Google

Translate blog

lördag 18 januari 2025

Mer materia behövs från Mars för att förstå dess historia


Bild https://www.llnl.gov NASA:s Mars-rover Perseverance tog en selfie då den samlar markprover som på Mars. Dessa prover är avgörande för att förstå planetens utveckling. (Foto: NASA/JPL-Caltech/MSSS).

Den nuvarande förståelsen av Mars utveckling bygger på mätningar av rymdfarkoster och analys av meteoriter. Dessa meteoriter kastades ut från Mars och korsade rymden innan de landade på jorden där de hittats främst i afrikanska öknar och på Antarktis. De finns i två kategorier av meteoriter från Mars

 Var och en målar upp en egen bild av Mars geologiska historia.

I en studie publicerad i Proceedings of the National Academy of Sciences, hävdar LLNL-forskare (Lawrence Livermore National Laboratory USA) att prov som hämtats från kända platser på Mars genom återvändande farkoster skulle kunna lösa denna gåta.

– Vi använder för närvarande prover som ofta är mindre än några tum för att extrapolera en planets hela evolutionära historia. Man skulle inte kunna förutspå Himalayas existens utifrån materia som samlats in i havsdjup på Jorden, påtalar Lars Borg, forskare vid LLNL. "Vi måste kunna avgöra om de egenskaper vi ser är en del av en storskalig funktion eller bara en liten lokal anomali."

Shergottiter (Meteoriter)  är 200 till 600 miljoner år gamla basaltiska bergarter som har geokemiska och isotopiska egenskaper som har likheter med vår månes. Dessa meteoriter tyder på att Mars bildade en kärna, mantel och skorpa mycket tidigt i sin historia och sedan hände inte mycket mer. Nakhliter (Meteoriter) är däremot 1,3 miljarder år gamla och tyder på att Mars bildade en kärna, mantel och skorpa ännu tidigare i sin historia än ovan visar och liksom jorden upplevde pågående geologisk aktivitet. Ingen annan planet presenterar en så förvirrande kombination av motsägelser av sin historia.

Mätningar och datering av många meteoriter från Mars har gjorts vid LLNL av Cosmochemical & Isotopic Signatures group. De håller för närvarande på att uppdatera sina anläggningar i väntan på Mars Sample Return Campaign, som ska ta mineralprover som samlats in av rovern Perseverance tillbaks till jorden.

"Detta är en del av en mycket bredare agenda för LLNL för att bidra med vår unika analytiska kapacitet till kommande uppdrag för att skicka tillbaka prover, vilket även  inkluderar människors återkomst till månen genom Artemis-programmet", beskriver LLNL-forskaren Thomas Kruijer.

Genom att studera prov från Mars (och deras kända platser) hoppas Borg och hans team kunna konstruera en enhetlig modell för hur Mars bildats och utvecklats.

Att förstå Mars historia kan ligga till grund för studier av att förstå jordens bildning och den tidiga utvecklingen av jordlika planeter i allmänhet.

– Att få mineral från den enda platsen i solsystemet som ens tillnärmelsevis ser ut som jorden skulle kunna belysa hur vår värld kom till, förklara hur civilisationen bildades och undersöka om vi är ensamma i universum, beskriver Borg. 

fredag 17 januari 2025

Så kan det första livet lyckats klara sig på Jorden

 


Bild https://www.psi.edu  En konstnärs tolkning av en kaotisk tidig tid på jorden när livet först fick fäste. I den här bilden av en vulkanisk ventil strålar varmt vatten upp  till ytan. Det gula vattnet runt den varma källan är fullt av alger. Upphovsman: William Hartmann.

Forskare är inte säkra på hur livet först uppstod och dess vidare öde över tid. Ny forskning publicerad i Proceedings of the Royal Society B tyder på att kemiska föregångare till liv klarade svåra förhållanden via reversibla förändringar i aktivitet och skydd, ett fenomen som kan ses som dvala.

Kevin Webster, associerad forskare vid Planetary Science Institute (Planetary Science Institute  501(c)(3) Tucson, Arizona är ett privat, icke-vinstdrivande företag som ägnar sig åt utforskning av solsystemet. En annan medverkande i forskningen var Jay Lennon från Indiana University.

"Jag är intresserad av frågor som rör livets uppkomst", beskriver Webster. "Min samarbetspartner, Jay Lennon, är intresserad av fenomenet dvala. Vi pratade en dag och han frågade om jag trodde att dvala var äldre än livet. Jag sa att jag är nästan säker på att det är det. Det var det som ledde fram till artikeln”.

Organismer använder dvala för att minska risken för död genom att skydda sig mot ogynnsamma förhållanden och vaknar sedan när gynnsamma förhållanden återkommer.

"Om du är aktiv, men det inte finns någon mat på grund av att floden torkar ut till exempel, kommer du att dö", beskriver Webster. "Men om du kan uthärda de riktigt torra förhållandena medan du är i vila kan du återgå till aktivitet så snart det finns vatten igen och leva för att föra vidare din genetiska information."

Webster och Lennon grävde i de fossila lagren och för att finna att dvala har använts av en mängd olika organismer  under  jordens historia, inklusive idag (ex är björnar i idé då deras föda minskar på vintern).

Genom att minska dödligheten under suboptimala förhållanden skulle dvala minska sannolikheten för lokala och globala utdöenden. Dessutom skapar dvala en 'fröbank' av inaktiva individer", beskriver författarna vilket innebär att livet inte behövde starta om upprepade gånger under jordens turbulenta första tid.

Vissa molekyler kan genom olika processer växla mellan ett tillstånd av dvala (under vilket det är skyddat, men inte kan förökas) och aktivitet (under vilket det är mer sårbart för miljön, men kan förökas). Växling mellan dessa tillstånd kan ske i samband med förändringar i miljön, såsom temperatur eller tillgången på andra molekyler.

Att förstå hur liv uppkom och spreds och fortlevde på jorden är ett mål med forskningen.

torsdag 16 januari 2025

En stjärnströms egenskaper

 


En stjärnström är en grupp stjärnor som rör sig kollektivt längs med en delad bana. Bild wikipedia. Stjärnströmmar i Vintergatan, upptäckta 2007.

Fysiker vid University of California har föreslagit en lösning på ett långvarigt pussel kring stjärnströmmen GD-1, en av de mest välstuderade strömmarna i Vintergatans galaktiska halo, känd för sin långa, tunna struktur med sporrar och luckor. Forskarlaget under ledning av Hai-Bo Yu vid University of California, Riverside har föreslagit att en "subhalo"  en mindre satellithalo inuti den galaktiska halon  är anledningen till de sporrar och gap som observerats i stjärnströmmen GD-1.

Forskningen kan få stor betydelse för förståelsen av egenskaperna hos mörk materia.

En stjärnström är en grupp stjärnor som rör sig tillsammans längs en gemensam bana. En lucka hänvisar till en lokal underdensitet av stjärnor längs strömmen medan en sporre är en överdensitet av stjärnor som sträcker sig utåt från strömmens huvudkropp. Eftersom mörk materia (okänd energi) styr stjärnors strömmar kan astronomer använda stjärnströmmar för att spåra osynlig mörk materia i en galax.

Vintergatans galaktiska halo, ett ungefär sfäriskt område som omger vintergatan innehåller mörk materia (okänd materia) och sträcker sig bortom galaxens synliga kant. Visualiseringar av välkända stjärnströmmar i Vintergatan finns här.

Astronomer har upptäckt att utlöparna och gapen hos stjärnströmmen GD-1 inte enkelt kan hänföras till gravitation från kända klotformiga stjärnhopar eller satellitgalaxer i Vintergatan. Dessa  kan dock förklaras av ett okänt störande objekt, till exempel en subhalo. Men objektets densitet skulle behöva vara betydligt högre än vad som förutspås av förförståelsen av  CDM-subhalos (Cold Dark Matter).  

Studien stöddes av U.S. Department of Energy och John Templeton Foundation.

Titeln på forskningsrapporten som publicerats i The Astrophysical Journal Letters har titeln  "The GD-1 Stellar Stream Perturber as a Core-collapsed Self-interacting Dark Matter Halo".

onsdag 15 januari 2025

Nästa generations rymdfarkoster

 


Bilden från https://engineering.virginia.edu  visar en 6 kW Hall-propeller i drift vid NASA Jet Propulsion Laboratory. (Med tillstånd av NASA-JPL/CalTech)

Målet är snabbare, längre och mer effektiv framdrivning av rymdfarkoster. Det är vad ingenjörer som Chen Cui arbetar med vilken är ny som biträdande professor vid University of Virginia School of Engineering and Applied Science. Cui arbetar med att undersöka olika sätt att förbättra elektriska drivpropellrar en nyckelteknik vid framtida rymduppdrag. "För att säkerställa att tekniken förblir livskraftig till långsiktiga uppdrag måste vi optimera EP-integrationen (elektrisk plasma framdrivning kan det förklaras som) med rymdfarkostsystem", påtalar Cui.

I samarbete med sin tidigare rådgivare, professor Joseph Wang vid University of Southern California, publicerade Cui under december 2024  resultat i Plasma Sources Science and Technology (se nedan) här visar Cui nya insikter om elektronkinetiskt beteende i plasmastrålar och  vad som kanske ska ske inom framdrivning av farkoster i en snar framtid. Cui började på institutionen för maskin- och flygteknik hösten 2024 och fokuserar sin forskning på att förstå hur elektroner små, snabbrörliga laddade partiklar beter sig i plasmastrålar som sänds ut av EP-propellrar.

"Dessa partiklar är små, men deras rörelse och energi spelar en viktig roll för att bestämma den makroskopiska dynamiken hos plymen som sänds ut från den elektriska framdrivningspropellern", beskriver han.

Genom att studera dessa interaktioner vill Cui bättre förstå hur plymen av plasma som sänds ut interagerar med själva rymdfarkosten. Elektrisk framdrivning fungerar genom att jonisera en neutral gas vanligtvis xenon och sedan använda elektriska fält för att accelerera  jonerna som bildas. Jonerna, som  bildas i en plasmastråle med hög hastighet, driver rymdfarkosten framåt.

Jämfört med kemiskt framdrivna raketer är EP-system mycket mer bränsleeffektiva vilket gör det möjligt för rymdfarkoster att resa längre med mindre bränsle. Dessa system drivs ofta av solpaneler eller små kärnreaktorer vilket gör dem idealiska för långa uppdrag i rymden till exempel NASA:s Artemis-program, som syftar till att återföra människor till månen och så småningom skicka astronauter till Mars mm.

Plymen som avges av propellrarna är dock inte bara avgaser det är livlinan i hela framdrivningssystemet. Om plymen inte konstrueras väl kan den orsaka oväntade problem. Vissa partiklar kan flöda bakåt mot rymdfarkosten vilket kan skada viktiga komponenter på farkosten såsom solpaneler eller kommunikationsantenner.

För att lära mer om studien så kan denna läsas här titeln är "Vlasov Simulations of Electric Propulsion Beam", C. Cui och J. Wang, Plasma Sources Science and Technology, vol. 33, nr 12, s. 125005, 2024. 

tisdag 14 januari 2025

Medborgarforskare löste gåtan om Jupiters moln


 Bild https://sv.wikipedia.org Storleksjämförelse mellan jorden och Jupiter.

Samarbete mellan amatörastronomer och professionella astronomer har bidragit till att lösa ett gammalt missförstånd om sammansättningen av Jupiters moln. I stället för att bestå av ammoniakis vilket är den konventionella uppfattningen om molnen verkar det nu som om de sannolikt består av ammoniumhydrosulfid blandat med smog. Resultaten av studien har publicerats i den vetenskapliga tidskriften Journal of Geophysical Research – Planets.

Den nya upptäckten utlöstes av amatörastronomen Dr Steven Hill, baserad i Colorado. Nyligen visade han att mängden ammoniak och trycket från molntopparna i Jupiters atmosfär kunde kartläggas med hjälp av kommersiellt tillgängliga teleskop med några specialfärgade filter. Anmärkningsvärt nog visade dessa första resultat inte bara att mängden ammoniak i Jupiters atmosfär kunde kartläggas av amatörastronomer, de visade också att molnen ligger för djupt inne i Jupiters varma atmosfär för att stämma överens med moln av ammoniakis.

I den nya studien har professor Patrick Irwin vid institutionen för fysik vid University of Oxford tillämpat Dr Steven Hills analysmetod på observationer av Jupiter gjorda med instrumentet Multi Unit Spectroscopic Explorer (MUSE) vid Europeiska sydobservatoriets Very Large Telescope (VLT) i Chile. MUSE använder spektroskopi och då visar det sig att Jupiters gaser skapar avslöjande fingeravtryck i synligt ljus vid olika våglängder och det då går att kartlägga ammoniak- och molnhöjder i Jupiters atmosfär.

För mer information om arbetet och vilka medarbetare som var med se följande länk från University of Oxford - Department of Physics 

måndag 13 januari 2025

Dolda stjärnor bakom Dragon Arc.

 


Bild https://www.cfa.harvard.edu   Abell 370, en galaxhop som ligger nästan 4 miljarder ljusår från jorden, har flera ljusbågar, inklusive "Drakbågen" (nedre vänstra hörnet i mitten). Dessa bågar orsakas av gravitationslinser: Ljus från avlägsna galaxer långt bakom den massiva galaxhopen som riktas mot jorden böjs runt Abell 370 av dennes massiva gravitation, vilket resulterar i förvridna bilder. Källa: NASA

Med hjälp av NASA:s James Webb Space Telescope (JWST) har postdoktoral forskare Fengwu Sun vid Center for Astrophysics | Harvard & Smithsonian (CfA) och hans team observerat en galax som finns nästan 6,5 miljarder ljusår från jorden. En tidpunkt då universum var hälften så gammalt som det är idag. I denna avlägsna galax identifierade teamet 44 enskilda stjärnor som blev synliga tack vare en gravitationslinsing och JWST:s höga ljusinsamlingskraft. 

Upptäckten publicerades i tidskriften Nature Astronomy och det är det största antalet enskilda stjärnor som upptäckts i universum från denna tid. Upptäckten ger möjlighet att undersöka ett av universums största mysterier  mörk materia.

"Denna banbrytande upptäckt visar för första gången att det är möjligt att studera ett stort antal enskilda stjärnor i en avlägsen galax", beskriver Sun, en av studiens författare. – Tidigare studier med rymdteleskopet Hubble har resulterat i fyndet av troligen sju stjärnor (antalet inte bekräftat) långt därute men nu har vi förmågan att urskilja stjärnor som tidigare låg utanför vår förmåga i tid och rum att observera. Att observera fler enskilda stjärnor kommer att hjälpa oss att bättre förstå mörk materia i linsplanet i dessa galaxer och stjärnor vilket vi inte kunde med bara den handfull enskilda stjärnor som tidigare observerats på detta avstånd.

CfA:s Sun upptäckte denna hop av stjärnor när de inspekterade JWST-bilder av en galax som kallas Dragon Arc och som finns längs siktlinjen från jorden bakom en massiv galaxhop som kallas Abell 370. På grund av  gravitationslinseffekt sträcker Abell 370 ut Dragon Arcs signaturspiral till en långsträckt form  som liknar en sal av speglar av kosmiska proportioner.

Forskargruppen analyserade noggrant färgerna hos var och en av stjärnorna inuti Dragon Arc och fann att flera är röda superjättar, liknande Betelgeuse i stjärnbilden Orion som är i slutskedet av sin existens. Detta står i kontrast till tidigare upptäckter som främst identifierat blå "superjättar" liknande Rigel och Deneb. Stjärnor som är bland de ljusaste stjärnorna på natthimlen. Enligt forskarna belyser denna skillnad i stjärntyper också den unika kraften i JWST-observationer vid infraröda våglängder och som gör det möjligt att avslöja stjärnor med lägre temperaturer.

"När vi upptäckte de här stjärnorna letade vi i själva verket efter en bakgrundsgalax som kunde förstoras av någon galax grnom gravitationslinsning  i den här massiva stjärnhopen", beskriver Sun. – Men när vi bearbetade datan insåg vi att det fanns vad som verkade vara många enskilda stjärnpunkter. Det var ett spännande fynd eftersom det var första gången vi kunde se så många enskilda stjärnor så långt bort.

Sun är förväntansfull inför nästa tillfälle att studera dessa röda superjättar. – Vi vet nämligen i dag mer om röda superjättar i vårt lokala galaxområde eftersom vi kan ta bättre bilder och spektra och ibland till och med urskilja stjärnorna. Vi kan använda den kunskap vi har fått genom att studera röda superjättar i vår egen galax för att tolka vad som händer härnäst för de nu funna röda jättarna långt därute tack vara Webbteleskopet och gravitationslinsfenomenet.

söndag 12 januari 2025

Kol gör omständiga resor i universum

 


En bild från https://www.washington.edu  av en tät, stjärnrik del av Vintergatan, tagen av Hubbleteleskopet. NASA/ESA/Hubble-forskargruppen

Livet på jorden skulle inte existera utan kol. Men kol i sig skulle inte kunna existera utan stjärnor. Nästan alla grundämnen utom väte och helium existerar för att de bildades i stjärnor och senare kastades ut i kosmos när stjärnor exploderade som supernovor. Planeter bildas genom att sammansättas av dessa i stjärnor byggda atomer ex järnet i jordens kärna, syret i atmosfären eller kolet i människors kroppar.

Ett forskarlag i USA och Kanada bekräftade nyligen att kol och andra stjärnbildade atomer inte bara driver runt i rymden tills de dras till nya användningsområden. För galaxer som vår där det fortfarande aktivt håller på att bildas nya stjärnor gör dessa atomer en omständlig resa. De kretsar runt sin ursprungsgalax i gigantiska strömmar som sträcker sig ut i den intergalaktiska rymden. Dessa strömmar som sveper i det cirkumgalaktiska mediet liknar gigantiska transportband som trycker ut material och drar tillbaka det in i galaxers inre där gravitationen och andra krafter kan samla detta råmaterial till planeter, månar, asteroider, kometer, nya stjärnor och ex nya människor.

"Tänk på det cirkumgalaktiska mediet som en gigantisk tågstation: Det trycker hela tiden ut material och drar in det igen", beskriver teammedlemmen Samantha Garza, doktorand vid University of Washington. De tunga grundämnen som stjärnor producerar knuffas ut ur sin värdgalax och in i det cirkumgalaktiska mediet genom supernovor där de så småningom kan dras tillbaka in i galaxer och fortsätta cykeln av stjärn- och planetbildning.

Samantha Garza, doktorand vid University of Washington är huvudförfattare till en artikel som beskriver dessa upptäckter som publicerades den 27 december i Astrophysical Journal Letters.

"Implikationerna för galaxernas utveckling, och för den reservoar av ex kol som är tillgänglig för att bilda nya stjärnor är spännande", beskriver medförfattaren till studien Jessica Werk, professor vid University of California och ordförande för institutionen för astronomi. "Samma kol som finns i våra kroppar tillbringade troligen en betydande mängd tid utanför galaxen!"

De atomer vi består av har därmed gjort långa resor i tid och rum innan just du eller jag blev till.