Google

Translate blog

tisdag 23 februari 2021

NASA hoppas på lyckade helikopterflygningar på Mars.

 


Perseverance rover  landade som beräknat den 18 mars på Mars. Ombord fanns en ny uppfinning i form av en liten helikopter. En farkost som väl i första hand ska ses som en mindre drönare.

Den ska flyga i en mycket tunn atmosfär. Den marsiska atmosfären har endast en procent av jordens densitet. Innebärande att den är ca en hundradel så tät som jordens.

Rotorbladen på den så kallade marshelikoptern väger bara 1,8 kilo och är mycket större och snurrar ungefär fem gånger snabbare – 2 400 varv per minut – än vad som skulle krävas för att generera samma mängd lyftkraft på jorden.

Den får dock lite hjälp från Mars genom att gravitationen enbart är en tredjedel av jordens.

Helikoptern har  fyra ben, en boxliknande kropp och fyra kolfiberblad arrangerade i två rotorer som snurrar i motsatta riktningar. Den levereras med två kameror, datorer och navigationssensorer. Upp till fem flygningar med gradvisa svårigheter planeras under en månad inom de första månaderna under uppdraget.

Den  kommer att flyga på höjder på 3-5 meter och färdas så långt som 50 meter från startområdet och tillbaka.

Varje flygning kommer att pågå upp till en och en halv minut. Detta ska jämföras om man vill med den första flygningen på Jorden. En flygning som gjordes i Kitty Hawk, North Carolina 1903 under 12 sekunder av bröderna Wright. Skillnaden är dock att då var det en större farkost och en människa ombord.

Bild från https://www.freeimg.net på en överblick över Mars yta.

måndag 22 februari 2021

Vid solen TOI 451 har tre spännande världar upptäckts

 


Med hjälp av observationer från NASA: s Transiting Exoplanet Survey Satellite (TESS) har ett internationellt team av astronomer upptäckt tre heta världar större än jorden kretsande kring en mycket ung sol som fått beteckningen TOI 451.

Systemet finns i en samling stjärnor i riktning mot stjärnbilden Fiskarna. En stjärnhop i vilken stjärnor med en ålder av 120 miljoner år finns. Att jämföra med vårt solsystem som är 4,6 miljarder år gammalt.

Planeterna vid solen TOI 451 upptäcktes i bilder tagna av rymdteleskopet TESS (vilket kan uttydas då stjärnan fått ett T i början på sitt namn) Bilderna är  tagna mellan oktober och december 2018. Uppföljningsstudierna av dessa bilder och fler  observationer  gjordes under 2019 och 2020 med hjälp av NASA:s rymdteleskop Spitzer vilket nu pensionerats.

Flera andra markbaserade anläggningar användes exemeplvis Infraröd data från NASA: s Near-Earth Object Wide-Field Infrared Survey Explorer (NEOWISE) satellit  samlades in mellan 2009 och 2011.

Flera observationer visar att TOI 451 sannolikt har två avlägsna stjärnkamrater (solar)som cirklar runt varandra långt bortom planeterna. Analyserna från ovanstående pågår äänu.

Systemet är intressant för oss astronomer, säger Elisabeth Newton biträdande professor i fysik och astronomi vid Dartmouth College i Hannover i New Hampshire vilken var den som ledde analyseringen och tillägger. "Solsystemet är endast 120 miljoner år gammalt och bara 400 ljusår bort vilket möjliggör detaljerade observationer av detta unga planetsystem. Och eftersom det finns tre planeter mellan två och fyra gånger jordens storlek är de särskilt lovande mål för att testa teorier om hur planeters atmosfärer utvecklas."

Den unga stjärnan TOI 451 är även känd för astronomer som CD-38. Den har 95% av vår sols massa men är 12% mindre, något svalare och släpper ut 35% mindre energi. TOI 451 roterar ett varv på 5,1 dag vilket är mer än fem gånger snabbare än solen.


TESS söker  nya världar genom att leta efter skuggan av dessa då de passerar framför sin sol TESS använder den så kallade transitmetoden . Det har resulterat i att TESS upptäckt tydliga skuggor från alla tre planeterna. Newtons team fick även mätningar från Spitzer som stödde TESS resultat och hjälpte till att utesluta alternativa förklaringar. Ytterligare uppföljningsobservationer kom från Las Cumbres Observatory – ett globalt teleskopnätverk med huvudkontor i Goleta, Kalifornien – och Perth Exoplanet Survey Telescope i Australien.

 

Även TOI 451 mest avlägsna planet kretsar tre gånger närmare sin sol än Merkurius någonsin närmar sig solen )Merkurius omloppstid är 88 dagar) så alla dessa världar är ganska varma och ogästvänliga för livet som vi känner det. Temperaturuppskattningar varierar från ca 1200 grader Celsius för den innersta planeten till ca 450 C för den yttersta.

 

TOI 451 b bana tar 1,9 dagar och har en storlek av 1,9 gånger jordens storlek medan dess beräknade massa varierar från två till 12 gånger jordens.

TOI 451 c, fullbordar en bana på 9,2 dag och är ungefär tre gånger större än jorden och har mellan tre och 16 gånger jordens massa.

Den längst ut från solen och största världen, TOI 451 d, cirklar runt sin sol på 16 dagar och är fyra gånger så stor som jorden och väger mellan fyra och 19 jordmassor.

Astronomer förväntar sig att planeter så stora som dessa behåller mycket av sin atmosfär trots den intensiva värmen från deras närliggande stjärna. Olika teorier om hur atmosfärer utvecklas när ett planetsystem når TOI 451:s ålder förutsäger ett brett spektrum av egenskaper. Läs mer om detta här. 

Bild från https://www.nasa.gov/

söndag 21 februari 2021

Finns en okänd faktor vi missat i sökandet efter bebodda planeter därute?

 


Sökandet efter liv utanför jorden är högprioriterat hos många  astronomer. Den eller de som hittar detta kommer att gå till historieböckerna.

Den mesta forskning görs i sökande i den beboeliga zonen runt en stjärna vilket ses som det avstånd jorden har till sin sol. Naturligtvis med hänsyn till vilket slag av spektraltyp stjärnan har. Allt med syfte att finna rätt temperaturzon för det vi anser viktigt för liv, flytande vatten.

 Något en del i dag ser som naiv urskiljning. Allt behöver inte vara beroende av syre och vatten. Kiselbaserat liv är en möjlighet istället för kolbaserat och även i jordens ungdom var liv i form av bakterier som inte var beroende av syre möjligt (utan syre inget vatten).

Det verkliga testet för huruvida en planet skulle kunna vara värd för livet kan i själva verket vila på andra gaser än syre och då kanske i första hand kväve.

Vi ska komma ihåg att det mesta vatten i universum är fryst till is. Det finns några månar däruppe som innehåller  vatten i frusen form. Mycket vatten är  även inlåst i kometer eller i gas. Flytande vatten är ytterst sällsynt finns endast under vissa särskilda omständigheter (flytande vatten ses som en förutsättning för liv).

Jorden har rätt avstånd till solen för att kunna behålla vatten i flytande form. I jakten på liv utanför jorden söks  i första hand planeter med samma ideala förhållanden i läge vid sin sol.

Visst kan det finnas andra platser där livet blomstrar men eftersom jorden är det enda exemplet på livet vi säkert vet existerar söker vi likartade planeter på rätt avstånd från sin sol.

Med hjälp av en rad datorsimuleringar för att återskapa atmosfäriska förhållanden på planeter har nu astronomer vid Cornell university i Ithaca New York beskrivit alternativt sökande och möjligheter till liv i en publicerad uppsats i https://arxiv.org/abs/1910.02355där de beskriver sina resultat.

Forskarna visar i denna nya studie hur kväveinnehållet kan spela en stor roll för att bestämma den totala temperaturen på en planet och därmed dess möjlighet för livsformer. Avstånd till en sol är inte allt. Vad som gör det mer komplicerat är att det är inte en enkel relation då kväve inte nödvändigtvis gör en planet varmare.

 

Till exempel, om en planets atmosfär inte har  stor densitet och det finns massor av vatten närvarande får kväve en betydelse för att det blir en betydande uppvärmning, eftersom det  atmosfäriska trycket ökar effektiviteten av växthusgaser som koldioxid och vattenånga ökar (det blir för hett för liv som vi känner det). Å andra sidan, på en relativt torr värld gör kväve att mer solvärme försvinner och det leder till dramatisk kylning (allt fryser och liv kan knappast existera som vi känner det).

 

Slutresultatet är att två världar som kretsar kring identiska stjärnor med identiska banor med liknande ytor och sanna avstånd från sin sol (livsmöjliga zonen enligt vår nuvarande kunskap) men olika mängder kväve kan ha dramatiskt olika temperaturer och kan vara svåra att bedöma i om där finns liv.

 

Kväve avger inte heller eller absorberar strålning vid synliga eller infraröda våglängder. Detta gör det svårt att upptäcka om kväve finns i atmosfären på främmande världar. Så även om en planet finns i den beboeliga zonen av sin stjärna får vi svårt att veta dess kväveinnehåll. Något som är viktigt att veta då detta kan avgöra om det kan finnas liv.

Säkert finns fler saker vi borde betänka när vi söker liv däruppe. Vi utgår idag enbart från känd kunskap. Vad som behövs är fantasi och brainstorming min anm.

Bild från pixabay.com vad missar vi eller de därute i sökandet efter liv.

lördag 20 februari 2021

Den 21 mars passerar en stor asteroid jordens bana.

 


En asteroid i storlek som Golden Gate-bron kommer att korsa jordens omloppsbana den 21 mars. Rymdstenen kallad 231937 (2001 FO32) är ca 0,8 till 1,7 kilometer i diameter och kommer enligt NASA att passera inom 2 miljoner kilometer från jorden den 21 mars.

En asteroid betecknas som "potentiellt farlig" när dess omloppsbana skär jordens bana på ett avstånd av högst ca 7,5 miljoner km och är större än 140 meter i diameter.  Små asteroider passerar mellan jorden och månen flera gånger i månaden och fragment av dessa bryter in i jordens atmosfär nästan dagligen (stjärnfall) enligt NASA: s Planetary Defense Coordination Office (PDCO).

Ingen i dag känd asteroid utgör en betydande risk för jorden under de kommande 100 åren. Det nuvarande största kända hotet är en asteroid som kallas (410777) 2009 FD och  har mindre än 0,2% chans att slå ner  på jorden under 2185 enligt NASA: s PDCO.

Kan vi då känna oss helt trygga? Nej ibland dyker asteroider upp som vi missat och dessa är eller kan vara ödesdigra för oss. Men övervakningen av rymden kan aldrig bli helt perfekt. Det finns alltid en slump i övervakningen som gör att något av någon anledning missas (min anm.).

Bild från https://www.today24 som visar storleken på asteroiden 231937 (2001 FO32) som passerar oss den 21 mars 2021

fredag 19 februari 2021

Upptäckt. Det avlägsnaste objekt vi sett i vårt solsystem beteckning 2018 AG37 (Farfarout).

 


Ett team av astronomer där Carnegies Scott Sheppard och David Tholen från University of Hawai'i Institute for Astronomy, och Chad Trujillo från Northern Arizona University ingår har upptäckt det mest avlägsna objekt som någonsin observerats i vårt solsystem.

Officiellt kallat 2018 AG37 och med smeknamnet Farfarout. Denna planetoid (småplanet) kretsar ca 132 AU från solen. 1 AU är avståndet mellan jorden och solen. På 132 AU tar det ett helt årtusende att kretsa runt solen.

De tre kollegorna nämnda ovan kartlägger himlen sedan 2012 och solsystemet bortom Pluto. FarFarOut ansluter sig till en uppsättning av dessa småplaneter som finns bortom Neptunus det så kallade Kuiperbältet där ca 70000 objekt finns från 100 km och uppåt i diameter (inte att förväxla med asteroidbältet mellan Mars o Jupiter eller kometmolnet Ooortskometmoln som omger hela solsystemet). Tidigare har de även upptäckt den småplanet man till nu ansett vara längst ut i vårt solsystem  VG18 (Farout)  vilken tar 124 AU vilken ca 778 år på sig i sin bana runt solen.

Men målet för dem  är dock att finna den gäckande planet 9 en mycket större planet som kan vara i omloppsbana någonstans i ytterkanten av  solsystemet. Farfarouts resa runt solen tar cirka 1000 år och korsar jätteplaneten Neptunus omloppsbana varje gång. Detta innebär att Farfarout förmodligen har upplevt starka gravitationella interaktioner med Neptunus många gånger vilket kan förklara dess stora och långsträckt bana.

Jag säger dock som tidigare (min anm.) att jag tvivlar på den såkallade planet nine (planet 9) tvivlar på dess existens. 

Bild vikipedia på Farfarout 2018 AG37 1000 år  långa bana runt solen.

torsdag 18 februari 2021

2026 lanseras PLATO i jakten på att lära mer om exoplaneter

 


Rymdlfarkosttillverkaren RUAG Space kommer att leverera Sunshield Solar Array Subsystem för det europeiska "planet-jakt" uppdraget där rymdobservatoriet PLATO (PLAnetary Transits and Oscillations of stars) är arbetsverktyget och den som ska bygga detta blir företaget OHB

 Europeiskarymdorganisationen ESA har med PLATO målet att använda detta rymdobservatorium till att hitta och studera planetsystem runt stjärnorna därute och då de planeter som likt jorden är stenplaneter. I uppdraget ingår att försöka utröna vad dessa stenplaneters markegenskaper är.

PLATO är planerad att lanseras 2026. RUAG Space är den ledande leverantören till rymdindustrin i Europa och ökar sin marknad i USA. Totalt har RUAG Space cirka 1 300 anställda i sex länder. RUAG Space utvecklar och tillverkar produkter för satelliter och uppskjutningsraketer och har en stor nyckelroll och betydelse både på den institutionella och kommersiella rymdmarknaden. Det är som nämnts ovan detta bolag som har huvuduppdraget i byggandet av PLATO.

En ny (min anm.) och spännande tid väntar när väl PLATO börjar jobba däruppe.

Bild på vikipedia på rymdobservatoriet PLATO som lanseras 2026

onsdag 17 februari 2021

Kan en dvärggalax bestående av antimateria kretsa runt Vintergatan

 


Paul M. Sutter som är en astrofysiker vid SUNY Stony Brook och Flatiron Institute New York värd för Ask a Spaceman och Space Radio och författare till boken How to Die in Space. Han  säger följande i space.com. Vi vet inte varför universum domineras av materia istället för antimateria. Men det kan finnas hela stjärnor  och kanske till och med galaxer i universum bestående av antimateria.

Antimateria-stjärnor skulle kontinuerligt kasta sin antimateria ut i kosmos och kan teoretiskt ses som en andel av de högenergipartiklar som träffar jorden. Antimateria är precis som normal materia. Varje partikel har en anti-partikeltvilling med exakt samma massa exakt samma spinn och exakt samma av allt. Det enda annorlunda är laddningen. Till exempel är elektronens antipartikel kallad positron och har positiv laddning till skillnad mot vanlig materia där elektronen har negativ laddning. Se bild ovan.

 Dessa två slags materia speglar varandra nästan perfekt. För varje materiapartikel i universum borde det finnas en antimateriapartikel (enligt teorin). Men när vi ser oss omkring upptäcker vi ingen antimateria. Jorden är gjord av materia, solsystemet är gjort av materia, dammet mellan galaxer består av materia; det ser ut som hela universum  helt består av materia. Man kan undra varför antimateria är så sällsynt?

Om materia och antimateria skulle blivit perfekt balanserad vid BigBang, vad hände då med all antimateria? (Om det nu bildats lika mycket av varje slag av materia.  Kanske antimateria var något som bildades av misstag och aldrig skulle bildats och därför finns mycket lite eller knappt något alls. Kanske man kan se den som misslyckad materia (min anm.)? Något som inte kan bestå i mängd av någon fysisk anledning vi ännu inte förstår med vår fysiska kunskap. 

Svaret ligger någonstans i det tidiga universum. Men vad än den processen var om det där fanns eller uppkom någon antimateriadödande mekanism i det tidiga universum har vi ingen förklaring till i känd fysik. Det är möjligt att det tidiga universum kan ha lämnat stora klumpar av antimateria här och där i hela universum enligt Sutters resonemang.

Dessa klumpar, om de existerar, skulle i så fall existera i relativ isolering och kan finnas än i dag. Vi vet att då materia och antimateria träffas förintar de varandra i en blixt av energi. Men klumpar i form av något tusental stjärnor som samlats i en dvärggalax skulle kunna existera runt större galaxer i universum.

De galaxerna tros i så fall vara otroligt gamla, eftersom där inte bildas nya stjärnor numera utan de består av röda gamla stjärnor relativt fria från gas och damm vilket innebär inget bränsle till nya stjärnor (varför detta skulle vara fallet min anm, förstår jag logiskt inte det låter som en krystad teori). Vintergatan har ett följe av ca 150 små galaxer med få stjärnor några av dem kan bestå  av antimateriastjärnor med tillhörande planeter enligt resonemanget enligt Sutter .

Jag kan tänka mig ytterligare en annan förklaring. Att Big Bang skapade två universum ett bestående av materia och ett bestående av antimateria skilda åt i tid och därmed rum. I det andra universum bestående av antimateria är vår materia lika ovanlig som antimateria i vårt universum är. Man kan se det som att viss materia följde med in i parallelluniversum och viss antimateria följde med in i vårt universum vid BigBang Tanken på små dvärggalaxer runt vintergatan av antimateriastjärnor tvivlar jag på.

Bild från vikipedia som beskriver skillnaden i uppbyggnad av en atom av materia och antimateria. Partiklar från vänster uppifrån och ner: elektron, proton, neutron. Antipartiklar från höger uppifrån och ner: positron, antiproton, antineutron.