Google

Translate blog

Visar inlägg med etikett synproblem. Visa alla inlägg
Visar inlägg med etikett synproblem. Visa alla inlägg

söndag 5 januari 2025

Synproblem riskeras efter landning på månens sydpol

 


Bild https://www.nasa

Nu ska snart människor åter landa på månen. Den här gången för att stanna (likt det är på rymdstationen ISS byts personal då och då). Eftersom vår närvaro kommer att vara mer permanent har NASA valt en plats som maximerar kommunikationen med jorden, solens synlighet och tillgången till vattenis. Lunar South Pole (LSP månens sydpol). Medan solen på månhimlen är mer konsekvent vid polerna men går aldrig upp mer än några grader över horisonten.

 I mållandningsområdena är den högsta möjliga höjden 7° av solen över horisonten. Detta ger en hård ljusmiljö (motljus) som aldrig upplevts under de tidigare Apollo-uppdragen eller under någon mänsklig rymdfärd (kan jämföras med motljus på jorden vid solnedgång eller uppgång och man får solljuset i ögonen vid bilkörning i motljus). Den omgivande solbelysningen kommer att ha en allvarlig inverkan på besättningens förmåga att se faror och att utföra enkelt arbete. Detta beror på att det mänskliga synsystemet, som trots att det har ett högt dynamiskt omfång, inte kan se bra i starkt motljus och inte kan anpassa sig snabbt från ljus till mörker eller vice versa. Funktionell syn krävs för att utföra en mängd olika uppgifter, från enkla uppgifter (t.ex. gå, använda enkla verktyg) till hantering av komplexa maskiner (t.ex. landarens hiss, rovers). (Troligen behövs något slag av solglasögon dygnet runt som måste byggas in i rymddräkten)

Miljön utgör därför en teknisk utmaning för byrån: en utmaning som man måste förstå brett innan man kan ta itu med den på ett effektivt sätt. Utvärderingsgruppen vid NASA rekommenderade att en mängd olika simuleringstekniker, fysiska och virtuella, måste utvecklas var och en med olika och väl uttalade förmågor med avseende på funktionellt seende. Vissa tar upp de bländande effekterna av solljus vid LSP (vilket inte är lätt att uppnå genom virtuella metoder) för att utvärdera prestandan hos hjälmskydd och artificiell belysning i samband med miljön och anpassningstider. Andra simuleringar skulle lägga till terrängfunktioner för att identifiera hoten i enkla (t.ex. gång, insamling av prover) och komplexa (t.ex. underhåll och drift av utrustning) uppgifter.

Eftersom olika anläggningar har olika styrkor har de också olika svagheter. Dessa styrkor och begränsningar måste karakteriseras för att möjliggöra verifiering av tekniska lösningar och utbildning av besättningen. 

Det är inte bara att skydda mot motljus som behövs utan även att kunna arbeta och röra sig utan att se omgivningen för svagt. Motljuset på månen är skarpare än på jorden då månen saknar nästa helt atmosfär.

tisdag 27 augusti 2024

Astronauter riskerar synproblem.

 


Mer än 70 % av astronauterna upplever enligt NASA ett fenomen som kallas Spaceflight Associated Neuro-Ocular Syndrome (SANS). Syndromet kan ha "en konstellation av symtom inklusive förändringar av synen", beskriver Matt Lyon, MD, chef för MCG Center for Telehealth (Medical College of GeorgiaMCG Center for Telehealth vid Augusta University)

Utöver ögonproblem kan astronauter drabbas av andra sjukdomar när kroppsvätskor t.ex. cerebrospinalvätska förändras under tyngdlöshet vilket kan leda till strukturella förändringar i hjärnan.

"Förändringarna börjar ske från dag ett i rymden", beskriver Lyon. – Vi är inte helt säkra på vad som orsakar problemen med synen men misstänker att det har att göra med en förskjutning av ryggmärgsvätska som påverkar synnerven. På jorden trycker gravitation ner vätskan och den rinner ut från nervtråden men i rymden flyter den upp och trycker mot synnerven och näthinnan. Med hjälp av bärbara, handhållna ultraljudsmaskiner hoppas Lyon och hans team inte bara kunna ta reda på mekanismen bakom förändringarna utan också hur man ska kunna förutsäga vilka astronauter som mest sannolikt kommer att uppleva dem.

MCG patenterade konceptet att använda bärbart ultraljud för att snabbt visualisera skador från tryck- och vätskeförändringar i den optiska nervskidan, lagret av skyddande membran runt nerven. Lyon undersöker hur denna del av hjärnan påverkas av förhöjt kranialtryck och lindriga traumatiska hjärnskador. När hjärnan är skadad sväller den liksom många andra organ och fylls med vätska.

Forskare arbetade med URSUS Medical Designs LLC, ett Pennsylvania-baserat bioteknikföretag med expertis där som arbetade inom ultraljud för att bygga en 3D-ultraljudsmaskin som hjälpmedel. Ett ettårigt bidrag på 350 000 USD för Small Business Innovation Research från National Institutes of Health finansierade projektet för att bygga en enhet som tillförde ytterligare en dimension till 2D-givare.

Lyon och MCG:s forskargrupp använder nu dessa ultraljudsmaskiner för att screena astronauter och avgöra vilka av dem som redan kan ha skadade synnerver. De misstänker att det är de som kommer att vara mer mottagliga för de synförändringar som är förknippade med SANS.

"Vi upptäckte att när det cerebrala ryggradstrycket ger milda traumatiska hjärnskador (TBI), uppstår en skada på synnervskidan som sannolikt är livslång", förklarade han. – Vi tror att då astronauter som har drabbats av hjärnskakning eller mild TBI åker ut i rymden och upplever vätskeskiftningar i låg gravitation, så vidgas manteln av den ökade volymen.

 Det är som ett däck - ett vanligt däck behåller sin normala form eftersom det är fyllt med luft och formen förändras inte. När det är skadat som utbuktningar på sidan av däcket fyller vätska utbuktningarna och manteln expanderar. Detta kan orsaka tryck på nerven och näthinnan. Ett skadat nervskidhölje är ett mindre problem på jorden men i rymden har överskottsvätskan ingenstans att ta vägen. Forskarna vet ännu inte om synförändringarna orsakas av den stora mängden vätska av det tillhörande trycket eller både och.

Det utbildas nu besättningsmedlemmar på Polaris Dawn(en privat finansierad bemannad rymdfärd med en Dragon 2-rymdfarkost från SpaceX) i att använda dessa ultraljudsmaskiner för att mäta både vätska och tryck i realtid under rymdfärd. 

Bild wikipedia.