Google

Translate blog

Visar inlägg med etikett svart hål. Visa alla inlägg
Visar inlägg med etikett svart hål. Visa alla inlägg

måndag 23 september 2024

En galax där ett svart hål stoppar ny stjärnbildning

 


Bild GS-10578 https://www.cam.ac.uk  representerar en unik möjlighet att studera hur de största galaxerna i universum blev – och förblev – vilande. Bild: Francesco D'Eugenio.

Ett internationellt forskarlag under ledning från University of Cambridge använde Webbteleskopet för att observera en galax som är ungefär lika stor som Vintergatan i det tidiga universum Tiden är ungefär två miljarder år efter Big Bang. Galaxen har ett svart hål likt flertalet andra galaxer. Men här har stjärnbildningen nästan helt avstannat, beskriver Francesco D'Eugenio, en av huvudförfattarna till studien som gjordes vid Kavli institute för kosmologi i Cambridge.

Galaxen heter officiellt GS-10578 men har smeknamnet "Pablos galax" efter den forskare som bestämde sig för att observera den i detalj. Dess totala massa är ungefär 200 miljarder gånger större än solens massa och de flesta av dess stjärnor bildades för mellan 12,5 och 11,5 miljarder år sedan.

– I det tidiga universum bildar de flesta galaxer mängder av stjärnor så det är intressant att se en så massiv avstannad stjärnbildning i en galax vid den här tidsperioden, beskriver professor Roberto Maiolino, medförfattare Kavli institute. "Om den hade haft tillräckligt med tid för att nå den här massiva storleken och mängden av stjärnor bör den process som stoppade stjärnbildningen sannolikt skett relativt snabbt."

Med hjälp av Webbteleskopet upptäckte forskarna att galaxen kastar ut stora mängder gas med en hastighet av cirka 1 000 kilometer per sekund vilket är tillräckligt snabbt för att gasen ska undkomma galaxens gravitation. Dessa utkast  kommer från rörelser i det svarta hålet i centrum.

Liksom andra galaxer med växande svarta hål har "Pablos galax" snabba utströmmande vindar av gas. Det är en kallare gas än den heta gas som annars brukar kastas ut från växande svarta hål vilket innebär att den är tätare och inte avger ljus vilket het gas gör. Webb, med sin överlägsna känslighet, kan se de mörka gasmolnen som lämnar galaxen genom att gasen blockerar en del av ljuset från galaxen bakom dem.

Gasmassan som kastas ut från galaxen är stor nog för att stoppa möjligheten till ny stjärnbildning. I grund och botten svälter det svarta hålet ihjäl galaxen (innebärande att det omöjliggörs stjärnbildning). Resultaten redovisas i tidskriften Nature Astronomy.

Referens: Francesco D’Eugenio, Pablo G. Pérez-González et al. ‘A fast-rotator post-starburst galaxy quenched by supermassive black-hole feedback at z=3.’ Nature Astronomy (2024). DOI: 10.1038/s41550-024-02345-

lördag 29 juni 2024

Ett svart hål därute växer likt en ung stjärna.



 Ett internationellt forskarlag under ledning av astronomer vid Chalmers har upptäckt en kraftfull, roterande, magnetisk vind som får det svarta hålet i mitten av en galax att växa. Virvelvinden, som avslöjats i den närliggande galaxen ESO320-G030 (som finns 120 miljoner ljusår från oss) av teleskopet Alma, pekar på att samma grundläggande processer ligger bakom tillväxten av  stora svarta hål och  stjärnor.

De flesta galaxer (troligen alla), har supermassiva svarta hål i sitt centrum. En fråga som länge gäckat astronomer är hur dessa  tunga objekt växer för att kunna väga lika mycket som miljoner eller till och med miljarder stjärnor (ytterligare om detta spännande fält se morgondagens inlägg).

På jakt efter ledtrådar till detta mysterium valde ett team forskare under ledning av Mark Gorski (Northwestern University, USA, och Chalmers) och Susanne Aalto (Chalmers) att studera den relativt närliggande galaxen ESO320-G030 en mycket aktiv galax där stjärnor bildas i tio gånger snabbare takt än stjärnor i Vintergatan.

– Eftersom den här galaxen lyser mycket starkt i infrarött ljus kan teleskop urskilja detaljer i dess centrala del. Vi ville mäta ljus från molekyler som sveps av vindar utgående från galaxens kärna i hopp om att spåra hur vindarna uppkommer och växer från ett supermassivt svart hål. Genom att använda radioteleskopen som ingår i Almagruppen kunde vi studera ljus som tränger genom de tjocka lager av damm och gas som döljer galaxens centrum, beskriver Susanne Aalto, professor i radioastronomi vid Chalmers.

För att kunna se kompakt gas som finns så  nära det svarta hålet som möjligt studerade forskarna ljus av molekyler från blåsyra (HCN även kallat cyanvätesyra eller vätecyanid). Tack vare Almas förmåga att avbilda små detaljer och spåra rörelser i gasen med hjälp av dopplereffekten upptäcktes mönster som visade att här fanns en roterande, magnetiserad vind.

I andra galaxers centrum kan vindar och jetstrålar trycka bort material från det supermassiva svarta hålet. Här tyder den upptäckta vinden på en annan process som istället matar det svarta hålet och får det att växa.

– Vi kan se hur vindarna här bildar en spiralformad struktur som böljar ut från galaxens centrum. När vi mätte rotation, massa och hastighet för materialet som strömmar utåt, blev vi förvånade över att vi kunde utesluta många förklaringar till var vindens kraft har sitt ursprung, till exempel från stjärnbildning. Istället verkar flödet utåt drivas av inflödet av gas och tycks hållas samman av magnetfält, beskriver Susanne Aalto.

Forskarna tror att den roterande magnetiska vinden indirekt hjälper det svarta hålet att växa.

Materia rör sig i cirklar runt det svarta hålet innan det faller in likt vatten ner i ett avlopp. Materian som närmar sig det svarta hålet samlas därmed i en kaotisk, snurrande skiva. Där kan magnetfält utvecklas och bli starka. Tack vare magnetfälten kan materia då lyftas bort från galaxen och det är detta som skapar den spiralformade vinden. Att förlora materia till vinden saktar också ner den snurrande skivformade vinden. Det i sin tur leder till att materia lättare kan falla in i det svarta hålet och ändras från att ”droppa” in till en strid ström som strömmar in.

För Mark Gorski är detta slående likt ett liknande fenomen då virvlarna av gas och damm  leder till bildandet av nya stjärnor och planeter.

– Det är välkänt att stjärnor i sina tidigaste utvecklingsstadier växer med hjälp av roterande vindar. De accelereras också av magnetfält precis som vinden gör i denna galax. Våra observationer visar att supermassiva svarta hål och små stjärnor kan växa genom liknande processer, men i väldigt olika skalor, beskriver Mark Gorski.

Kan denna upptäckt vara en ledtråd till att lösa gåtan om hur supermassiva svarta hål växer? Framöver vill Mark Gorski, Susanne Aalto och deras kollegor studera fler galaxer där spiralformiga utflöden kan finnas i dess centrum.

Forskningen har presenterats i artikeln "A spectacular galactic scale magnetohydrodynamic powered wind in ESO 320-G030" i tidskriften Astronomy and Astrophysics.

Forskarna som var involverade i studien var Mark Gorski, Susanne Aalto, Sabine König, Clare F. Wethers, Chentao Yang, Sebastien Muller, Kyoko Onishi, Mamiko Sato, Niklas Falstad,, J. G. Mangum, S. T. Linden, F. Combes, S. Martín, M. Imanishi, K. Wada, L. Barcos-Muñoz, F. Stanley, S. García-Burillo, P. P. van der Werf, A. S. Evans, C. Henkel, S. Viti, N. Harada, T. Díaz-Santos, J. S. Gallagher och E. González-Alfonso.

Bild https://www.chalmers.se/ Illustration av hur en virvelvind hjälper det supermassiva svarta hålet i galaxen ESO320-G030 att växa under påverkan av ett  magnetfält. I den här illustrationen domineras galaxens kärna av en tät roterande vind av gas som leder utåt från det dolda supermassiva svarta hålet i galaxens mitt. Källa: M. D. Gorski/Aaron M. Geller, Northwestern University, CIERA, the Center for Interdisciplinary Exploration and Research in Astrophysics.

fredag 21 juni 2024

Galax OJ287 med sina två enormt stora svarta hål.

 




OJ 287 är en aktiv galax belägen 3,5 miljarder ljusår bort i stjärnbilden Kräftan.

I dess galaxkärna finns ett binärt system bestående av två mycket massiva svarta hål. Det mindre av hålen har en massa motsvarande omkring 100 miljoner gånger solens massa. Det större har en massa motsvarande 18 miljarder solmassor och var vid upptäckten 2008 det största svarta hål som någonsin upptäckts. Om eller när de två massiva svarta hålen i OJ 287 smälter ihop kommer enorma mängder energi att slungas ut i kosmos.

2021 tillbringade TESS flera veckor med att studera OJ 287. Forskare hade då hittat indirekta bevis på att ett mycket massivt svart hål i OJ 287 som kretsar kring ett gigantiskt svart hål som är 100 gånger så stort. För att verifiera existensen av det mindre svarta hålet övervakade TESS ljuset från det primära svarta hålet och jetstrålen som är associerad från detta. Att direkt observera det mindre svarta hålet som kretsar kring det större är mycket svårt, men dess närvaro avslöjades för forskarna genom en plötslig explosion av och ökad ljusstyrka i centrum av galaxen.

En sådan händelse hade aldrig tidigare observerats i OJ287. Men forskaren Pauli Pihajoki från Åbo universitet i Finland hade förutspått och beskrivit att det kunde och borde ske i sin doktorsavhandling redan 2014. Enligt hans avhandling förväntades ett utbrott äga rum i slutet av 2021 och flera satelliter och teleskop var därför fokuserade på galaxen vid den tidpunkten.

TESS-satelliten upptäckte det förväntade utbrottet den 12 november 2021 klockan 02.00 GMT och observationerna publicerades nyligen i en studie gjord av Shubham Kishore, Alok Gupta (Aryabhatta Research Institute of Observational Sciences, Indien) och Paul Wiita (The College of New Jersey, USA). Händelsen varade i 12 timmar. Denna korta varaktighet visar att det är mycket svårt att hitta en skur av stor förändrad ljusstyrka om inte dess tidpunkt är känd i förväg så teleskop kan riktas mot platsen i rätt tid.

I det här fallet visade sig Åboforskarens teori stämma och TESS var riktad mot OJ 287 i precis rätt tid. Upptäckten bekräftades också av NASA:s Swift-teleskop som även detta riktats mot samma mål och tid. Den snabba ökningen av ljusstyrka inträffade när det mindre svarta hålet "sväljer" en stor del av ackretionsskivan som omger det större svarta hålet och det förvandlas till en utåtriktad gasstråle. Jetstrålen från det mindre svarta hålet är sedan ljusstarkare än den från det större svarta hålet i cirka tolv timmar.

Detta resulterar i  att färgen på OJ287 blir mindre rödaktig och istället mer gul. Efter utbrottet återkom den röda färgen. Den gula färgen indikerar att vi under 12-timmarsperioden såg ljuset från det mindre svarta hålet.

–  På grund av det stora avståndet till OJ 287 som är nära fyra miljarder ljusår, kommer det sannolikt att ta mycket lång tid innan observationsmetoder har utvecklats tillräckligt för vi ska kunna ta en bild av det större svarta hålet, beskriver professor Valtonen.

Bild https://www.utu.fi/en/news Här ses de svarta hålen i omloppsbana runt varandra. Båda har jetstrålar kopplade till sig: den större med rödaktig färg och den mindre med en gulaktig färg. Normalt sett är det bara den rödaktiga jetstrålen som syns, men under 12-timmarsperioden den 12 november 2021 dominerade den mindre jetstrålen och gav en direkt signal från det mindre svarta hålet som då kunde observerades för första gången. Fotograf: NASA/JPL-Caltech/R. Hurt (IPAC) och M. Mugrauer (AIU Jena).

tisdag 16 april 2024

En överraskande gravitationsvåg

 


Forskare vid Institute of Cosmology and Gravitation ICG har upptäckt en anmärkningsvärd gravitationsvåg som kan bli nyckeln till att lösa ett kosmiskt mysterium.

Upptäckten kommer från den senaste uppsättningen resultat som tillkännagavs den5 april av LIGO-Virgo-KAGRA samarbetet. Ett samarbete som består av mer än 1 600 forskare från hela världen, inklusive ovan nämnda ICG och som syftar till att hitta gravitationsvågor att använda i grundforskning.

I maj 2023, strax efter början av den fjärde LIGO-Virgo-KAGRA-observationanalysen upptäcktes i LIGO Livingston-detektorn i Louisiana i USA, en gravitationsvåg från en kollision mellan vad som troligen var en neutronstjärna och ett kompakt (okänt) objekt med en massa på 2,5 till 4,5 gånger vår sols.

Både neutronstjärnor och svarta hål är kompakta objekt efter resterna av massiva stjärnexplosioner (supernovor). Det som gör ovan signal som fått beteckningen GW230529 intressant är massan hos det okända objektet. Det ligger inom en intervall mellan de tyngsta kända neutronstjärnorna och de lättaste svarta hålen.

Framtida upptäckter av liknande händelser, särskilt de som åtföljs av utbrott av elektromagnetisk strålning kan kanske bidra till att lösa gåtan vad det var. Då händelsen endast upptäcktes av en gravitationsvågsdetektor är det svårt att bedöma om den är verklig eller om något annat störde LIGO (något instrument utom eller något i detektorn ex) .

Dr Gareth Cabourn Davies, forsknings programvaruingenjör vid ICG, har utvecklat de verktyg som används för att söka efter händelser som denna i en detektor. – Att bekräfta händelser genom att flera detektorer upptäcker samma sak ger signifikans för händelsen. Detektorerna är våra mest kraftfulla verktyg för att skilja signaler från naturligt brus. Genom att använda lämpliga modeller för bakgrundsbrus kan vi bedöma en händelses ursprung även när vi inte har någon annan detektor som backar upp det vi har sett (det är dock alltid lättare att accepterna en händelse om flera detektorer upptäcker den). Även om gravitationsvågssignalen inte gav tillräckligt med information för att med säkerhet avgöra om det kompakta objektet var en neutronstjärna eller ett svart hål är det troligt att det lättare objektet är en neutronstjärna och det tyngre objektet ett svart hål.

Men objektet är ännu inte fullt ut förstått eller förklarat utan bör ännu ses som en icke löst gåta.

Bild vikipedia Gravitationen håller solsystemets planeter i omloppsbana kring solen. Notera: Bilden är inte skalenlig.