Google

Translate blog

söndag 18 augusti 2024

Rymdteleskopet NEOWISE har stängts av.

 


"NEOWISE-uppdraget har varit avgörande i vår strävan att kartlägga luftrummet och inhämta kunskap om den jordnära miljön. Dess stora antal upptäckter har utökat  kunskapen om asteroider och kometer i vår närhet samtidigt som det har stärkt Jordens försvar, beskriver Laurie Leshin, chef för NASA JPL.  

"När vi tar farväl av NEOWISE hyllar vi också teamet bakom för deras imponerande prestationer."

Genom att upprepade gånger observera skyn från låg omloppsbana runt jorden skapade NEOWISE kartor över hela himlen utifrån 1,45 miljoner infraröda mätningar av mer än 44 000 objekt i solsystemet. Av de mer än 3 000 jordnära objekt som upptäckts över tid upptäcktes 215 av dessa först av NEOWISE. NEOWISE upptäckte även 25 tidigare okända kometer, inklusive den berömda kometen C/2020 F3 NEOWISE som svepte över natthimlen sommaren 2020.

Ingenjörer på NASA:s NEOWISE-uppdrag (Near-Earth Object Wide-field Infrared Survey Explorer) beordrade rymdfarkosten att stänga av sin sändare för sista gången torsdagen den 8:e  2024. Detta avslutade mer än 10 år av NEOWISE  uppdrag att söka efter asteroider och kometer.

Det slutliga kommandot sändes från Earth Orbiting Missions Operation Center vid NASA:s Jet Propulsion Laboratory i södra Kalifornien med tidigare och nuvarande projektmedlemmar närvarande tillsammans med tjänstemän från byråns huvudkontor i Washington. NASA:s Tracking and Data Relay Satellite System vidarebefordrade sedan signalen till NEOWISE och rymdfarkosten var ur bruk. Som NASA tidigare meddelat avslutades rymdfarkostens vetenskapliga uppdrag den 31 juli och alla återstående vetenskapliga data kopplades ner.

NASA avslutade uppdraget eftersom NEOWISE snart kommer att sjunka för lågt i sin omloppsbana runt jorden för att kunna ge användbara vetenskapliga data. En ökning av solaktiviteten värmer upp den övre atmosfären vilket får teleskopet  att expandera och skapa spänningar i materialet rymdfarkosten  är uppbyggd av.  NEOWISE har inte ett framdrivningssystem för att hålla den kvar i sin omloppsbana.

NEOWISE förväntas brinna upp i Jordens atmosfär på ett säkert sätt i slutet av 2024.

Bild https://www.jpl.nasa.gov/news Bilden ovan är den 26 886 704:e och sista exponeringen som togs av NEOWISE runt midnatt PDT den 31 juli 2024. Bilden gjordes från data som samlats in av de två infraröda kanalerna ombord på rymdfarkosten NEOWISE, där den längre våglängdskanalen (centrerad på 4,6 mikron) mappades till rött och den kortare våglängdskanalen (3,4 mikron) mappades till cyan. Bilden visar en del av stjärnbilden Fornax på södra stjärnhimlen. Fotograf: NASA/JPL-Caltech/IPAC/UCLA

lördag 17 augusti 2024

Vart tar ”resten” från neutronstjärnors kollisioner vägen

 


En vit dvärg är en stjärna som består av joniserad materia, det sista steget i stjärnors existens. Stjärnor som inte är tillräckligt stora för att kollapsa till neutronstjärna eller ett svart hål med massa mindre än ungefär 9 solmassor alternativt är mycket stora och försvinner som supernova.  Neutronstjärnor har extremt hög densitet  en tesked materia av dessa  väger mer än en miljard ton. Neutronstjärnornas intensiva dragningskraft i form av gravitation  drar til sig omgivande materia och även närliggande stjärnor. När denna materia faller in mot neutronstjärnan värms det upp och lyser i röntgensken.

Efter en kollision mellan neutronstjärnor uppstår ett nytt himlaobjekt som kallas "en rest". Men vad denna "rest" består av vet man inte i dag. Forskare försöker avslöja detta inklusive om "resten" kollapsar till ett svart hål och hur snabbt detta i så fall sker. Genom avancerade superdatorsimuleringar har forskare fördjupat sig i den inre strukturen av dessa "rester" och utforskat deras kylningsprocess främst orsakad av neutrinoutsläpp. Dessa fynd avslöjar ett centralt objekt omgivet av en snabbt roterande ring av het materia. Om dessa "rester" undviker kollaps förväntas att de släpper ut majoriteten av sin inre energi inom några sekunder efter att de bildats.

Genom att observera när neutronstjärnor smälter samman i rymden får forskarna insikter i hur kärnmateria beter sig under de extrema förhållanden som inte kan replikeras på jorden. Kärnmateria är ett hypotetiskt ämne som består av protoner och neutroner som hålls samman av den starka kraften. Av särskilt intresse  om trycket från den starka kraften kan stoppa svarta hål från att bildas. I den här studien fokuserade forskarna på vad som händer när neutronstjärnor smälter samman men inte blir svarta hål. Forskningen utforskade neutronstjärnornas tidiga utveckling endast några ögonblick efter att de skapats.Detta var en utgångspunkt för att identifiera de astronomiska signaler som kan bidra till att besvara frågor om neutronstjärnor och bildandet av svarta hål.

Det var forskare vid Pennsylvania State University som  använde superdatorsimuleringar med allmänrelativistisk hydrodynamik av neutrinostrålning för att förstå den inre strukturen hos "rester" från neutronstjärnkollisioner. De studerade också hur resterna kyls ner genom att de avger neutriner. I detta arbete användes de beräkningsresurser som finns tillgängliga via Department of Energy's National Energy Research Scientific Computing Center Leibniz Supercomputing Centre i (Tyskland) och Institute for Computational and Data Science vid Pennsylvania State University.

Man fann att "rest" av neutronstjärnekollisioner består av ett centralt objekt som innehåller det mesta av systemets massa, omgivet av en ring av het materia i snabb rotation som innehåller en liten del av massan men en stor del av rörelsemängd. Till skillnad från de flesta stjärnor har den inre "resten" en högre temperatur på sin yta än i sin kärna så konvektiva plymer förväntas inte bildas när "resten" kyls ner genom att sända ut neutriner.

Mitt förslag är att se händelsen och "resten" på enbart  på kvantfysiknivå då kanske det blir ny kunskap som visar hur allt fungerar vid en kollision av detta slag. Glöm ej heller strängteorin.

Bild wikipedia på en modell av en neutronstjärna.

fredag 16 augusti 2024

Den lyckade asteroidjägaren GAIA och dess 3:e datainsamling

 


Tack vare sin unika förmåga att skanna av hela himlen har Gaia gjort ett stort antal viktiga asteroidupptäckter sedan uppskjutningen 2013. I senast  insamlade datan den tredje pekade Gaia exakt ut positionerna och rörelserna hos mer än 150 000 asteroider så exakt att forskarna kunde se och undersöka de asteroider som uppvisar den karakteristiska "vinglingen" som orsakas av störningen från en följeslagare i omloppsbana (samma mekanism som visas för en dubbelstjärna och i ovan fall visar att asteroiden har en måne). Gaia samlade också in data om asteroiders sammansättning och sammanställde den största samlingen någonsin av asteroiders "reflektansspektra" (ljuskurvor som avslöjar ett objekts färg och sammansättning). De mer än 150 000 omloppsbanor som bestämdes i Gaias utgåva 3 förfinades och gjordes 20 gånger mer precisa vilket var en del av det tredje insamlandets uppgift. Ännu fler omloppsbanor runt asteroider kommer att samlas in som en del av Gaias kommande 4 insamling (förväntas bli klar i mitten av 2026).

"Gaia har visat sig vara en enastående asteroidfinnare i arbetet med att avslöja kosmos hemligheter både inom och bortom solsystemet", beskriver Timo Prusti, Project Scientist för Gaia vid ESA. "Detta resultat belyser hur varje offentliggörande av Gaia-data är ett stort steg framåt i datakvalitet och visar detta nya kunskapsinhämtande som möjliggjorts av uppdraget.

" ESA kommer att utforska binära asteroider ytterligare via det kommande Hera-uppdraget vars farkost Hera ska sändas upp senare under 2024. https://www.heramission.space/

Bild https://www.esa.int Gaia upptäcker möjliga månar runt hundratals asteroider.

torsdag 15 augusti 2024

En slöja av stoft i en galax 70 miljoner ljusår bort.

 


Ett team av internationella forskare under ledning från  Newcastle University har använt James Webb Space Telescope (JWST) och upptäckt en tidigare okänd slöja av stoft i galaxen ESO 428-G14 som finns 70 miljoner ljusår bort från oss. Energin som värmer upp stoftet kommer från kollisioner mellan gas som strömmar nära ljusets hastighet snarare än från strålning från det supermassiva svarta hålet i galaxen.

Upptäckten skedde under ledning av Houda Haidar, PhD student in the School of Mathematics, Statistics and Physics och resultatet publicerats i Monthly Notices of the Royal Astronomical Society (MNRAS). Houda och hennes team är medlemmar i Galactic Activity, Torus, and Outflow Survey (GATOS), ett internationellt samarbete som studerar de centrala delarna i närliggande galaxer med hjälp av JWST. Teamet vid Newcastle University har arbetat med några av de första dedikerade JWST-observationerna som gjorts.

Astronomer definierar en aktiv galaxkärna (AGN) som ett supermassivt svart hål, miljoner till miljarder gånger större solens massa som växer genom att i första hand dra till sig gas. I många AGN blockerar de tjocka molnen av stoft och gas som matar kärnan sikten för observatörer på jorden. JWST:s infraröda syn ser däremot igenom detta stoft och avslöjar den av gas dolda kärnan. Samtidigt gör teleskopets skarpa lins det möjligt för oss att för första gången bestämma den detaljerade strukturen hos detta stoft.

De nya bilderna från JWST av ESO 428-G14 avslöjar att en stor del av stoftet nära det supermassiva svarta hålet är utspritt längs med radiostrålars riktning från det svarta hålet. Oväntat nog fann forskarna ett nära samband mellan stoftet och radiostrålen (jetstrålen brukar vara en vanligare begrepp) vilket tyder på att jetstrålar i sig kan vara det som värmer upp och formar stoftmolnet.

Dr David Rosario, universitetslektor vid Newcastle University, och medförfattare till studien, säger: "Det finns en del debatt om hur AGN överför energi till sin omgivning. Vi förväntade oss inte att se radiojetstrålar göra detta. Men här verkar det vara så''

Genom att studera stoft nära supermassiva svarta hål lär vi oss hur galaxer återvinner material, vilket i slutändan hjälper oss att förstå de processer genom vilka supermassiva svarta hål påverkar galaxer.

Material som kan komma från supernovor exempelvis

Bild https://www.ncl.ac.uk/press En trefärgsbild av galaxen ESO 428-G14, tagen av James Webb Space Telescope.

onsdag 14 augusti 2024

NASA tränar just nu en maskininlärningsalgoritm för analys av prover från Mars

 


När den under ledning av  ESA   Rosalind Franklin-rovern åker till Mars  vilket sker tidigast 2028 får en av NASA:s maskininlärningsalgoritmer sin första chans att glänsa efter mer än ett decennium av dataträning i labbmiljö.

Mars Organic Molecule Analyzer (MOMA) är ett masspektrometerinstrument som då kommer att finnas ombord på rovern. Instrumentet kommer att analysera prover som samlats in från borrprov en bit under Mars yta och skicka resultaten tillbaka till jorden där de kommer att matas in i algoritmen för att identifiera organiska föreningar i proverna.

Om några organiska föreningar upptäcks av rovern kan algoritmen avsevärt påskynda processen att identifiera dem vilket sparar tid för forskarna när de bestämmer hur och var de mest effektivt ska använda roverns tid på Mars.

Inom artificiell intelligens är maskininlärning ett sätt för datorer att lära av insamlad data för att identifiera mönster, fatta beslut och dra slutsatser.

Denna automatiserade process bör bli kraftfull när mönstren kanske inte är uppenbara för mänskliga forskare som ser på samma data vilket är typiskt i stora, komplexa datamängder som de i avbildning och spektralanalys. I MOMA:s fall har forskare samlat in laboratoriedata i mer än ett decennium beskriver Victoria Da Poian datautvecklare vid NASA Goddard som är med och leder utvecklingen av maskininlärningsalgoritmen. Forskarna tränar algoritmen genom att mata den med exempel på ämnen som kan finnas på Mars och märka upp vilka de är.

Algoritmen kommer att använda MOMA-data som in- och utdata till förutsägelser av den kemiska sammansättningen av analyserade prov baserat på dess träning. MOMA-projektet leds av Max Planck Institute for Solar System Research (MPS) i Tyskland med Dr. Fred Goesmann som huvudansvarig för testerna. Forskningscentret NASA Goddard var centret som utvecklade och byggde delsystemet MOMA-masspektrometer. 

Bild wikipedia Kap Verde, Victoriakratern, Meridiani Planum. Bilden är tagen av roboten Opportunity. Klippan är ungefär 6 meter hög.

tisdag 13 augusti 2024

Caltech Submillimeter Observatory har nu lämnat Mauna Kea det heligaste berget på Hawaii

 


De sista komponenterna av Caltech SubmillimeterObservatory (CSO), inklusive dess fundament i form av den silverfärgade kupolen och byggnader har nu tagits bort från den dal på toppen av Mauna Kea på Hawaii där det låg och marken på platsen har återställts. Därmed avslutas officiellt den fysiska avvecklingen av CSO, en process som började  2015 och inleddes på allvar 2022 i enlighet med delstaten Hawaiis avvecklingsplan från 2010 för Maunakaya-observatorierna.

 Under de kommande tre åren kommer platsen att övervakas för att dokumentera att en passiv naturlig återinplantering av toppväxters flora och fauna sker. För närvarande är CSO-teleskopet packat i fraktcontainrar i en hamn på Hawaii där det väntar på ett nytt syfte och en ny plats i Chile och då med namnet Leighton Chajnantor-teleskopet.

Det nya namnet hedrar både uppfinnaren av teleskopet, den framlidne Caltech-professorn Robert B. Leighton (BS '41, PhD '47) och den planerade platsen för observatoriet på den höga Chajnantorplatån. 

Det återuppbyggda och namnförändrade teleskopet kommer att göra realtidsobservationer av kosmiska utbrott som i stort sett har varit outforskade område vid submillimetervåglängder och det kommer att fortsätta att observera planet- och stjärnbarnkammare samt de mest avlägsna galaxerna likt det gjorde på Hawaii. Teleskopets komponenter kommer att skickas till Chile för montering under det kommande året och de första observationerna förväntas ske från observatoriet  under 2027.

Anledning till flytten och nedmonteringen är protesterna som ekat sedan detta teleskop byggdes och beror på att det byggdes utan hänsyn till att det byggdes på det heligaste berget på Hawaii enligt den urgamla Polynesiska TAPU religionen. 

Bild Wikipedia på Mauna Kea i december 2007, med sitt säsongsbetonade snötäcke synligt.

måndag 12 augusti 2024

Små svarta hål kan användas i sökandet efter stora dolda svarta hål

 


Ursprunget till supermassiva svarta hål som finns i vad man anser alla galaxers centrum är fortfarande ett av de största mysterierna. De kan alltid ha varit massiva och bildades när universum fortfarande var mycket ungt (eller i samband med BigBang eller kanske BigBang var anledning till dessa svarta hål som fanns någonstans i tid och rum och som var kärnan till senare galaxers bildning). Alternativt kan de ha vuxit med tiden genom att dra till sig materia och sammanslagits med andra svarta hål. När ett supermassivt svart hål är på väg att äta upp ett annat massivt svart hål kommer detta att sända ut gravitationsvågor som krusningar i rumtiden. Krusningar som fortplantar sig genom universum.

Gravitationsvågor har nyligen upptäckts från små svarta hål som är rester av stjärnor (inte att förväxla med stora centrala hål i galaxers centrala del). Att detektera signalerna från enskilda par av stora svarta hål är fortfarande omöjligt eftersom dagens detektorer inte är känsliga nog för de mycket låga gravitationsvågsfrekvenser som dessa avger. Planerade framtida detektorer, som den rymdbaserade ESA-ledda missionen LISA, kommer delvis råda bot på detta. Men att upptäcka de tyngsta paren av svarta hål kommer fortfarande inte att vara möjligt. 

Ett internationellt team av astrofysiker under ledning av tidigare studenter vid universitetet i Zürich har en ny idé och metod för att upptäcka par av de största svarta hålen som  i galaxers centrum genom att analysera gravitationsvågor som genereras av dubbelstjärnor som finns i närheten av små svarta hål ( resterna av kollapsade stjärnor). Detta tillvägagångssätt, som kommer att kräva en gravitationsvågsdetektor med deci-Hz, skulle göra det möjligt att upptäcka de största supermassiva svarta hålen genom effekter som ges på dessa stjärnor.

"Vår idé fungerar i princip som att lyssna på en radiokanal. Vi föreslår att man använder signalen från par av små svarta hål på samma sätt som radiovågor bär signaler. De supermassiva svarta hålen är den musik som är kodad i frekvensmoduleringen  av den detekterade signalen, beskriver Jakob Stegmann, huvudförfattare till studien och idén som påbörjade detta arbete vid universitetet i Zürich som gäststudent och som sedan dess flyttat till Max Planck-institutet för astrofysik som postdoktoral forskarassistent. "Den nya aspekten av denna idé är att använda höga frekvenser som är lätta att upptäcka för att kunna upptäcka lägre frekvenser som vi ännu inte har tillräckligt känsliga instrument för.

Nya resultat från pulsar-tidsmatriser stöder redan existensen av sammansmältande supermassiva binärer av svarta hål. Dessa bevis är dock indirekta och kommer från den kollektiva signalen från många avlägsna binärer som effektivt skapar ett bakgrundsbrus.

Den föreslagna metoden för att detektera enskilda supermassiva svarta håls binärer utnyttjar de subtila förändringar de orsakar i gravitationsvågor som sänds ut av ett par närliggande små svarta hål vilka har en vit dvärg som följeslagare. Det lilla svarta hålets dubbelstjärna fungerar alltså effektivt som en fyr som avslöjar existensen av de större svarta hålen. Genom att detektera de små modulationerna i signaler från små svarta håls binärer (vita dvärgstjärnor) kunde forskarna identifiera tidigare dolda supermassiva svarta hål-binärer (två stora svarta hål som sveper om varandra) med massor  från 10 miljoner till 100 miljoner gånger solens, även på stora avstånd.

Lucio Mayer, som är medförfattare till studien och svarta hål teoretiker vid universitetet i Zürich, tillägger: "Nu när vägen för Laser Interferometer Space Antenna (LISA) är utstakad, efter att projektet antogs av ESA i januari förra året, måste gemenskapen utvärdera den bästa strategin för nästa generation av gravitationsvågsdetektorer, i synnerhet vilka frekvensområden de ska rikta in sig på – studier som denna ger en stark motivation att prioritera en design av en deci-Hz-detektor."

Bild https://www.news.uzh.ch/ När ett supermassivt svart hål är på väg att sluka ett annat massivt svart hål kommer detta att sända ut gravitationsvågor, som  krusningar i rumtiden som fortplantar sig genom universum. (Källa: NASA:s Goddard Space Flight Center/Scott Noble; simuleringsdata, d'Ascoli et al. 2018)