org/  En konstnärs tolkning då ett par supermassiva svarta hål (överst till vänster) ger upphov till gravitationsvågor som krusningar genom rumtidens tyg. Dessa gravitationsvågor komprimerar och ger radiovågor som emitteras av pulsarer (vita). Genom att noggrant mäta radiovågorna gjorde ett team av forskare nyligen den första upptäckten av universums gravitationsvågbakgrund. Upphovsman: Aurore Simonnet för NANOGrav Collaboration. 

fredag 7 juli 2023

En infångad planet kan dölja sig i Oorts kometmoln. "OBS det handlar inte om planet 9".

 


Oorts kometmoln finns bortom Neptunus bana och sveper runt hela solsystemet. Det består av rester från solsystemets bildande. Oorts kometmoln antas vara ungefär mellan några tusen och minst 50 000 astronomiska enheter (AE en AE är avståndet jorden - solen) från solen (minst 0,8 ljusår). Här finns otaliga kometer, asteroider och sten av skilda storlekar.

1906 inledde astronomen och affärsmannen Percival Lowell en sökning efter "Planet X (planet 9) Idag anses Planet 9-hypotesen till stor del vara överspelad. 

Men det har inte hindrat astronomer från att leta efter planeter långt bort i solsystemets utkanter. Och enligt en ny studie kan de finnas där ute - bara mycket längre bort än Lowell förutspådde.

Ett internationellt forskarlag simulerade nyligen den instabila himmelska mekaniken i det tidiga solsystemet. De fann då att det finns en möjlighet att en eller flera planetstora kroppar kommit till ro i Oorts-moln, molnet som är en stor samling av isiga föremål som sträcker sig mellan några hundra miljarder till flera biljoner mil från solen, enligt NASA.

I den nya artikeln som beskriver arbetet som publicerats på preprint-servern arXiv beskrivs  hur solsystemet för ungefär 4,5 miljarder år sedan var   en orolig plats. Gravitation skickade skräp från det snabbt kylande protoplanetära dammolnet runt solen ut och bort och  samlades i ytterkanten av det vi i dag kallar Oorts kometmoln. Sten och kometer av skilda slag hamnade där och kanske någon planet som åkte iväg lite långt ut.  

Forskare har observerat ensamma planeter som vandrar runt i avlägsna solsystem. Enligt forskarna finns det ungefär 0,5 % chans att en av dessa egensinniga planeter kan ha bildats i vårt eget system och hamnat i Oort-molnet då det drev bort från solen.

Men laget beräknade att det är något mer troligt att en sådan eventuell planet som antas vara lik Neptunus (vanligaste slaget av upptäckt planetslag i universum)  kommit från ett annat solsystem och fångats in av - solens gravitation och hamnat i Oorts-moln. Chanserna att så skett är cirka 7 %, och om så är fallet kan ett objekt som liknar Lowells länge eftersökta planet 9 trots allt finnas där ute även om det skulle vara för långt bort för att påverka Neptunus bana som är den yttersta planeten enligt dagens sätt att beskriva planeter. Det var genom något man ansåg påverkade Neptunus bana man började fundera på en planet 9. Men planet 9 har inget med denna teori att göra.

Forskarna tror dock att det troligaste är att Oorts-moln endast  består av en samling mycket små och isiga föremål och inte en vilsen planet. Med tanke på storleken och avståndet till Oorts-moln kanske vi aldrig säkert kan få veta allt  som finns där ute. En hypotetisk jätteplanet som kretsar runt solen bortom Neptunus är inte helt omöjligt.

Inlägget ovan har som utgångspunkt en artikel i https://www.livescience.com/ där Joanna Thompson vetenskapsjournalist baserad i New York beskriver studien.

Bild vikipedia av en konstnärs version av Kuiperbältet och Oorts kometmoln.

torsdag 6 juli 2023

För första gången har Methenium upptäckts i universum.

 


Ett team av internationella forskare som använt NASA: s James Webb Space Telescope har för första gången upptäckt kolföreningen methenium (CH3+) i rymden. En molekyl som är viktig då den hjälper till att bilda mer komplexa kolbaserade molekyler. Metheniumet upptäcktes i ett ungt solsystems protoplanetära skiva, (protoplanetära skivor finns runt unga stjärnor som bildas och innehåller damm och gas för planetbildning). Stjärnan är känd som d203-506 och finns ungefär 1 350 ljusår bort i Orionnebulosan. 

Kolföreningar utgör grunden för allt liv vi känner till och är särskilt intressanta för forskare som arbetar med att försöka  förstå både hur livet utvecklades på jorden och hur det potentiellt kan utvecklas någon annanstans i universum. Studiet av interstellär organisk (kolinnehållande) kemi som Webbteleskopet kan finna fascinerar många astronomer.

CH3+ är enligt teorin särskilt viktigt då det reagerar lätt med ett brett spektrum av andra molekyler. Exempelvis fungerar det som en samlingsplats (kan ses som en nod gör  i datavärlden) där andra molekyler kan stanna en tid innan dessa går i en av många olika riktningar för att reagera med andra molekyler. På grund av den här egenskapen misstänker forskare att CH3+ utgör en hörnsten i interstellär organisk kemi.

Webbs unika kapacitet gör teleskopet perfekt till att söka efter denna molekyl. Webbs förmåga liksom dess känslighet bidrog därmed till teamets framgång. I synnerhet Webbs detektering av en serie viktiga emissionslinjer från CH3+ klargjorde upptäckten.

Upptäckten validerar inte bara den otroliga känsligheten hos Webb utan bekräftar också den centrala betydelsen av CH3+ i interstellär kemi, beskriver Marie-Aline Martin-Drumel vid universitetet i Paris-Saclay i Frankrike, en av medlemmarna i teamet.

Stjärnan d203-506 som bildats i den protoplanetära skivan en liten röd dvärgstjärna bombarderas av ultraviolett ljus från närliggande heta, unga, massiva stjärnor. Forskare tror att de flesta protoplanetära skivor upplever en tid av sådan intensiv UV-strålning, eftersom stjärnor tenderar att bildas i grupper som ofta innehåller massiva, UV-producerande stjärnor.

Vanligtvis förväntas UV-strålning förstöra komplexa organiska molekyler så upptäckten av CH3+ var en överraskning. Teamet förutspår dock att UV-strålning faktiskt kan ge den nödvändiga energikällan till att CH3+ ska bildas. När den väl har bildats främjar den sedan ytterligare kemiska reaktioner till att bygga upp mer komplexa kolmolekyler.

I stort sett noterar teamet att molekylerna de upptäckt i d203-506 skiljer sig ganska mycket från de i typiska protoplanetära skivor. I synnerhet kunde man här inte upptäcka något som visade på vatten.

Kanske vatten kan komma till en planet i ett senare skede?

Detta visar att ultraviolett strålning helt kan förändra kemin i en protoplanetär skiva. Det kan spela en avgörande roll i de tidiga kemiska stadierna i livs ursprung, beskriver Olivier Berné från det franska nationella centret för vetenskaplig forskning i Toulouse, huvudförfattaren till studien.

Bild vikipedia på Methenium

onsdag 5 juli 2023

NY era av exoplanetupptäckter

 


Astronomer som använder W. M. Keck-observatoriet på Maunakea, Hawaii Island har upptäckt en planet med den lägsta densitet  man hittills upptäckt  en planet ha och det har fångat astronomers  intresse. Man kunde inte bara mäta planetens massa utan även dess omloppsbana och fann att den liknar gasplaneternas i vårt eget solsystem.

Planeten, kallad AFLep b är bland de första som upptäckts med hjälp av en teknik som kallas astrometri.

Metoden innebär att en stjärnas subtila rörelser mäts under en följd av år för att astronomer lättare ska upptäcka om någon följeslagare (någon stjärna eller närliggande  planet) gravitationellt drar i stjärnan. I ovan fall upptäcktes AF Lep b.

Arbetet leddes av doktoranden i astronomi Kyle Franson vid University of Texas i Austin (UT Austin) och studien publiceras nyligen i Astrophysical Journal Letters.

När vi bearbetade observationerna från Keck II-teleskopet i realtid och försiktigt dämpade stjärnans ljus  dök planeten omedelbart upp och blev allt tydligare ju längre vi observerade stjärnan, beskriver Franson.

De direkta bilderna som Fransons team fick avslöjade att AF Lep b består av ungefär en tredjedel av Jupiters densitet och kretsar kring stjärnan AF Leporis, en ung solliknande stjärna cirka 87,5 ljusår bort från oss. De tog en serie bilder av planeten med början i december 2021. Två andra lag har därefter tagit bilder av planeten.

Det här är första gången astrometri  använts för att hitta en jätteplanet som kretsar kring en ung stjärna lik vår sol, skriver Brendan Bowler, biträdande professor i astronomi vid UT Austin och seniorförfattare till studien. Det öppnar för att använda detta tillvägagångssätt som ett nytt verktyg för att upptäcka exoplaneter.

För att läsa mer om metoden och teleskopen som användes följ medföljande länkar. Bland annat denna från Keckobservatoriet. 

Bild från vikipedia Illustration som beskriver användningen av parallax för att bestämma avståndet till en stjärna. Man drar då nytta av jordens rörelser runt solen vilket får stjärnan att se ut som om den rör sig jämfört med mer avlägsna stjärnor. Skillnaden är dock så liten att avancerade teleskop krävs till dessa mätningar.

tisdag 4 juli 2023

Ett eko från Vintergatans svarta hål kom efter 200 år.

 


Ett internationellt forskarlag har upptäckt att det supermassiva svarta hålet i Vintergatans centrum Sagittarius A* (Sgr A*)1 vaknade  ur en lång period av dvala för cirka 200 år sedan. Ekot av denna händelse uppfattades på Jorden i år.

 Ett team under ledning av Frédéric Marin2 ,  CNRS-forskare vid Astronomical Strasbourg Observatory (CNRS / University of Strasbourg) var de som upptäckte ekot från detta uppvaknande av det det svarta hålet. Ett objekt som är fyra miljoner gånger mer massivt än vår sol. Studien om upptäckten publiceras i Nature den 21 juni 2023. 

Vi vet nu att någon gång under ett år i början av 1800-talet slukade det svarta hålet kosmiska objekt som kom för nära det innan det återigen gick in i ett tillstånd av lugn. Ingen effekt kändes på jorden eftersom avståndet mellan Sgr A * och Jorden är för stort (cirka två miljarder gånger avståndet från jorden till solen).

Det upptäckta korta röntgenekot, som sändes ut för cirka 200 år sedan  avslöjar dock att den ursprungliga intensiteten var minst en miljon gånger större än den som för närvarande avges av Sgr A*. För att få en uppfattning om ökningen i intensiteten i röntgenstrålningen då det svarta hålet aktiverades ur sitt vilande tillstånd kan det jämföras med om en enda glöd i en skog plötsligt blev lika ljus som solen. Fyndet förklarar varför molekylmoln nära Sgr A* lyser starkare än vanligt just nu: det beror på att de reflekterar röntgenstrålarna som kom från Sgr A* för 200 år sedan (vi ser området som det såg ut för 200 år sedan då avståndet till detta svarta hål är 200 ljusår).

Till forskningen använde forskarna NASA: sIXPE-satellit 3 (Imaging X-ray Polarimetry Explorer) som för första gången kunde detektera polarisationen hos detta röntgenljus med stor precision och även bestämma dess källa, något som tidigare med tidigare instrument visat sig vara omöjligt. 

Ungefär som en kompass spårades det polariserade röntgenljuset direkt till dess källa, Sgr A*, även om ekot nu är borta fortsätter forskarna sitt arbete med Sgr A* för att försöka bestämma de fysiska mekanismer som krävs för att ett svart hål ska kunna växla från ett vilande tillstånd till ett aktivt.

Troligen är det ett större gasmoln det svarta hålet slukade den gången. Alternativt en större planet eller brun dvärg eller allt på en gång.

Bild vikipedia på Vintergatans svarta hål + Sagittarius A*, publicerad av Event Horizon Telescope 12 maj 2022