Google

Translate blog

söndag 21 maj 2023

Ingen vet vad de mystiska ljuden i stratosfären kommer från

 


Stratosfären är ett av skikten i jordens atmosfär. Den börjar vid cirka 10–15 kilometers höjd och sträcker sig upp till ungefär 50 kilometer över markytan där mesosfären tar vid.

Under ett soldrivet ballonguppdrag lanserat av forskare från Sandia National Laboratories  till stratosfären fanns en mikrofon med på ballongen. Stratosfären är relativt lugn och fri från stormar, turbulens och kommersiell flygtrafik vilket innebär att mikrofoner här kan avlyssna ljud från vår planet, både naturliga och av människans göranden på jorden.

Men mikrofonen på denna färd (i startosföären)  fångade även konstiga ljud som upprepades några gånger i timmen. Källan har  inte kunnat  identifierats. Ljuden spelades in i infraljudområdet vilket innebär att de hade  frekvenser på 20 hertz (Hz) och lägre, långt under det mänskliga örats uppfattningsförmåga, säger Daniel Bowman från Sandia National Laboratories i ett uttalande 

För insamlandet i stratosfären använde Bowman med team  Mikrobarometrar vilket är   mikrofoner  som  är utformade till att övervaka vulkaner. Mikrobarometrar  upptäcker och detekterar lågfrekventa ljud. Det  var dessa som gjorde upptäckten.

Instrumenten  bars upp av ballonger som Bowman med flera forskare byggt. Med diametrar mellan 6 och 7 meter byggdes ballongerna av vanligt och billigt material. Drivna av solljus kunde dessa stiga till höjd på ca 20 km.

Detta slag av vetenskapliga ballonger i skyn misstas ibland för andra föremål vilket ibland orsakar  larm om spionballonger eller ufos ex. Förutom att hjälpa till att ytterligare undersöka de mystiska ljuden i stratosfären kan soldrivna ballonger som dessa användas för att göra undersökningar än högre upp eller på andra planeter.

Robotballonger kan driva genom den övre atmosfären på Venus exempelvis den gången vi kommer dit och ska undersöka dess tjocka atmosfär av svavelsyramoln.

Teamets forskning som innehåller detektering av dessa oidentifierade infraljudkällor i jordens stratosfär presenterades av Bowman den11 maj vid det 184: e mötet i Acoustical Society of America i Chicago.

Jag kan tänka mig att ljuden kommer ur elektromagnetiska störningsutbrott orsakade av solens strålning in mot jordens atmosfären.

Bild vikipedia Rymdfärjan Endeavour rör sig genom stratosfären, februari 2010.

lördag 20 maj 2023

Bensen upptäckt i den protoplanetära skivan runt stjärnan J160532

 


Ett internationellt team av astronomer däribland flera holländska har för första gången upptäckt bensenmolekylen(C6H6) i en protoplanetär skiva runt en ung stjärna. Förutom bensen upptäcktes även något av kolföreningar men få syrerika molekyler. Observationerna tyder på att här liksom  jorden innehåller protoplanetär skivor material för att bilda stenplaneter med samma slags materia som jorden en gång fick. Forskarna publicerade nyligen sina resultat i tidskriften Nature Astronomy.

Det var runt den unga, lilla röda dvärgstjärnan J160532 (är en tiondel av solens massa) cirka 500 ljusår från oss i riktning mot stjärnbilden Skorpionen upptäckten gjordes. I protoplanetära skivor  runt unga stjärnor bildas både gas- och stenplaneter  av gas och damm. Hittills har det varit svårt att analysera vilka molekyler som finns i dessa skivors heta inre del  där majoriteten av planeterna bildas. Detta på grund av den begränsade känsligheten och spektralupplösningen hos tidigare teleskop och dess utrustning

I denna nya  forskning använde forskarna däremot data från MIRI-spektrometern ombord på James Webb Space Telescope (Webbteleskopet som ännu inte varit i tjänst ett år men är bokat för många undersökningar) . MIRI kan se in i  dammoln och är särskilt väl lämpad till att undersökningar i het som inne i  protoplanetär skivor. (MIRI-spektrometerns avancerade huvudoptik har designats och byggts av Netherlands Research School for Astronomy (NOVA).

Ovan är exakt den typ av undersökningar som MIRI-spektrometern designats för, beskriver Ewine van Dishoeck (Leiden University) en av de som var med och byggde Webbteleskopet och MIRI - instrumentet. Spektralundersökningar ger en mängd data om den kemiska och fysiska sammansättningen av protoplanetära skivor.

Förutom det  första fyndet någonsin av bensen i en protoplanetär skiva upptäckte forskarna även kolvätediacetylen (C4H2) för första gången i en sådan och utöver det en ovanligt stor mängd acetylengas (C2H2)  ett mycket reaktivt kolväte. Men det fanns väldigt lite vatten och koldioxid i skivan.

Syrerika föreningar finns dock ofta i andra slag av dammskivor därute i universum. För att identifiera de nu analyserade molekylerna krävdes ett nära samarbete med kemister vilka analyserade spektra (de kemiska fingeravtrycken) i laboratoriemiljö.

Forskarna misstänker att bensen och (di-)acetylen frigörs i skivan efter att den aktiva unga stjärnan förstört kolrika stoftkorn under sin aktivitet. De dammkorn som då finns kvar innehåller silikater med relativt lite kol. I en senare fas klumpar kornen med låg kolhalt ihop sig till större bitar. Dessa blir så småningom stenplaneter som jorden. Detta scenario kan förklara varför vår egen jord är så fattig på kol från dess bildande.

Samtidigt arbetar forskarna med data från 30 andra protoplanetära skivor runt andra unga stjärnor därute och data om ytterligare 20 av dessa  protoplanetära skivor väntas bli analyserade under 2023. Det förväntas upptäckas andra slag av molekyler från dessa och ge än mer kunskap om bildandet av planeter runt stjärnor i protoplanetära skivor från de allra minsta stjärnorna till de som är 2-3 gånger större i massa än vår sol.

Huvudförfattaren till studien Benoît Tabone (CNRS-forskare vid Université Paris-Saclay i Frankrike och tidigare affilierad Leiden University) avslutar studien med följande ord: Detta arbete ger en första glimt av de fysiska och kemiska förhållandena under vilka jordliknande planeter som vår jord bildas.

Medförfattare till studien Aditya Arabhavi, doktorand vid universitetet i Groningen, tillägger: Många fler molekyler kommer att upptäckas i skivorna antingen i skivan runt J160532 eller i andra skivor. Webbteleskopet är en upptäckarplats inte bara för astronomer, utan också för experter inom molekylfysik.

MINDS (MIRI mid-INfrared Disk Survey) Undersökningen ägde rum inom JWST Guaranteed Time Observation (GTO) -programmet MINDS. Programmet leds av Inga Kamp (Groningens universitet). Astronomer från Groningen, Leiden och Nijmegen är nära involverade. 

Bild vikipedia på en konstnärs bild av en protoplanetär skiva.

fredag 19 maj 2023

Jorden borde kanske inte existerat

 


Merkurius, Venus, Jordens och Mars banor är kaosartade och datamodeller av banorna visar att dessa inre planeters banor borde resulterat i att planeterna kraschat samman för länge sedan. Men som vi vet har detta inte hänt. Ny forskning publicerad 3 maj i tidskriften Physical Review X visar varför det inte skett.

Planeter utövar ständigt en ömsesidig gravitationskraft på varandra vilket ständigt över tid något förändrar dess banor. De yttre planeterna (från Jupiter och utåt) är mycket större och motståndskraftigare mot små gravitationskrafter och upprätthåller därmed mer stabila banor.

I slutet av 1900-talet visade matematikern Henri Poincaré att det är matematiskt omöjligt att lösa ekvationer som styr rörelserna för tre eller flera interagerande objekt. Ett matematiskt problem  känt som "trekroppsproblemet"

 Därför ökar osäkerheten i detaljerna om planeternas plats var de bildades och banhastighet över tid. Med andra ord: Det är möjligt att utarbeta två scenarier där avstånden mellan Merkurius, Venus eller ex , Mars och jorden skiljer sig åt med minsta möjliga avstånd och mängd utan att en av planeterna slår in i någon av de andra eller avviker från varandra. Den tid det tar för två  banor med nästan identisk början att avvika med en viss mängd från varandra är känd som Lyapunov-tiden i det kaotiska systemet. 1989 utarbetade Jacques Laskar astronom och forskningschef vid National Center for Scientific Research och Paris Observatory och medförfattare till den nya studien den karakteristiska Lyapunov-tiden. För planetbanorna i det inre solsystemet var denna bara 5 miljoner år (tiden för hur länge de haft sina nuvarande banor). 

Det betyder i princip att man förlorar en siffra var 10: e miljon år, beskrev Laskar det för Live Science. Så, till exempel, om den initiala osäkerheten i planetens position är 15 meter så är den 10 miljoner år senare 150 meter; Efter 100 miljoner år går ytterligare 9 siffror förlorade vilket ger en osäkerhet på 150 miljoner kilometer vilket motsvarar avståndet mellan jorden och solen. I grund och botten har du då ingen aning om var planeten då är, beskriver Laskar.

Medan 100 miljoner år kan verka som en lång tid, är solsystemet över 4,5 miljarder år och bristen på dramatiska händelser av en planetkollision eller en planet som kastas ut från all denna kaotiska rörelse har inte skett vilket verkar förbryllade enligt forskare.

Kanske dock vår måne som bildats enligt Theia-teorin genom att en planet  kraschade med jorden kan ses som en banförändrande händelse? 

Laskar undersökte problemet genom att genom datorsimulering ge olika utgångspunkter för de inre planetbanorna under de kommande 5 miljarder åren och gå från ett ögonblick till nästa. Han fann då 1 % chans risk för en planetkollision i framtiden. Med samma tillvägagångssätt beräknade han att det i genomsnitt skulle ta cirka 30 miljarder år för någon av planeterna att kollidera statistiskt. Genom att använda matematik identifierade Laskar och hans kollegor sedan för första gången "symmetrier" eller "bevarade kvantiteter" i gravitationsinteraktionerna som skapar en "praktisk barriär för planeternas kaotiska vandring.

Dessa framväxande kvantiteter förblir nästan konstanta och hämmar vissa kaotiska rörelser men inte helt och hållet alla.

Kanske man skulle ta med balans också i förståelsen?

Bild vikipedia som visar den Kaotiska rörelsen av tre samverkande, nästan likadana partiklar. Trekroppsproblemet.

torsdag 18 maj 2023

Mysteriet med det skenande svarta hålet är löst

 


IC 5249 (är en tvärsnittspiralgalax som ligger cirka 109 miljoner från jorden  i stjärnbilden Tukanen. En studie utförd av ett team av forskare vid Instituto de Astrofísica de Canarias (IAC) har visat att den ovanligt tunna struktur av stjärnor, som nyligen upptäcktes av rymdteleskopet Hubbleteleskopet troligen är en galax som ses från dess tunnaste kant från jorden sett. Detta  går emot den ursprungliga tolkningen att det skulle varit  ett flyende supermassivt svart hål som lämnade efter sig ett spår av stjärnor i kölvattnet. Den nya tolkningen kommer från ett team av forskare vid Instituto de Astrofísica de Canarias (IAC) publiceras i tidskriften Astronomy and Astrophysics Letters.

För min del anser jag att denna nya tolkning har rätt i sina slutsatser. För mer om hur man kom fram till resultatet se denna länk

Bild från https://www.iac.es/ av objektet observerat från rymdteleskopet Hubble. Det visar emissionen i den ultravioletta delen av spektrumet. Mitten: Ultraviolett bild av en lokal galax utan utbuktning och observerad kant-på (IC 5249). Likheterna är uppenbara. Nederst: Samma galax IC 5249 observerad i den synliga delen av spektrumet. De tre bildernas rumsliga skalor är identiska. Upphovsman: HST

onsdag 17 maj 2023

Fomalhauts tre asteroidbälten studeras

 


Fomalhaut är den ljusaste stjärnan på den södra stjärnhimlen. Den finns i stjärnbilden Piscis Austrinus (södra fisken) och är en av de ljusaste stjärnorna på jordens natthimlen överhuvudtaget.

Astronomer använde nyligen  NASA: s James Webb Space Telescope för att avbilda det varma stoftet runt Fomalhaut. Stoft som är det första asteroidbältet som någonsin setts utanför vårt solsystem. Studien skedde med hjälp av infrarött ljus. Till deras förvåning är dessa dammiga strukturer mycket mer komplexa än asteroid- eller Kuiper-bältet i vårt solsystem. Sammantaget finns runt Fomalhaut tre bälten som sträcker sig  ut frpn denna 23 miljarder kilometer från stjärnan. Det är 150 gånger jordens avstånd till solen. Srorleken på det yttersta bältet är ungefär dubbelt mot vårt solsystems Kuiperbälte bortom Neptunus. De inre bältena vid Fomalhaut  var de som nu sågs  för första gången. 

De dammiga asteroidbältena är skräp från kollisioner av större objekt (från asteroider och kometer) och beskrivs ofta som skräpskivor. Jag skulle beskriva Fomalhaut som arketypen av en stjärna med skräpskivor av liknande  komponenter som de vi har i vårt eget planetsystem asteroidbälten, påtalar András Gáspár vid University of Arizona i Tucson och huvudförfattare till studien som publicerats i tidskriften Nature, Astronomy och tillägger.

Genom att se på mönstren i dessa ringar kan vi göra en liten skiss av hur ett planetsystem borde se ut  där om vi bara kan få en tillräckligt djup bild in i systemen för att se de  planeter vi kan anta  finns där.

Rymdteleskopet Hubble, rymdobservatoriet Herschel och ALMA (Atacama Large Millimeter/submillimeter Array) har tidigare tagit skarpa bilder av det yttersta bältet vid Fomalhaut. Dock fann man ingen struktur här som visade på en planet. De inre bältena har upptäckts av Webbteleskopet i infrarött ljus. Webb kan se in i de två inre bälten något vi aldrig kunnat tidigare, beskriver Schuyler Wolff, medlem av teamet och verksam vid University of Arizona.

Bältena runt Fomalhaut är en typ av en mysterie: Var är planeterna?" undrar George Rieke, en annan lagmedlem och amerikansk vetenskapsledare för Webbs Mid-Infrared Instrument (MIRI) som gjorde dessa observationer. Jag tror att det inte är ett särskilt stort steg att säga att det förmodligen finns intressanta planetsystem runt stjärnan.

Webbs undersökningar i infrarött av de inre ringarna kommer inom en snar framtid att avslöja om här finns planeter eller inte. Dess datainsamling tar tid att analysera,

Bild vikipedia av asteroidbältet runt Formalhaut  taget av James Webb Space Telescope med kommentarer av NASA.

tisdag 16 maj 2023

Mörk energi förändras aldrig i densitet eller massa fastän universum expanderar allt snabbare.

 


Då Edwin Hubble observerade avlägsna galaxer under 1920-talet upptäckte han att universum expanderar. 1998 upptäckte forskare som observerade typ Ia-supernovor (en exploderande vit dvärgstjärna i ett dubbelstjärnsystem där motparten är en röd jättestjärna) att universum inte bara expanderar utan har börjat en fas av accelererande expansion. 

För att förklara denna accelerationsökning av universums expansion  måste en källa finnas för detta, beskriver Joseph Mohr, astrofysiker vid LMU (Ludwig-Maximilians-Universität München). Och vi anser att källan är mörk energi som utvecklar något slags anti-gravitation som påskyndar universums expansion.

Antigravitationen orsakas troligen genom att  mörk energi skjuter föremål bort från varandra och undertrycker bildandet av stora kosmiska samlingar som annars skulle bildas på grund av gravitation. Mörk energi påverkar (som man antar) hur de största objekten i universum bildas som galaxkluster med totala massor från 1013 till 1015 solmassor genom gravitation (men troligen även ger en antigravitationseffekt som ökar på expansionen).

Vi kan lära oss mycket om den mörka energins natur genom att räkna antalet galaxhopar som bildas i universum som en funktion av tiden - eller i observationsvärlden som en funktion av rödförskjutning, förklarar Klein i studien.

 Galaxhopar är sällsynta och kräver kartläggningar av en stor del av himlen med hjälp av de känsligaste teleskopen i världen för att se och hitta. För detta ändamål lanserades därför eROSITA X-ray Space Telescope - ett projekt som leds vid Max Planck-institutet för utomjordisk fysik (MPE) i München - 2019  genomfördes en kartläggning av hela himlen för att söka efter galaxhopar. 

I eROSITA Final Equatorial-Depth Survey (eFEDS), har hittade cirka 500 galaxhopar. Detta representerar ett av de största fynd  hittills av galaxhopar med låg massa och spänner över de senaste 10 miljarder åren av kosmisk utveckling. För sin studie använde Chiu med kollegor ett extra dataset ovanpå eFEDS-data – i form av optiska data från Hyper Suprime-Cam Subaru Strategic Program, som leds av  astronomiska organisationerna i Japan och i Taiwan och på Princeton University. Den tidigare LMU-doktorandforskaren I-Non Chiu och dennes LMU-kollegor använde denna data för att karakterisera galaxhoparna som hittades med eFEDS och mätte deras massor med hjälp av svag gravitationslinsning

Kombinationen av de två dataseten möjliggjorde den första  studien av galaxhopar som upptäckts med eROSITA.

Resultatet visar att det genom jämförelse av data och teoretiska förutsägelser utgör mörk energi cirka 76 % av den totala energin i universum. Dessutom indikerade beräkningarna att energitätheten hos mörk energi verkar vara enhetlig i rymden och konstant över tid. Resultatet stämmer väl överens med andra oberoende tillvägagångssätt vid tidigare galaxhopstudier samt de tidigare där svag gravitationslinsning använts och även den  kosmiska mikrovågsbakgrunden använts, tillägger Bocquet. Hittills tyder alla observationsbevis, inklusive de senaste resultaten från eFEDS på att mörk energi kan beskrivas med en enkel konstant, vanligtvis kallad den "kosmologiska konstanten".

En första studie av detta har I-Non Chiu, Matthias Klein, Joseph Mohr, Sebastian Bocquet gjort med namnet (översatt). Kosmologiska begränsningar från galaxhopar och grupper i eROSITA slutliga ekvatoriella djupundersökning. Publicerad i Månatliga meddelanden från Royal Astronomical Society, 2023

Bild vikipedia Diagram som representerar universums accelererade expansion på grund av mörk energi.

måndag 15 maj 2023

Resterna från de första stjärnorna ses än i dag i avlägsna gasmoln

 


För första gången någonsin har det nu gått att  identifiera de kemiska resterna från explosionerna (supernovorna) efter de första stjärnorna, i avlägsna gasmoln, beskriver Andrea Saccardi, doktorand vid Observatoire de Paris – PSL, och ledare för studien som färdigställdes under hennes forskarutbildning vid Florens universitet.

Forskarna tror att de första stjärnorna som bildades i universum skiljde sig avsevärt åt från de stjärnor vi ser i dag. (de första innehöll nästan ingen metall utan bestod mest av väte och helium jämfört med dagens metallrika stjärnor. Metallrika stjärnor bildades då resterna av de första väte-heliumstjärnorna exploderat som supernovor. Vid explosionerna av detta slag bildades nya tyngre grundämnen.).

När de första stjärnorna bildades för ca 13,5 miljarder år sedan innehöll de nästan bara väte och helium, de lättaste grundämnena i naturen. Dessa stjärnor, som troligen var tiotals eller hundratals gånger mer massiva än solen exploderade efter kort tid som supernovor och berikade då den omkringliggande gasen efter novan med tyngre grundämnen. Senare generationer av stjärnor bildades ur denna gas och spred i sin tur än fler och tyngre grundämnen omkring sig när de exploderade.

De första stjärnorna är borta sedan länge men  dess spår finns kvar och kan studeras indirekt genom att undersöka de grundämnen som de spred i sin omgivning efter supernovaexplosionen, beskriver Stefania Salvadori, docent vid Florens universitet och medförfattare till studien som publicerades nyligen i Astrophysical Journal.

I data som samlats in med ESO:s VLT i Chile  (Europeiska sydobservatoriet- Very Large Telescope) fann astronomerna tre mycket avlägsna gasmoln från tiden då universum var 10 till 15 procent av sin nuvarande ålder. Gasmolnen visade kemiska fingeravtryck som överensstämde med det man förväntade sig från de första supernovorna. Beroende på stjärnans massa och energin i supernovan lämnade dessa första supernovor efter sig varierande mängder grundämnen som kol, syre och magnesium till nästa generations stjärnor.

Men vissa supernovaexplosioner var inte kraftiga nog att sprida än tyngre grundämnen som järn vilket bildas i tunga stjärnors centra (först av nästa generations stjärnors supernovadöd bildades järn) . För att söka efter resterna av stjärnor som exploderade som supernovor med låg energi letade därför forskarna efter gasmoln med låga halter av järn men höga halter av lättare grundämnen. De  gasmoln med rester från det tidiga universum med de karaktäristika man sökte efter vad de med mycket låga halter av järn men höga halter av kol och andra grundämnen.

Denna speciella kemiska sammansättning har observerats i gamla stjärnor i vår egen galax. Stjärnor som astronomerna anser vara andra generationens stjärnor bildade ur resterna av de första stjärnorna.

För att detektera och studera dessa stjärnor använde sig astronomerna av kvasarer vilket är extremt ljusstarka källor som drivs av aktiva supermassiva svarta hål i avlägsna galaxers centra. När ljuset från kvasarerna passerar genom universum och passerar  genom gasmoln lämnar de sken i gasmolnen som kan visa gasmolnets spektra av kemisk sammansättning. 

Forskarna analyserade ljuset från flera kvasarer genom dessa moln för att hitta avtryck av molnens sammansättning. Kvasarer som tidigare hade observerats med X-shooter ett instrumentet på ESO:s VLT. X-shooter sprider ut ljuset i ett spektrum av diskreta våglängder vilket gör det unikt välanpassat för att identifiera den kemiska sammansättningen i avlägsna gasmoln.

Studien öppnar nya möjligheter för nästa generations teleskop och instrument som ESO:s kommande Extremely Large Telescope och dess högupplösande spektrograf ANDES (ArmazoNes high Dispersion Echelle Spectrograph). Med ANDES på ELT kommer vi att kunna studera många av dessa sällsynta gasmoln i större detaljrikedom vilket gör det möjligt att avslöja egenskaperna hos de första stjärnorna” beskriver Valentina D’Odorico, astronom vid National Institute of Astrophysics i Italien och en av studiens medförfattare det i studien.

Bild vikipedia på ESO:s (Europeiska sydobservatorie i Chile) Very Large Telescope.